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ABSTRACT 

Slotted flap is one of high lift devices. It considered as a moving part of the airfoil which is used as a control 

instrument in a form of elevator, rudders and ailerons. The main focus of work is to investigate the effect of flap 

chord, gap and overlap on aerodynamic characteristic of NACA 24012 airfoil. The model was tested with 20% C, 

30% C and 40% C single slotted flaps at zero angle of attack. The dynamic mesh and user defined function is applied 

to control the flap distance with respect to wing at any position. The simulation was done by solving the governing 

equations (Continuity, Reynolds Averaging Naveir- Stokes and Energy Equation) in 2-D using Fluent analysis at 

Reynolds number of 3.1𝑥106. 

Based on the results presented, larger increment of lift coefficient is obtained with the larger flap chord, but 

this increase is accompanied by a drag penalty. Furthermore, the loss of lift coefficient associated with larger 

extending flap at 3% C had a very detrimental effect on the attainable lift coefficient. The simulation result also shows 

that an optimum gap is 1% C in order to derive the maximum lift capability from the flap model. The code is validated 

against field measurements to show how close the CFD model simulates the reality. 
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INTRODUCTION 

Flap is a high lift device type used to increase the aircraft wing lift at a specific airspeed. The flaps are 

movable element permits the aircraft pilot to change the aerodynamic characteristics and geometry of the wing section 

to control the airplane motion in order to improve the performance in some desired aircraft manner [1].The devices of 

high lift can be applied to the airfoil trailing edge, as shown in Fig. (1).  

 

Figure 1. Aircraft wing with single slotted flap [2] 

Lift coefficient have a significant increase when the chord is affected by the camber added well aft. Air of 

high energy from the lower surface is ducted to the upper surface of flap. This high energy air will accelerate the 

boundary layer of upper surface and delays separation of airflow to some higher lift coefficient [3].The slotted flaps 

lift increment is a result of three main factors: The first is the camber effective change produced by setting down the 

flap. The second factor is due to the flow through the boundary layer of slot reenergizing, when the slot is designed 

perfectly and so delaying flow separation from the flap. The third is the effective lifting surface increase due to the 

rearward movement of the flap [4]. The effect of downstream flap on the immediate upstream main airfoil can be 
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simulated by putting a vortex near the trailing edge such that it lead to a velocity rise on both upper and lower 

surfaces, it results to a low rise in lift coefficient [5].There are different flab design used with the specific liberty 

depending on the speed, size and aircraft complexity on which they are to be used [6].  

Design of airfoil have a pivotal role in control surface and wing performance for aerospace engineering. The 

panel method cannot calculate sharp corners in the contour of airfoil. Deflections of positive flap give such an arc 

automatically in the upper surface of a real wind-turbine blade. A local separation in the real flow, which is 

responsible for  introducing an arc in the theoretical model [7]. Emad et al. [8] presented an aerodynamic heating 

study on an ogive and conical noses of a fly body using ANSYS Fluent 17.0. The results of study show that the 

distribution magnitude of internal heat for body nose temperature is directly proportional with attack angle and Mach 

number. Kaan et al. [9-12] performed measurements for real-time air quality of emissions for three months in 

Ambarli, Marport Terminal. In their research, critical times of all the emissions are specified between the measured 

dates using CFD modeling. Iman et al. [13] focused on extend the multifluid descriptions application to specified 

conditions for the first time using Maxwell and Smoluchowski models. Emad et al. [14] investigated the dynamic and 

vibration behavior of valve disc in the response to self-excited fluid flow using ANSUS program, when the valve disc 

starts from it fully opened position. 

  

The CFD (computational fluid dynamics) produces an attractive model of flow over an airfoil. The focus of 

the current research will be investigations the effect of flap chord, gap and overlap on aerodynamic characteristic of a 

NACA 24012 airfoil. Finally, several airfoils within the most useful range of shape will investigated to provide data 

for the various airfoils that may be chosen as most efficient in particular application.  

 

PHYSICAL MODEL  

In this work, the flow field around airfoil is study; the geometry of the bodies was simplified in the CFD 

model, as shown in Fig. (2) for single slotted flap geometry. 

