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ABSTRACT 

 

Artificial neural network (ANN) simulation of chemical oxygen demand (COD), total nitrogen (TN), and total 

phosphorus (TP) removal efficiencies of an advanced biological wastewater treatment process is presented in 

this study. Seven input parameters (predictors) were used: influent COD, TN, and TP concentrations, internal 

recycle (IR) and return activated sludge (RAS) ratios, wastewater temperature, and total hydraulic retention 
time (HRT) of process reactors. Results showed that open-source ANN tools can easily be employed for quick 

and reliable simulation results. ANN with the logistic, the sinc, and the Elliot functions can be confidently 

employed for predicting COD, TN, and TP removal efficiencies. Mean square errors were 5.54*10-7, 2.06*10-

4, and 2.26*10-3, respectively, for COD, TN, and TP removal efficiencies. Besides, wastewater temperature 

was found to be the major factor that determines the performance of a wastewater treatment system while 

RAS ratio, HRT, and influent wastewater characteristics are also effective on the performance.  
Keywords: Wastewater treatment, biological nutrient removal, treatment performance, artificial neural 

networks. 

 

 

1. INTRODUCTION 

 

Treatment of wastewaters prior to discharge is one of the main components of urban 

infrastructure systems, the importance of which, among others, has been escalating gradually due 

to increasing trends in population density of large cities. Considering the increasing trends in 

land, workforce, and energy costs as well as awareness of materials/energy recovery from 

wastewaters, the design and efficient operation of wastewater treatment systems has become a 

great challenge for environmental engineers. 

Wastewater treatment systems mostly employ complex physical, chemical, and biochemical 

processes in various steps [1]. Today, the treatment objectives are usually accomplished in three 

main steps as primary, secondary, and tertiary treatment. Primary treatment step usually comprise 

physical processes like screening, grit removal, and primary sedimentation, while biochemical 

processes (activated sludge processes) in addition to physical processes are employed in 

secondary treatment step. The existence of a tertiary step depends on the treatment objectives and 

is accomplished mostly by physical and chemical processes.  
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The design and efficient operation of a wastewater treatment system as a whole is a very 

complicated task for environmental engineers that require expertise in all physical, chemical, and 

biochemical treatm ent processes. Although computer-aided methods such as activated sludge 

modeling tools [2-5] are usually adopted for the purpose of design, operation, and optimization of 

modern wastewater treatment plants, these deterministic modeling tools require knowledge on a 

great number of treatment plant parameters, influent wastewater parameters, and model 

parameters, and these models usually require hours of calculation time, if not days, to complete 

simulation tasks. Most of the time, engineers need to test several scenarios on a wastewater 

treatment plant in both the design and operation phases and these deterministic modeling tools 

does not meet the requirements for quick simulation results due to their huge input requirements 

and long run times. Therefore, empirical modeling tools become more useful for these cases when 

quick simulation results are needed. Artificial neural networks (ANNs), with their ability to learn 

and mimic engineering systems in wide range, can be used for this purpose. 

An artificial neural network is a black-box modeling tool [6], which employs processing units 

for learning and simulating complicated engineering systems. Artificial neural networks do not 

need to be taught complex physical, chemical and biochemical phenomena. Instead, they learn 

and mimic the engineering system in an empirical manner. This feature of ANNs make it possible 

to obtain quick simulation results no matter how complicated the engineering system of interest 

is, if the ANN is well-trained prior to simulation.  

