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ABSTRACT 

 

The main objective of this study is to compare the parameter estimation methods for Weibull distribution. We 

consider maximum likelihood and Bayes estimation methods for the scale and shape parameters of Weibull 

distribution. While computing the Bayes estimates for a Weibull distribution, the continuous conjugate joint 
prior distribution of the shape and scale parameters does not exist and the closed form expressions of the 

Bayes estimators cannot be obtained. 

In this study, we assume that the scale and shape parameters have the exponential prior and they are 
independently distributed. We use the Lindley approximation and the Markov Chain Monte Carlo (MCMC) 

method to obtain the approximate Bayes estimators. In simulation study we compare the effectiveness of the 

parameter estimation methods with Monte Carlo simulations.  
Keywords: Weibull distribution, bayes estimator, lindley approximation, Monte Carlo simulation, MCMC. 

 

 

1. INTRODUCTION 

 

There are many applications for the Weibull distribution in statistics. It was first introduced 

by Waloddi Weibull in 1951 to predict the life span of machines. This distribution can be applied 

with two or three parameters depending on the field of use. This distribution is used in quality 

control, modeling of deterioration periods, analysis of life tables, availability of epidemic disease, 

determination of earthquake risk, definition of wind speed distribution and financial applications. 

Weibull distribution is commonly used in data sets related to failure rates. It is a continuous and at 

the same time flexible distribution in this sense. Nowadays, this distribution is widely used in 

biology, engineering, quality control, seismic risk analysis, meteorological weather prediction 

models, radar systems modeling areas, wind speed distribution definition and many other field 

experiments. 

Because of the wide applications area, it is very important to determine the best parameter 

estimation method for this distribution. Many authors have proposed various estimation methods 

for Weibull parameters. The least squares method, maximum likelihood method, moments 

method and Bayesian methods are used to estimate the parameters of the Weibull distribution. 

The maximum likelihood method is the most popular method. The efficiency of the maximum 
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likelihood estimation method makes it popular. The least square method is computationally easier 

to handle and provides  simple closed form solutions for the estimates. Hossain and Howlader 

(1996), made comparisons among several least squares and maximum likelihood estimator for 

complete samples and the shape parameter [1]. Ahmed et al. (2010) proposed Bayesian estimation 

with the Jeffreys prior and extension of the Jeffreys prior information for the Weibull parameters 

[2]. Hossain and Zimmer (2003) compared the maximum likelihood estimator to the least square 

estimator based on complete and censored samples [3]. Cox (1984) in [4] and Lawless (1982) in 

[5] made comparisons for censored data. Soland et al. (1969) introduce Bayesian analysis of the 

Weibull Process with unknown scale and shape parameters [6]. Guure and Ibrahim (2013) made 

comparisons for type-1 censored data [7]. 

While computing the Bayes estimates for the Weibull distribution, the continuous conjugate 

joint prior distribution of the shape and scale parameters does not exist and the closed form 

expressions of the Bayes estimators cannot be obtained. We must use approximation methods for 

this computation. In Bayesian approximation, the choice of prior distribution is very important. In 

this study, we assume that the scale parameter and the shape parameter both have the Exponential 

prior and they are independently distributed. We use the Lindley approximation and the 

Metropolis-Hasting algorithm, which is a method of Markov Chain Monte Carlo (MCMC), to 

obtain the approximate Bayes estimators. In simulation study we compare the effectiveness of the 

parameter estimation methods with Monte Carlo simulations.  

In this study, we make comparison between the maximum likelihood and Bayes estimation of 

the standard parameterization form of Weibull distribution for the case of complete data.  

The rest of the paper is organized as follows. In section 2, Weibull distribution is given. 

Section 3, maksimum likelihood method is given to estimate the unknown parameters for Weibull 

Distribution. In section 4, Bayesian estimation method is investigated. Section 4.1, estimations of 

the unknown Weibull parameters are obtained by using Lindley approximation. In Section 4.2, 

the MCMC method is explained and in subsection 4.2.1, the Metropolis-Hasting algorithm is 

given. In Section 5, a simulation study is presented to evaluate the performances of the estimators. 

Section 6, we use real data set to illustrate the estimation procedure developed in section 3-4. The 

last section, we make some conclusion about parameter estimation methods for Weibull 

distribution. 