 

Figure 2. Geometry for single slotted flap [15] 

The airfoil will be modeled at zero attack angle with angle variation of flap from 𝛿𝑓 = 0°  to  𝛿𝑓 = 40° , the numerical 

simulation was performed for three different length of slot flap ( 𝐶𝑓 = 20% 𝐶, 30%𝐶  𝑎𝑛𝑑 40%𝐶  ), whose length is 

expressed as airfoil chord percentages. 

 

Methodology Adapted  

In the present case, ANSYS Fluent was used to solve Reynolds Averaged Navier Stokes equations (RANS), 

these equations are based on the fundamental concepts of conservation of mass, energy and momentum [16, 17]. 

 

Continuity Equation 

 

 
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌�̅�) = 0 (1) 

 

The first term in Eqn.(1) represents the change rate of mass in a control volume element and the second term 

represents the change rate in mass due to convection. 
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Momentum Equation 

 
𝜕

𝜕𝑡
(𝜌�̅�) + ∇(𝜌�̅��̅�) = −∇𝑃 + ∇(𝜏̿) + 𝜌�̅� (2) 

 

The first term in Eqn.(2) represents the change rate of momentum  into volume element and the second term 

represents the change rate in momentum due to convection, the third  is the change rate due to pressure forces, the 

fourth represents the change rate due to viscous forces and the last is the change rate  due to gravitation. 

 

Energy Equation 

 

 𝜌𝑐𝑝(
∂T

∂t
+ v𝑥

𝜕𝑡

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
= 𝜆 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) (3) 

 

Eqn.(3) represents the energy equation which is required whenever heat transfer or pressure work is present 

in the flow. For our case, the flow is assumed to be compressible and constant viscosity. 

 

Turbulence Modeling  

For slotted flap investigation at high Reynolds number  𝑘 − 𝜔  RNG model is chosen as verified by 

turbulences model dependency studies by Krishnaswamy et.  

For  𝑘 − 𝜔  RNG Turbulence model. The turbulence kinetic energy, k and its rate of dissipation 𝜀, in 𝑘 − 𝜀  RNG 

turbulence model can be found from the following equations: 

 

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝑘𝑢𝜀

𝜕𝑘

𝜕𝑥𝑖
) + 𝐺𝑘 + 𝐺𝑏 + 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘    (4) 

 

 
𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌𝜖𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(𝛼𝑘𝑢𝜀

𝜕𝜀

𝜕𝑥𝑖
) + 𝐺1𝜀

𝜀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐶𝑏) − 𝐶2𝜀

𝜀2

𝑘
− 𝑅𝜀 + 𝑆𝜀 (5) 

 

In equations (4 and 5), 𝐺𝑘 is the turbulence kinetic energy generation result from the mean  velocity 

gradients, whereas 𝐺𝑏  is the turbulent kinetic energy generation result from buoyancy, 𝑌𝑚 is the fluctuating dilation 

contribution in compressible turbulence to overall dissipation rate. 𝛼𝑘 and 𝛼𝜀 are the inverse  Prandtl numbers for 𝑘 

and 𝜀, respectively. Value of model constants has been derived analytically by the RNG theory. 

 

PROBLEM SPECIFICATION  

In an external flow over an airfoil with flap, we have to define a far- filed boundary and mesh the region 

between the body geometry and boundary. The geometric model consists of C-type domain with radius 10 times 

length of airfoil which is located in the middle of domain, to ensure there is no reflecting influences from boundaries. 

Fig.(3) shows the grid used for solving the flow over an airfoil [18].The computational domain quality will plays an 

important role in the stability and accuracy of the calculation. Therefore to control the mesh quality a number of 

criteria can be evaluated in Fluent such as maximum cell skewness and maximum aspect ratio.  

 

 

Figure 3. Mesh generation of the l NACA24012 airfoi with flap 
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After completing the meshing of the model, it was applying ANSYS Fluent 17.2 and the parameter for the 

simulation was established. A pressure far-filed boundary condition was imposed on the domain outer boundaries. 