The outputs of many environmental engineering processes including biological wastewater 

treatment can be easily simulated by a well-trained ANN. For instance, Şamlı et al [7] reported 

the use of ANN for predicting chlorophyll-a concentrations in a coastal region while Bayram et al 

[8] employed ANN modeling for dissolved oxygen concentrations in a watershed. Sakiewicz et al 

[9], in a newer study, employed ANN modeling for monitoring the effects of plant operating 

parameters in a biogas-wastewater treatment system and performed sensitivity analyses. They 

concluded that plant operating parameters are more effective on the performance than influent 

wastewater characteristics, which proves that artificial neural network modeling tools also 

provide the opportunity to evaluate the effects of several parameters, and prioritize them as major 

and minor parameters. Mohammad et al [10] reported training of a multilayer ANN for 

chlorophenol removal from wastewater while Mojiri et al [11] achieved optimization of an 

anammox process enhanced with biochar adsorption using ANN simulations. Artificial neural 

networks can also be used to predict the outcome of specific treatment processes as described by 

Ribeiro et al [12]. Papers by Han et al [13] and Qiao et al [14] describe successful implementation 

of ANN modeling tools for process control. They achieved implementation of a multiobjective 

fuzzy neural network controller for a wastewater treatment process, which aims at improving 

operational efficiency to satisfy the effluent quality standards and reduce the energy costs, and 

then employed that controller for multiobjective process operation.  

A number of sample studies exists pertaining to the prediction of wastewater treatment plant 

performance by artificial neural networks [15-19]. For instance, Güçlü and Dursun [20] built a 

number of ANN architecture for predicting mixed liquor suspended solids (MLSS) concentration, 

as well as effluent chemical oxygen demand (COD) and suspended solids (SS) concentrations in a 

large-scale, Turkish wastewater treatment plant concluding that the ANN models are reliable tools 

for predicting wastewater treatment plant performance. The more the number of data points are, 

the more accurate the model results are. In a newer study, Nasr et al [21] applied ANN modeling 

to an Egyptian wastewater treatment plant for predicting effluent COD, biochemical oxygen 

demand (BOD), and total suspended solids (TSS) using operating data gathered over a period of 

one year. The authors reported that correlation coefficients between measured and predicted 

effluent concentrations reached up to 0.90, and that ANN can be used as an effective tool for 

analysis and diagnosis purposes. Tümer and Edebali [22] applied an ANN modeling tool for 

predicting TSS removal efficiency in a Turkish wastewater treatment plant using influent pH, 

temperature, COD, TSS, and BOD collected over four months as input parameters. They tested a 
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number of different ANN arc hitectures to obtain best simulation results concluding that logistic 

function offers the most accurate results. In another study, Türkmenler and Pala [23] used influent 

pollutant concentrations and wastewater flowrate to predict effluent BOD concentrations by ANN 

reporting that ANN modeling tools can be used effectively for forecasting the performance of an 

advanced biological wastewater treatment plant. Review of current literature on ANN modeling 

of wastewater treatment plants reveals that most of the studies were performed using real 

treatment plant data, which offers a very narrow range of input parameters leading to a limited-

range of applicability of results. Besides, operating parameters in real treatment plants like recycle 

ratios are extremely difficult to change during operation, and most of these studies were 

performed by neglecting the effects of several operating parameters on the treatment plant 

performance. Therefore, current literature lacks scenario-based studies, which also account for the 

effects of several plant operating parameters. 

The motivation of this study comes from the need for sample studies that describe the 

application of open-source modeling tools like artificial neural networks for predicting advanced 

biological wastewater treatment plant performance depending on a great number of operating and 

influent wastewater parameters. The main purpose is to build, train and employ an ANN model 

for predicting the performance of a conventional A²O process depending on influent wastewater 

characteristics such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus 

(TP) as well as temperature, and plant operating parameters such as internal recycle (IR) ratio, 

return activated sludge ratio (RAS), and total hydraulic retention time (HRT) of process reactors. 

Plant performance data was obtained using an open-source activated sludge modeling tool based 

on activated sludge model no. 3 (ASM3) extended with biological phosphorus removal processes. 

The data set was comprised of 2187 data points, which, to the author’s knowledge, offers the most 

comprehensive simulation data in the literature. Artificial neural networks built with several 

activation functions were then employed for training to predict COD, TN, and TP removal 

efficiency of the wastewater treatment process, and testing the accuracy of ANN model. 