 

2. WEIBULL DISTRIBUTION     

 

The Weibull distribution is a two-parameter (standard) distribution, generally a scale and a 

shape parameter. If a random variable X~Weibull(β,γ) then its probability density function is 

defined as,  
 

𝑓(𝑥ǀ𝛾, 𝛽) = {𝛽𝛾𝑥𝛽−1𝑒−𝛾𝑥𝛽
, 𝑥 > 0

0 , 𝑥 ≤ 0
                                                                                         (1) 

 

where β is the shape and γ is the scale parameter. γ is also known as the characteristic life 

parameter [8].  The expected value and the variance of the Weibull distribution are given, 
 

𝐸(𝑋) = 𝛾𝛤 (1 +
1

𝛽
)                                                                                                                       (2) 

 

Var(X) = γ2 [Γ (1 +
2

β
) −  Γ 2 (1 +

1

β
)]                                                                                        (3) 

 

respectively, where 𝛤 is the gamma function. Cumulative distribution function can be derived 

and is defined as, 
 

𝐹(𝑥ǀ𝛾, 𝛽) = 𝑃(𝑋 ≤ 𝑥)  =  {
0        ,    𝑥 < 0

1 − 𝑒−𝛾𝑥𝛽
,    𝑥 ≥ 0

                                                                            (4) 
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3. MAXIMUM LIKELIHOOD METHOD  

 

Maximum-likelihood estimation (MLE) is one of the most common parameter estimation 

methods for statistical models.  

Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛 are independent and identically distributed 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 𝛾) random 

variables, where the parameters are assumed unknown. To estimate the parameters 𝛽 and 𝛾 the 

maximum likelihood method is employed. The likelihood function of 𝑋1, 𝑋2, … , 𝑋𝑛 can be 

constructed from equation (1) as 
 

𝐿(𝛾, 𝛽|𝑥1, 𝑥2, … , 𝑥𝑛) = ∏ 𝑓(𝑥𝑖|𝛾, 𝛽) =𝑛
𝑖=1 ∏ 𝛽𝛾𝑥𝑖

𝛽−1𝑒−𝛾𝑥𝑖
𝛽𝑛

𝑖=1                                                   (5) 

                                  = 𝛽𝑛𝛾𝑛 ∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 𝑒𝑥𝑝 {−𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 }.  
 

The log-likelihood function can be written as 
 

𝑙𝑜𝑔(𝐿) = 𝑛𝑙𝑜𝑔(𝛽) + 𝑛𝑙𝑜𝑔(𝛾) + (𝛽 − 1) ∑ 𝑙𝑜𝑔(𝑥𝑖)𝑛
𝑖=1 − 𝛾 ∑ 𝑥𝑖

𝛽𝑛
𝑖=1                                           (6) 

 

 Differentiating with respect to 𝛾 and 𝛽 and equating to zero, the estimating equations are 

obtained 
 

𝜕𝑙𝑜𝑔(𝐿)

𝜕𝛽
= (

𝑛

𝛾
) − ∑ 𝑥𝑖

𝛽  𝑛
𝑖=1 = 0                                                                                                         (7) 

 

𝜕𝑙𝑜𝑔(𝐿)

𝜕𝛾
= (

𝑛

𝛽
) + ∑ (𝑙𝑜𝑔𝑥𝑖) 𝑛

𝑖=1 − 𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 𝑙𝑜𝑔𝑥𝑖=0.                                                                    (8) 
 

The MLE of parameters are obtained by solving the above nonlinear systems of equations. It 

is usually more convenient to use nonlinear optimization algorithms such as Newton Raphson to 

numerically maximize the log-likelihood function in equation (6). In this study, we used 

multivariate Newton Raphson method to solve the equations (7)-(8). 

 

4. BAYESIAN ESTIMATION METHOD 

 

Bayesian estimation method has received a lot of attention in recent times for analysing 

failure time data, which has mostly been proposed as an alternative to that of the traditional 

methods. The Bayesian approach is based on Bayes' theorem, which was put forward by Thomas 

Bayes. In Bayesian method, it is desirable to estimate the θ parameter using the 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛 

data for the statistical model defined by the probability (density) function 𝑝(𝒙|𝜃). In this method, 

the parameter is also considered as a random variable and therefore has its own distribution. If a 

prior knowledge about the parameter is not available, it is possible to make use of a non-

informative prior distribution in Bayesian analysis.  