The 𝑘 − 𝜔  turbulence models were used given its suitability for modeling flows separated regions. The pressure 

based simple algorithm was used for pressure- velocity coupling in addition to a least-square cell based discretization 

schema and a second order upwind scheme was used for the momentum and turbulence equations discretization. The 

model type solver pressure based with viscous model as Spalart-Allmaras. Ideal gas law to determine the air density, 

while Sutherland's was used to calculate the air viscosity. The turbulence intensity was set to 1% with turbulence 

length scale being the same as the airfioal chord.The Reynolds number based on the chord length and free stream flow 

condition was  3.1 × 106  and the Mach number was 0.135. All simulation were run until both the lift and drag 

coefficients converged and all residuals dropped below 1 × 10−6 . 

 

Dynamic Mesh  

The model of dynamic mesh in Fluent may be adopted to simulate flows where the domain shape is a 

function of time due to motion on the boundaries of domain. Methods of mesh motion are found in Fluent for 

updating the mesh in the regions of deforming subjected to the motion namely, smoothing, dynamic layering and local 

remeshing methods. The option of dynamic mesh is used during transient simulation to prevent the formation of 

negative cell volumes due to mesh quality deterioration and maintain a high mesh quality. The requirements of a 

dynamic simulation are description of the boundary motion and an initial mesh [19, 20]. In the current study, the 

defection of the flap is described by a UDF (User Define Function). A UDF is a function written in C-programming 

language scheme can be dynamically linked with the Fluent. UDF's are executed as compiled function in Fluent. The 

UDF code defines the mesh motion through dynamic zones, which correspond to the center of gravity motion of 

airfoil with flap. The choice of compilation or interpretation is based on the type of macro used and is specified in the 

supplied UDF manual. The dynamic meshing macros all require compiling, which can be accomplished through the 

Fluent Graphical User Interface (GUI) menus. 

  

Grid Independency Study  

The mesh size influence on the solution results must be investigated for the first step of accomplishing a CFD 

simulation. For more accurate approach, a more nodes are needed, and using further nodes will escalates the requisite 

computational time and computer memory. In order to determining the suitable number of nodes, it can be done by 

increasing the nodes number until the mesh being fine. Fig. (4), presents the coefficient of drag variation with grid 

cells number at flap deflection angle of 20.° 

 

 

Figure 4. Grid independency study for drag coefficient at flap angle 20.° 

 

RESULTS AND DISCUSSION  

Results of the previously described analysis are presented in this section. The simulation was carried out 

using Fluent programs for different length of the slot flap. The pressure contour over NACA 24012  airfoil at zero 

angle of attack with flap deflected angle 30° is presented in Fig.(5) and from the plot it is clear that, as flap is 
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deflected, causes decrease in velocities and setting up of the pressure beneath the airfoil which simultaneously 

increases adverse pressure gradient with flap deflection. Therefore, by increasing deflection angle of the flap which 

leads to increases the pressure over an airfoil even without changing the angle of attack. Due to increase the chamber 

line of the airfoil.  

 

 

Figure 5.Variation of pressure contour for flap deflection airfoil of  𝛿𝑓 = 30° 

The effect of flap chord on the lift coefficient is observed in Fig.(6) at various flap deflection angles. The 

result data presented for the (𝐶𝑓 = 20%𝐶, 30%𝐶 𝑎𝑛𝑑 40%𝐶) are reasonably comparable in that the shapes of the 

slots are generally similar. When  a flap chord increase the upper chamber of the airfoil  increasing the negative 

pressure on the top of  the airfoil , at the same time they allow a buildup of pressure below the airfoil. From the figure 

above show that larger increment of lift coefficient 𝐶𝐿, are obtained with the larger flap chord .Another important 

point in these analysis it observed that, slight increase in drag coefficient 𝐶𝐷 as shown in Fig.(7) ,due to disturbance 

between the airfoil  and flap, which may be valuable pending approximation and landing. Whereas, the measure of the 

efficiency of the airfoil as a lifting surface is given by the CL/CD ratio, which is seen in Fig.(8). 