Sensitivity analyses were also performed with ANN model to determine the major and minor 

factors that characterize the behavior of the treatment process for COD, TN, and TP removal 

efficiency.  

 

2. MATERIALS AND METHODS 

 

2.1. Process Configuration 

 

A conventional wastewater treatment plant configuration was used for simulation purposes. 

The treatment system is an A²O process and the configuration is composed of an anaerobic, an 

anoxic, and an aerobic reactor followed by a secondary settling tank. The flowchart of the process 

is shown in Fig. 1. Primary effluent (also called influent wastewater from now on) was fed to the 

anaerobic reactor.  The return activated sludge was taken from the bottom of the settler to the inlet 

of anaerobic reactor while an internal recycle was reserved to recycle nitrate from aerobic reactor 

to anoxic reactor. The influent flowrate was constant at 1800 m³/h and the waste activated sludge 

was taken from the bottom of the settler at a flowrate of 18 m3/h. The hydraulic retention time of 

the secondary settling tank was 4 hours.  
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Figure 1. Flowchart of the wastewater treatment process 

 

2.2. Activated Sludge Model 

 

Activated sludge model no.3 (ASM3) by Gujer et al [5] extended with biological phosphorus 

removal processes [24] was used to simulate the A2O process given in Fig. 1. Simulations were 

performed using an open-source MS Excel Visual Basic for Applications (VBA) tool called 

bioXL3p, which has been developed as an extended version of previous bioXL3 software [1]. The 

tool is an MS Excel add-in with a friendly user interface and it is equipped with several additional 

functionality to build and apply various simulation scenarios.  

Based on seven operating and influent wastewater parameters given in Table 1, a total of 2187 

scenarios were created and simulations were performed to determine steady-state COD, TN, and 

TP removal efficiencies of the system. To obtain volumes of process reactors in the simulations, 

the HRTs of the anaerobic, the anoxic, and the aerobic reactors were assumed to be 9%, 18%, and 

73% of total HRT of the process reactors, respectively.  

 

Table 1. Influent wastewater and operating parameters for the wastewater treatment process 
 

Parameter Value 

Influent  

Chemical oxygen demand (COD) 

Total nitrogen (TN) 

Total phosphorus (TP) 

300; 400; 500 mg/L 

30; 40; 50 mg/L 

2; 3; 4 mg/L 

Internal recycle ratio (IR) 2; 3; 4 

Return activated sludge ratio (RAS) 0.8; 1.0; 1.2 

Total hydraulic retention time of process reactors (HRT) 5.0; 7.5; 10.0 h 

Wastewater temperature (T) 5; 15; 25 °C 

 

For all simulations, influent concentrations of several model components were calculated 

using the fractionation data for primary settled wastewater presented in Rössle and Pretorius [25]. 

The component concentrations in all simulations are shown in Table 2. 
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Table 2. Influent component concentrations for bioXL3p tool 
 

Component Concentration Remarks 

Dissolved oxygen 0 mg/L Constant 

Soluble inert organics 0.075 * [COD] 
Calculated in each simulation based 

on influent COD. Refer to Table 1. 

Readily biodegradable organics 0.325 * [COD] 
Calculated in each simulation based 

on influent COD. Refer to Table 1. 

Ammonium + ammonia nitrogen 0.69 * [TN] 
Calculated in each simulation based 

on influent TN. Refer to Table 1. 

Nitrite + nitrate nitrogen 0 mg/L Constant 

Dissolved nitrogen 0 mg/L Constant 

Phosphate phosphorus 0.55 * [TP] 
Calculated in each simulation based 

on influent TN. Refer to Table 1. 

Alkalinity 
5 mmol/L 

HCO3 
Constant 

Autotrophic biomass 0 mg/L Constant 

Heterotrophic biomass 0 mg/L Constant 

Phosphorus accumulating biomass 0 mg/L Constant 

Particulate inert organics 0.05 * [COD] 
Calculated in each simulation based 

on influent COD. Refer to Table 1. 