When both scale and shape parameters of the Weibull distribution are unknown and 

considered as random variables, Soland (1969) states that the Weibull distribution does not have a 

conjugate continuous joint prior distribution [6]. He suggests use of mixed prior distributions, 

discrete for the shape parameter, continious for the scale parameter. In [9], Uniform prior for the 

shape parameter and Inverted Gamma prior for the scale parameter are proposed. In [10], many 

different prior distributions are proposed for the shape and scale parameters such as Inverted 

Gamma- Compound Inverted Gamma, Discrete mass function-Compound Inverted Gamma, 

Uniform distribution-Compound Inverted Gamma, respectively. The Gamma prior on both the 

scale and shape parameters are considered in [11]. In [12] a simulation study is conducted for the 

both Gamma priors. In [13] a Gamma prior on the scale parameter and no specific prior on the 

shape parameter is assumed..  

In this study we assume that, both the shape and scale parameters are unknown. Suppose the 

prior distribution β~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1/𝑎) for the shape parameter, the prior distribution 

𝛾~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1/𝑏) for the scale parameter, and suppose that two parameters are independent 

of each other. Accordingly, the prior probability density functions for the parameters β and 𝛾 are, 
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𝜋1(𝛽ǀa) = 𝑎𝑒−𝑎𝛽  ,       𝛽 > 0                                                                                                          (9) 
 

𝜋2(𝛾ǀb) = 𝑏𝑒−𝑏𝛾  ,       𝛾 > 0.                                                                                                        (10) 
 

Here, the hyper parameters 𝑎 and 𝑏 are assumed to be known real numbers. If hyper-

parameters of independent exponential priors are define 𝑎 = 𝑏 = 0 note that these are non-

informative priors.  

The likelihood function of the Weibull distribution is obtained as, 
 

𝐿(𝑓(𝑥ǀ𝛽, 𝛾)) = 𝛽𝑛𝛾𝑛  (∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 ) 𝑒−𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1                                                                             (11) 
 

To obtain the Bayes estimator, first the likelihood function and the prior distributions are 

multiplied, 
 

P(𝑥, 𝛽, 𝛾)=𝐿(𝑓(𝑥ǀ𝛽, 𝛾)). 𝜋(𝛽ǀ𝑎). 𝜋(𝛾ǀ𝑏)                                                                                      (12) 

               =.𝑎 𝑏𝛽𝑛𝛾𝑛  (∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 ) 𝑒−𝛾(∑ 𝑥𝑖
𝛽𝑛

𝑖=1 +𝑏)𝑒−𝑎𝛽 
 

Then, the marginal distribution of 𝑋 is found by taking the integral of both parameters, 
 

P(𝑥)=∬ 𝑃(𝑥, 𝛽, 𝛾) 𝑑𝛾𝑑𝛽 =∬ 𝑎 𝑏𝛽𝑛𝛾𝑛  (∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 )  𝑒
−𝛾(∑ 𝑥𝑖

𝛽𝑛
𝑖=1 +𝑏)

𝑒−𝑎𝛽𝑑𝛾𝑑𝛽  

       =∫ 𝑎 𝑏𝛽𝑛 (∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 ) 𝑒−𝑎𝛽( ∫ 𝛾𝑛  𝑒
−𝛾(∑ 𝑥𝑖

𝛽𝑛
𝑖=1 +𝑏)

𝑑𝛾 )𝑑𝛽                                                  (13) 

       =ab 𝛤 (𝑛 + 1) ∫  𝛽𝑛 (∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 ) 𝑒−𝑎𝛽 (1/(∑ 𝑥𝑖
𝛽𝑛

𝑖=1 + 𝑏))𝑛+1𝑑𝛽.  
 

Then the likelihood function is proportioned to the marginal function and the joint posterior 

distribution of the two parameters is obtained as follows, 
 

𝑃(𝛽, 𝛾ǀ𝑥) =
𝑃(𝑥,𝛽,𝛾)

𝑃(𝑥)
=  

𝑎 𝑏𝛽𝑛𝛾𝑛 (∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 ) 𝑒
−𝛾(∑ 𝑥

𝑖
𝛽𝑛

𝑖=1 +𝑏)
𝑒−𝑎𝛽

𝑎𝑏 𝛤 (𝑛+1) ∫  𝛽𝑛(∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 )𝑒−𝑎𝛽(1/(∑ 𝑥𝑖
𝛽𝑛

𝑖=1 +𝑏))𝑛+1𝑑𝛽
.                                     (14) 

 

In order to obtain the marginal posterior distributions for the parameters, the parameters are 

integrated in turn and the marginal posterior distributions are obtained as follows, 
 