 

Figure 6. Lift coefficient variation with flap deflection angle at zero attack angle 

 

Figure 7. Drag coefficient variation with flap deflection angle at zero attack angle 
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Figure 8. CL/CD ratio variation with flap deflection angle at zero attack angle 

The effect of the overlap position between the airfoil and flap (𝐶𝑓 = 30%𝐶) was studied for three positions 

in longitudinal axis (x = 1%C, 2%C and 3%C) and shown in Figs. (9,10 and 11). It is seen that firstly in these figures, 

the maximum value of drag coefficient at extending the flap at 3%C,  whereas, the maximum value of lift coefficient 

is get at extending the flap at 1%C. Due to high pressure air from the beneath the airfoil  over the flap assisting the 

airflow keep attached to the flap. A cross the entire chord, lift of the primary airfoil is highly raised when the velocity 

air leaving its trailing edge is raised. The flap is dominated by viscous effect as boundary layer transition and flow 

separation. Extending the flap also increases the drag coefficient of an airfoil due to higher induced drag caused by 

distorted chord  lift distribution on the airfoil with flaps extended. Finally, overlap is carefully designed so that the air 

that flows through the gap keeps the flow on the flap attached even when the airfoil is at high angles of attack. 

 

Figure 9. Drag coefficient variation with flap deflection angle at  zero attack angle 

 

Figure 10. Lift coefficient variation with flap deflection angle at zero attack angle 
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Figure 11. CL/CD  ratio variation with flap defection angle at zero attack angle 

The effect of the gap between airfoil and flap (𝐶𝑓 = 30%𝐶) with respect to the airfoil was studied for three 

positions in lateral axis (y = 0%C, -1%C and 1%C) as shown in Figs. (12 and 13) .It is seen that, the flap is fixed 

beneath the airfoil trailing edge, it has more drag than other types but is slight effective at creating additional lift 

coefficient than other type. When, the gap between the flap and airfoil is small and not enough fluid is capable to pass 

during the slot causing the flap to lose its effect, compared with large of a value .Another important point it show that, 

the contribution of lift coefficient augmented exceed the drag coefficient increase yielding an augmented CL/CD ratio 

as shown in Fig.(14),because of a higher CL/CD ratio it gives better take off and climb performance. 

 

 

Figure 12. Drag coefficient variation with flap deflection angle at  zero attack angle 

 

Figure 13. Lift coefficient variation with flap deflection angle at zero attack angle 
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Figure 14. CL/CD ratio variation with flap angle at different gap for zero attack angle 

In order to prove the validation of the simulation model. The lift and drag coefficient of the simulation 

at  𝑅𝑒 = 3.1 ∗ 106 over a wide range of angle of attack have been compared to experimental data obtained from 

references [21, 22] .Based on the results shown in Figs. (15 and 16). It can be concluded that, the method of CFD 

modeling and simulating which is used in this work is suitable in calculating flow around airfoil. Also it show that 

CFD simulations can supply a more  accuracy for geometry change investigations such as flap and the maximum 

discrepant between them is reasonable [23].  

 

 

Figure 15. Drag coefficient variation with angle of attack for different technique 

 

Figure 16.  Lift coefficient variation with attack angle for different technique 
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CONCLUSION 

The paper deals with investigations of effect of flap chord, gap and overlap on aerodynamic characteristic of 

the NACA 24012 airfoil. The k-omega RNG models have used with dynamic meshing technique in ANSYS Fluent 

17.2. Lift and drag coefficient coefficients and the ratio is analyzed for zero attack angle, drag and lift coefficient are 

validated for different attack with experimental data. The results show that, the flaps change the pressure distribution 

around airfoil by changing its chord length and position. Moreover, extending the flap also increases the drag 

coefficient of an airfoil due to higher induced drag. Finally, the gap size between the airfoil and flap has an influence 

on the lift and drag coefficient at zero attack angle.  

 

NOMENCLATURE 

𝐶  chord  

𝐶𝐷  coefficient of drag  

𝐶𝐿  coefficient of lift  

𝐶𝑓  flap  chord   

𝐶𝑃    heat capacity at constant pressure. 

𝐹      force vector 

𝑔     gravitational acceleration  

𝑡       time  

𝑃      pressure 

𝑇      temperature  

𝑢      flow velocity  

𝑣    kinematic viscosity   

𝑥     coordinate in longitudinal axis   

𝑦     coordinate in lateral axis   

 

Greek 

𝜌        density. 

𝜆        thermal conductivity 

𝑣        velocity 

𝜇      molecular viscosity 

𝛿𝑓    flap deflection dangle  
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