Slowly biodegradable substrate 0.55 * [COD] 
Calculated in each simulation based 

on influent COD. Refer to Table 1. 

Organics stored by heterotrophs 0 mg/L Constant 

PHAs stored by PAO 0 mg/L Constant 

Polyphosphates 0.125 * [TP] 
Calculated in each simulation based 

on influent TP. Refer to Table 1. 

 

 
 

Figure 2. Removal efficiencies of A²O process calculated by activated sludge modeling 

 

The removal efficiencies of the process for COD, TN, and TP are shown in Fig. 2. Besides, 

steady-state sludge retention times (SRT) and mixed liquor suspended solids (MLSS) 

concentration were calculated for each scenario. The average MLSS concentrations in process 

reactors changed between 2032 and 8772 mg/L while sludge retention times changed between 9.4 
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and 23.0 days. Average COD removal efficiency was calculated as 89.4%±0.5% with minimum 

and maximum values of 87.9% and 90.4%. Minimum and maximum TN removal efficiencies 

were 25.1% and 86.6% with an average value of 70.6%±14.1%. Calculated average TP removal 

efficiency was 61.0%±22.6%. The TP removal efficiencies ranged from 13.8% to 88.3%. 

 

2.3. Artificial Neural Network 

 

Another open-source MS Excel VBA-based tool [26] was used for artificial neural network 

simulations. The tool allows selection of the number of input neurons, output neurons, and hidden 

neurons as well as the number of hidden layers in addition to percent of training samples, number 

of epochs, and learning rate. The tool also offers a number of activation functions for hidden and 

output neurons [27] as well as user-defined steepness coefficients [28].  

An artificial neural network model has been established with the topology given in Fig. 3. For 

all simulations, the input data was normalized between 0 and 1. Since the output data is composed 

of COD, TN, and TP removal efficiencies calculated between 0 and 1, normalization was not 

performed for output data. Randomly selected 70% of the samples (simulation results from 

activated sludge model) was used for training while the remaining 30% was used to validate the 

simulation results. The learning rate was 0.75 with 2000 epochs. Ten hidden neurons were 

employed for all simulations. Although a number of activation functions has been used effectively 

for various simulation works with ANNs (a detailed discussion of these functions can be found in 

Sibi et al [29]), three activation functions, namely the logistic, the Elliot, and the Sinc functions, 

were employed for simulating wastewater treatment plant performance in this study. Features of 

these activation functions are shown in Table 3. 

 

 
 

Figure 3. Artificial neural network topology 

 

Table 3. Activation functions used 
 

Activation 

function 

Mathematical 

expression 
Derivative 

Spanning 

range 

Logistic 𝑦=
1

1+𝑒−𝑥
 𝑦′=𝑦(1−𝑦) 0<y<1 

Elliot 𝑦=
0.5𝑥

1+|𝑥|
+0.5 𝑦′=

1

2(1+|𝑥|)2 0<y<1 

Sinc 𝑦={
1 ⟺ 𝑥=0

𝑠𝑖𝑛𝑥

𝑥
⟺ 𝑥≠0

 𝑦={
0 ⟺ 𝑥=0

𝑐𝑜𝑠𝑥

𝑥
−

𝑠𝑖𝑛𝑥

𝑥2 ⟺ 𝑥≠0
 -0.2172≤y≤1 

 

S. Demir     / Sigma J Eng & Nat Sci 38 (4), 1713-1728, 2020 



1719 

 

The artificial neural network tool starts the learning process by randomly selecting the 

training data and assigning random initials to weights and biases of each neuron in the structure. 

Therefore, the tool converges to a different set of weights and biases each time it is run. The point 

of convergence may be a local or a global minimum for mean square error, and the neural 

network is, therefore, run 25 times for each activation function, summing up to 75 simulations (25 

times for each of three activation functions) for each of COD, TN, and TP removal efficiencies. 

 

3. RESULTS AND DISCUSSIONS 

 

3.1. Artificial Neural Network Simulation 

 

Training of the artificial neural network given in Fig. 3 was the main step of this study. 