𝑃1(𝛽 ǀ𝑥) = ∫ 𝑃(𝛽, 𝛾ǀ𝑥) 𝑑𝛾=
𝑎 𝑏𝛽𝑛(∏ 𝑥𝑖

𝛽−1𝑛
𝑖=1 )𝑒−𝑎𝛽( ∫ 𝜸𝒏 𝒆

−𝜸(∑ 𝑥
𝑖
𝛽𝑛

𝑖=1 +𝒃)
𝒅𝜸) 

𝑎𝑏 𝛤 (𝑛+1) ∫  𝛽𝑛(∏ 𝑥
𝑖
𝛽−1𝑛

𝑖=1 )𝑒−𝑎𝛽(1/(∑ 𝑥
𝑖
𝛽𝑛

𝑖=1 +𝑏))𝑛+1𝑑𝛽
                              (15) 

                                             =
𝛽𝑛(∏ 𝑥𝑖

𝛽−1𝑛
𝑖=1 )𝑒−𝑎𝛽(1/(∑ 𝑥𝑖

𝛽𝑛
𝑖=1 +𝑏))𝑛+1 

∫  𝛽𝑛(∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 )𝑒−𝑎𝛽(1/(∑ 𝑥𝑖
𝛽𝑛

𝑖=1 +𝑏))𝑛+1𝑑𝛽
 

 

𝑃2(𝛾 ǀ𝑥) = ∫ 𝑃(𝛽, 𝛾ǀ𝑥) 𝑑𝛽 =∫
 𝛽𝑛𝛾𝑛 (∏ 𝑥𝑖

𝛽−1𝑛
𝑖=1 ) 𝑒

−𝛾(∑ 𝑥
𝑖
𝛽𝑛

𝑖=1 +𝑏)
𝑒−𝑎𝛽

 𝛤 (𝑛+1) ∫  𝛽𝑛(∏ 𝑥
𝑖
𝛽−1𝑛

𝑖=1 )𝑒−𝑎𝛽(1/(∑ 𝑥
𝑖
𝛽𝑛

𝑖=1 +𝑏))𝑛+1𝑑𝛽
𝑑𝛽 .                      (16) 

 

As can be seen, the distributions obtained in both parameters are not similar to the known 

distributions and their closed form can not be obtained. The estimations of parameters under the 

quadratic loss function are the expected values of these distributions and these are obtained as 

follows,  
 

β ̂ =  𝐸(𝛽) =  
∫ βn+1 (∏ 𝑥𝑖

𝛽−1𝑛
𝑖=1 )e−aβ ((1/(∑ 𝑥𝑖

𝛽𝑛
𝑖=1 +b))n+1) dβ

 ∫ βn(∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 )e−aβ(1/ (∑ 𝑥𝑖
𝛽𝑛

𝑖=1 +b))n+1 dβ
                                                             (17) 

 

γ ̂ =  𝐸(𝛾) =
∫ ∫ 𝛽𝑛 (∏ 𝑥𝑖

𝛽−1𝑛
𝑖=1 )𝑒−𝑎𝛽  𝛾𝑛+1 𝑒

−𝛾(∑ 𝑥
𝑖
𝛽𝑛

𝑖=1 +𝑏)
𝑑𝛾𝑑𝛽

𝛤 (𝑛+1) ∫ 𝛽𝑛(∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 )𝑒−𝑎𝛽(1/ (∑ 𝑥𝑖
𝛽𝑛

𝑖=1 +𝑏))𝑛+1 𝑑𝛽
                                                        (18) 

    =
(𝑛+1) ∫ 𝛽𝑛 (∏ 𝑥𝑖

𝛽−1𝑛
𝑖=1 )𝑒−𝑎𝛽 (1/ (∑ 𝑥𝑖

𝛽𝑛
𝑖=1 +𝑏))𝑛+2𝒅𝛽 

∫ 𝛽𝑛(∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 )𝑒−𝑎𝛽(1/ (∑ 𝑥𝑖
𝛽𝑛

𝑖=1 +𝑏))𝑛+1 𝑑𝛽
.  

 

It can be seen that (17)-(18) cannot be reduced to a closed form and numerical approximations 

are needed. There exist many tecniques to produce such approximations. In this study, we used 

E. Köksal Babacan, S. Kaya      / Sigma J Eng & Nat Sci 38 (3), 1609-1621, 2020 



1613 

 

Lindley’s approximation and Metropolis-Hasting algorithm, which is a Markov Chain Monte 

Carlo (MCMC) method, to construct Bayes estimates.  