Randomly selected 70% of the samples (results of activated sludge modelling) were selected in 

each training session, while the remaining 30% was used for validation. Since the artificial neural 

network (ANN) simulation tool [26] randomly selects the training data and starts the learning 

process with a random set of weights and biases for neurons, it converges to a different set of final 

weights and biases each time. This final solution can be a local or global maxima, and the neural 

network simulation, therefore, was performed 25 times for each activation function and for each 

of COD, TN, and TP removal efficiencies in order to obtain the most accurate solutions.  

Average mean square error (MSE) between measured (activated sludge modeling results) and 

predicted chemical oxygen demand (COD) removal efficiencies were calculated as 5.54*10-

7±1.67*10-7, 8.83*10-7±1.51*10-7, and 7.46*10-7±2.40*10-7, respectively with the logistic, the 

Elliot, and the sinc functions. On the other hand, the coefficients of determination (R2) calculated 

for COD removal efficiency were 0.9832±0.0049 with the logistic function, 0.9696±0.0051 with 

the Elliot function, and 0.9766±0.0079 with the sinc function. Statistics for COD removal 

efficiency are shown in Fig. 4. The MSE values with the logistic function were the lowest (Fig. 

4.b). Besides, the logistic function provided the strongest correlation between measured and 

predicted COD removal efficiencies (Fig. 4.a).  

 

 
 

Figure 4. Statistics for COD removal. a. Coefficients of determination, b. Mean square errors 

 

A visual inspection of correlation plots between measured and predicted values of COD 

removal efficiency (Fig. 5) also reveals the superiority of the logistic function (Fig. 5.a) in COD 

removal prediction over the Elliot (Fig. 5.b) and the sinc functions (Fig. 5.c). In correlation plots, 

the red line represents perfect fit, the blue dots represent the correlation plots, and the black line is 

a regression line. The regression line in Fig. 5.a is the closest one to perfect fit with a R² = 0.9935. 

Besides, the measured versus predicted COD removal efficiencies are more concentrated around 

the perfect fit with logistic function. 
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Figure 5. Correlation plot for COD removal efficiency with a. logistic function, b. Elliot 

function, c. sinc function 

 

Statistics for predicted total nitrogen (TN) removal efficiency is shown in Fig. 6. For TN 

removal, the neural network did not show a noticeable difference in prediction performances with 

the logistic, the Elliot, and the sinc functions (Fig. 6.a) though the Elliot function produced 

slightly lower MSE values (Fig. 6.b). Average values of determination coefficient were calculated 

as 0.9924±0.0015, 0.9918±0.0014, and 0.9932±0.0014, respectively, with the logistic, the Elliot, 

and the sinc functions. On the other hand, average MSEs were calculated as 3.02*10-4±0.57*10-4, 

1.59*10-4±0.32*10-4, and 2.06*10-4±0.31*10-4, respectively. The Elliot function was slightly 

better than others in terms of calculated MSE.  

 

 
 

Figure 6. Statistics for TN removal. a. Coefficients of determination, b. Mean square errors 

 

Correlation plots for TN removal are shown in Fig. 7, which are the results of the neural 

network simulation with the lowest calculated MSEs using the logistic, the Elliot, and the sinc 

functions. The coefficients of determination were acceptable with the logistic and the Elliot 

function (Fig. 7.a&7.b). In contrast, predicted TN removal efficiencies with the sinc function 

were more concentrated around the perfect fit (Fig. 7.c). Considering the very small discrepancy 

between the MSE values with the Elliot and the sinc functions, one can conclude that a neural 

network with the sinc function shows the best performance for predicting TN removal efficiency.  
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Figure 7. Correlation plot for TN removal efficiency with a. logistic function, b. Elliot function, 

c. sinc function 

 

Fig. 8 shows coefficients of determination and MSE values calculated for TP removal 

efficiency with the logistic, the Elliot, and the sinc functions. Calculated R2 values were 

0.9405±0.0213, 0.9581±0.0055, and 0.9502±0.092, respectively (Fig 8.a). The highest coefficient 

of determination was obtained with the Elliot function. MSE values (Fig. 8.b) were conforming to 

the coefficients of determination, and were calculated 6.23*10-3±1.98*10-3, 2.26*10-3±0.34*10-3, 

and 3.3*10-3±0.72*10-3, respectively. The Elliot function also provided the lowest MSE values. 

 

 
 

Figure 8. Statistics for TP removal. a. Coefficients of determination, b. Mean square errors 

 

The mean square errors calculated for TP removal efficiency were considerably higher 

compared to COD, and TN removal. The resulting prediction accuracy of ANN for TP removal 

was lower, though it is still acceptable. A visual inspection of Fig. 9 reveals the prediction 

capability for TP removal. The results with the Elliot function were somewhat concentrated 

around the perfect fit (Fig. 9.b) compared to the logistic (Fig. 9.a) and the sinc (Fig. 9.c) 

functions, which suggests that, together with Fig. 8, the Elliot function would be the best choice 

for TP removal simulation with the artificial neural network. 
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Figure 9. Correlation plot for TP removal efficiency with a. logistic function, b. Elliot function, 

c. sinc function 

 

3.2. Sensitivity Analyses 

 

COD removal efficiency of the A²O process was very stable and did not show considerable 

changes with respect to any of the influent wastewater or operating parameters. COD removal 

efficiencies were between 87.9% and 90.4% under all conditions. The results showed that none of 

the input parameters incorporated in the models have a distinctive effect on COD removal 

efficiency. Fig. 10 shows surface maps for COD removal efficiency by logistic-ANN. It is clear 

that the effects of influent TN (Fig. 10.a) and TP concentrations (Fig. 10.b) as well as IR (Fig. 

10.c) and RAS ratios (Fig. 10.d) on COD removal efficiency was negligible. On the other hand, 

hydraulic retention time (HRT) was one of the parameters that influence COD removal slightly 

(Fig. 10.f). COD removal efficiency increased by an average of 0.12% per hour with increasing 

HRT. The major effective parameter on COD removal was the wastewater temperature (Fig. 

10.e). COD removal efficiency increased from 88.7% at 5°C to 89.6% 25°C for an influent COD 

of 300 mg/L, from 88.9% at 5°C to 89.9% at 25°C for 400 mg/L influent COD, and from 89.1% 

at 5°C to 90.1% at 25°C for 400 mg/L influent COD. An increase of 20°C in wastewater 

temperature lead to approximately 1% increase in COD removal efficiency of the A²O process. 

 

S. Demir     / Sigma J Eng & Nat Sci 38 (4), 1713-1728, 2020 



1723 

 

 
 

Figure 10. Surface maps for COD removal efficiency calculated by logistic-ANN with respect to 

influent COD and a. influent TN concentration, b. influent TP concentration, c. internal recycle 

ratio, d. return activated sludge ratio, e. wastewater temperature, f. hydraulic retention time 

 

TN removal efficiency by the sinc-ANN was mainly influenced by influent TN concentration 

(Fig. 11). TN removal efficiency dropped by an average of 0.19% per 1 mg/L of increase in 

influent TN concentration. This reduction was steeper for lower influent COD concentrations 

(Fig. 11.a) with an average of 0.26% per mg/L with increasing influent TN concentration at an 

influent COD of 300 mg/L. One can conclude that TN removal efficiency is a function of influent 

C:N (COD:TN) ratio. Influent TP concentration (Fig. 11.b) and IR ratio (Fig. 11.c) did not affect 

TN removal efficiency considerably. The effects of RAS ratio and HRT were also a function of 

influent TN concentration (Fig. 11.d & 11.f). A 10% increase in RAS ratio results in an average 

of 0.45% increase in TN removal efficiency. This rate of increase was considerably higher at high 

influent TN concentrations (around 0.57% per 10% increase in RAS ratio). For HRT, similar 

trends were observed. TN removal efficiency rose by an average of 0.40% per hour with 

increasing HRT. Again, the rate of change was steeper at high influent TN concentrations (Fig. 