 

4.1. Lindley Approximation 

 

Obtaining the Bayes estimator, expressed as the ratio of the two integrals, usually presents 

difficulties. Lindley (1980) developed the Lindley approximation method for the approximate 

solution of integrals forced in multi-parameter distributions when 𝑛 is sufficiently large. 

Lindley (1980) considered the ratio of the following integrals and proposed an approximate 

result for the solution of this ratio, 
 

𝐼 =  
∫ 𝑤(𝜃)𝑒𝑥𝑝{𝐿(𝜃)}𝑑𝜃

∫ 𝜋(𝜃)𝑒𝑥𝑝{𝐿(𝜃)}𝑑𝜃
                                                                                                                     (19) 

 

 [14]. Here, 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛) is the parameter vector, 𝐿(𝜃) is the logarithm of the 

likelihood function, 𝑤(𝜃) and 𝜋(𝜃) are arbitrary functions of 𝜃. Let, 𝜋(𝜃) be the joint prior 

distribution of θ and 𝑤(𝜃) = 𝑢(𝜃)𝜋(𝜃). The expected value of the posterior distribution is 

expressed as follows,   
 

𝐼 = 𝐸( 𝑢(𝜃)|𝑥1, 𝑥2, … , 𝑥𝑛) =
∫ 𝑢(𝜃)𝑒𝑥𝑝{𝐿(𝜃)+𝐺(𝜃)}𝑑𝜃

∫ 𝑒𝑥𝑝{𝐿(𝜃)+𝐺(𝜃)}𝑑𝜃
  

 

Here, 𝐺(𝜃) = 𝑙𝑜𝑔𝜋(𝜃). Accordingly, the Lindley approximation is given in 
 

𝐼 = 𝐸( 𝑢(𝜃)|𝑥1, 𝑥2, … , 𝑥𝑛) ≈

{𝑢 +
1

2
∑ ∑ (𝑢𝑖𝑗 + 2𝑢𝑖𝑔𝑗)𝜎𝑖𝑗 +

1

2
∑ ∑ ∑ ∑ 𝑙𝑖𝑗𝑘

𝑝
𝑙=1

𝑝
𝑘=1 𝜎𝑖𝑗𝜎𝑘𝑙𝑢𝑙

𝑝
𝑗=1

𝑝
𝑖=1

𝑝
𝑗=1

𝑝
𝑖=1 }  

 

form. Here, if 
 

𝑙𝑖𝑗𝑘 =
𝑑3𝑙

𝑑𝜃𝑖𝑑𝜃𝑗𝑑𝜃𝑘
, 𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑝, 𝑘 = 1,2, … , 𝑝  

𝑙𝑖𝑗 =
𝑑2𝑙

𝑑𝜃𝑖𝑑𝜃𝑗
, 𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑝  

𝑢𝑖 =  
𝑑𝑢(𝜃)

𝑑𝜃𝑖
, 𝑖 = 1,2, … , 𝑝  

𝑢𝑖𝑗 =
𝑑2𝑢(𝜃)

𝑑𝜃𝑖𝑑𝜃𝑗
, 𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑝  

𝜎𝑖𝑗 = [−𝑙𝑖𝑗]
−1

, 𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑝  
 

then, Lindley approximation for the 𝑝 = 2 parameter can be written as,  
 

𝑢(𝜃)
𝐵𝑎𝑦𝑒𝑠

= 𝐸( 𝑢(𝜃)|𝑥1, 𝑥2, … , 𝑥𝑛) 

≈ 𝑢(𝑢̂1, 𝑢̂2) +
1

2
∑ ∑ (𝑢𝑖𝑗 + 2𝑢𝑖𝑔𝑗)𝜎𝑖𝑗 +

1

2
∑ ∑ ∑ ∑ 𝑙𝑖𝑗𝑘

𝑝
𝑙=1

𝑝
𝑘=1 𝜎𝑖𝑗𝜎𝑘𝑙𝑢𝑙

𝑝
𝑗=1

𝑝
𝑖=1

𝑝
𝑗=1

𝑝
𝑖=1   

 

here  𝑢̂1 and 𝑢̂2, expresses the maximum likelihood estimators of 𝑢1 and 𝑢2. 

The approximate solutions of integrals given by (17) and (18) using the Lindley 

approximation are given in Appendix-1 [14], [15], [16]. 