11.f). The major parameter that affects TN removal efficiency was wastewater temperature (Fig. 

11.e). TN removal improved by an average of 0.70% per 1°C increase in wastewater temperature. 

Results showed that the improvement in TN removal was higher at lower influent TN 

concentration (around 0.80% per 1°C). One can conclude that wastewater temperature is a major 

predictor of TN removal efficiency while RAS ratio and HRT influence TN removal slightly.  
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Figure 11. Surface maps for TN removal efficiency calculated by sinc-ANN with respect to 

influent TN concentration and a. influent COD, b. influent TP concentration, c. internal recycle 

ratio, d. return activated sludge ratio, e. wastewater temperature, f. hydraulic retention time 

 

TP removal efficiency by the Elliot-ANN is summarized in Fig. 12. The results showed that 

TP removal efficiency was mainly influenced by influent COD (Fig. 12.a) with a reduction in 

removal performance by approximately 0.16% per mg/L increase in influent COD. This effect is 

different than what is expected as the system’s response in terms of TP removal since the addition 

of readily biodegradable substrate to increase TP removal efficiency is a common application. 

The most probable reason for this behavior can be seen by examining the COD fractionation 

given in Table 2. A total of 60% of influent COD was assumed to be in particulate form, almost 

10% of which is inert in all simulations. Particulate COD is considered to be slowly 

biodegradable substrate in activated sludge modeling. This is why TP removal efficiency does not 

increase with increasing influent COD. TP removal was also a function of influent TN 

concentration (Fig. 12.b). Similar to the effects of influent COD, TN had also a negative impact 

on TP removal. Average decrease in TP removal efficiency was 0.42% per mg/L increase in 

influent TN concentration, and this rate of change was steeper at high influent TP concentrations. 

IR ratio showed a negative effect on TP removal performance (Fig. 12.c) with an average 

decrease of 2.4% per 100% increase in IR ratio. RAS ratio had a similar effect on TP removal 

(Fig. 12.d) with an average decrease of 0.32% per 10% increase in RAS ratio. The effect of 
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wastewater temperature was somewhat different than other input parameters (Fig. 12.e). Drastic 

reductions were observed in TP removal in all influent TP concentrations as the wastewater 

temperature increased from 5°C to 15°C. Average rate of reduction was 5.5%/°C. Above 15°C, on 

the other hand, TP removal improved with increasing wastewater temperature at an average rate 

of 2.7%/°C. This unexpected reduction in TP removal efficiency between 5°C and 15°C was 

probably a result of sudden increase in nitrifying activity and TN removal efficiency (Fig. 11.e). 

Finally, TP removal efficiency increased by an average of 18.1%/h with increasing total HRT of 

process reactors (Fig. 12.f). One can conclude that influent COD, wastewater temperature, and 

HRT are the major factors that influence TP removal efficiency of an A²O process while influent 

TN concentration is a minor factor. The effects of IR and RAS ratios were negligible. 

 

 
 

Figure 12. Surface maps for TP removal efficiency calculated by Elliot-ANN with respect to 

influent TP concentration and a. influent COD, b. influent TN concentration, c. internal recycle 

ratio, d. return activated sludge ratio, e. wastewater temperature, f. hydraulic retention time 

 

3.3. Simulation of Real Wastewater Treatment Systems 

 

The simulation process presented in this study was accomplished in two steps: Activated 

sludge modeling and artificial neural network simulation. Open-source tools were used for 

simulation in both steps. In the first step, an activated sludge modeling tool was used to obtain 
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COD, TN, and TP removal efficiencies of an A²O process depending on several factors including 

the design/operating parameters such as hydraulic retention time, internal recycle ratio and return 

activated sludge ratio, as well as influent wastewater characteristics such as influent COD, TN, 

and TP. In the second step, artificial neural network simulations were performed using the 

design/operating parameters and influent wastewater characteristics.  

The implication of the simulation method presented in this paper can be viewed from two 

standpoints. In the eyes of a design engineer, the objective is to determine the dimensions of all 

process reactors in addition to several possible operating strategies. This process requires several 

inputs including wastewater characterization and a deep understanding of biological wastewater 

treatment systems. Depending on influent wastewater characteristics, the design engineer usually 

needs to build and operate a pilot-scale system or run an accurate model like activated sludge 

models to determine optimum dimensions, both of which takes tremendously long times to 

accomplish. Instead, the design engineer can employ a well-trained artificial neural network to 

test several dimensions of process reactors and select the optimum configuration. On the other 

hand, determining optimum internal recycle, return activated sludge, or waste activated sludge 

ratio is the main objective in the eyes of an operating engineer. The operating engineer usually 

needs to test several scenarios to determine optimum recycle ratios and waste sludge flowrate to 

adjust sludge retention time (SRT). Testing these scenarios on full-scale systems can be very 

costly most of the time. Besides, employing deterministic models like activated sludge models is 

a very slow and tiring process to test various scenarios. Instead, the operating engineer can use 

real wastewater characterization and removal efficiencies from full-scale treatment plant for 

training artificial neural network and can use the network to obtain really fast various operating 

scenarios.  

 

4. CONCLUSIONS 

 

Performance of artificial neural network for simulation of biological wastewater treatment 

process was evaluated in this study. For this purpose, a total of 2187 data points, which are 

composed of influent chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus 

(TP) concentrations, internal recycle (IR) and return activated sludge (RAS) ratios, wastewater 

temperature, total hydraulic retention time (HRT) of process reactors, and corresponding steady-

state COD, TN and TP removal efficiencies, were obtained for an A²O process using an open-

source MS Excel activated sludge modeling (ASM) tool. The data set, along with ASM-predicted 

COD, TN, and TP removal efficiencies, were then used as samples to train and evaluate the 

performance of artificial neural network (ANN) for predicting the COD, TN, and TP removal 

efficiencies. An open-source MS Excel tool for backpropagation neural network was employed 

for simulations. The neural network simulations were performed with the most-commonly used 

activation functions for each of COD, TN, and TP removal efficiencies, namely the logistic, the 

Elliot, and the sinc functions. 

The use of ANN, in this study, for predicting COD, TN, and TP removal efficiencies of an 

advanced biological wastewater treatment process shows, especially for operating engineers, how 

easily open-source ANN tools can be employed for simulating various scenarios on the treatment 

process with operating parameters obtained from full-scale plant and influent wastewater 

characteristics to obtain really fast results.   

Following conclusions can be withdrawn from the results of this study: 
 

¶ Artificial neural network modeling tools can be confidently used to predict COD, TN, and 

TP removal efficiency of a wastewater treatment process with satisfactory ease and speed of 

calculations. 

¶ All of the logistic, the Elliot, and the sinc functions can be used in neural network 

modeling tools for wastewater treatment process simulations once the key predictors of treatment 

performance are provided.  
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¶ The logistic-ANN provides the best simulation results for COD removal efficiency of a 

biological wastewater treatment plant. Wastewater temperature is a major factor that affects COD 

removal in a biological wastewater treatment plant. 

¶ For the prediction of TN removal, one should select the sinc function to use in neural 

network simulation to obtain the most accurate simulation results. TN removal efficiency of a 

biological wastewater treatment plant is a function of mainly wastewater temperature with minor 

contributions from RAS ratio and HRT. 

¶ For the prediction of TP removal, the Elliot function is the one that provides the most 

accurate simulation results. TP removal efficiency of a biological wastewater treatment plant is a 

function of mainly influent COD, wastewater temperature, and HRT. Influent TN concentration is 

a minor factor that affects TP removal performance.  
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