 

4.2. MCMC Method 

 

Following Bayes’ rule 
 

𝑝(𝜃|𝑦) ∝ 𝐿(𝜃)Π(𝜃)                                                                                                                     (20) 
 

for estimation of posterior distribution of Weibull distribution with standard parameterization, 

we write the joint posterior distribution as 
 

𝑃(𝛽, 𝛾ǀ𝑥) ∝  𝛽𝑛𝛾𝑛  (∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 ) 𝑒−𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 𝑎𝑒−𝑎𝛽  𝑏𝑒−𝑏𝛾                                                           (21) 
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We can use the MCMC to get the Bayesian estimates for Weibull parameters. MCMC is a 

general simulation method that replaces analytic integration computations by summation over 

samples generated from iterative algorithms. The Metropolis-Hastings algorithm and the Gibbs 

algorithm are the two most popular example of a MCMC method [17]. In this study we used 

Metropolis-Hastings algorithm for multivariate distributions to obtain Bayes estimates. We used 

component-wise updating approach. This approach is given below. 

 

4.2.1. Metropolis-Hastings Algorithm: 

 

We have a bivariate distribution 𝜃 = (𝛽, 𝛾). First we initialize the sampler with some suitable 

values for 𝛽(1) and 𝛾(1). At each iteration 𝑡, we first make a proposal 𝛽∗ depending on the last 

state 𝛽(𝑡−1). We then evaluate the acceptance ratio comparing the likelihood of (𝛽∗, 𝛾(𝑡−1)) 

against (𝛽(𝑡−1), 𝛾(𝑡−1)). In the next step, we make proposal 𝛾∗ depending on the last state 𝛾(𝑡−1). 

We then evaluate the acceptance ratio comparing the likelihood of (𝛽(𝑡), 𝛾∗) against 

(𝛽(𝑡), 𝛾(𝑡−1)).  

Step by step component-wise Metropolis-Hasting algorithm is given below [17]. 
 

Step 1. Set 𝑡 = 1 

Step 2. Generate an initial value 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛) and set 𝜃(𝑡) = 𝑢 

Step 3. Repeat 
 

𝑡 = 𝑡 + 1 
 

Generate a proposal 𝛽∗ from 𝑞(𝛽|𝛽(𝑡−1)) 

Evaluate the acceptance probability 𝛼 = 𝑚𝑖𝑛 (1,
𝑝(𝛽∗,𝛾(𝑡−1))

𝑝(𝛽(𝑡−1),𝛾(𝑡−1))
)

𝑞(𝛽(𝑡−1)|𝛽∗)

𝑞(𝛽∗|𝛽(𝑡−1))
 

Generate a 𝑢 from a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) distribution 

If 𝑢 ≤ 𝛼, accept the proposal and set 𝛽(𝑡) = 𝛽∗, else set 𝛽(𝑡) = 𝛽(𝑡−1) 

Generate a proposal 𝛾∗ from 𝑞(𝛾|𝛾(𝑡−1)) 

Evaluate the acceptance probability 𝛼 = 𝑚𝑖𝑛 (1,
𝑝(𝛾,𝛽∗)

𝑝(𝛽(𝑡),𝛾(𝑡−1))
)

𝑞(𝛾(𝑡−1)|𝛾∗)

𝑞(𝛾∗|𝛾(𝑡−1))
 

Generate a 𝑢 from a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) distribution 

If 𝑢 ≤ 𝛼, accept the proposal and set 𝛾(𝑡) = 𝛾∗, else set 𝛾(𝑡) = 𝛾(𝑡−1). 
 

Step 4. Until 𝑡 = 𝑇 
 

5. SIMULATION STUDY 

 

In this section, we conduct a Monte-Carlo simulation study to compare the performance of the 

classical and Bayesian estimation methods for Weibull distribution. For Bayesian estimation, we 

assume that both the shape and scale parameters have independent Exponential priors. We 

compute Bayesian estimates using Lindley’s approximation and Metropolis-Hasting algorithm. 

We generated 1000 realizations of the Markov chains using Metropolis–Hastings algorithms. The 

convergence of the sequences of parameters for their stationary distributions is checked through 

different starting values. It is observed that after 100 burn-in periods, all the Markov chains reach 

their stationary condition. For all the numerical computations, we develop a program using 

Matlab 7 (R-2013). We also compute the maximum likelihood estimates and we compare these 

estimates results.  

In simulation study, we generate random data from Weibull distribution. The sample size is 

chosen as 𝑛 =  20, 50, 80, 110. For each sample size, samples with 𝛽 = 2 and 𝛾 = 2,3,4 values 

are generated by simulation. The mean square error for both parameters is chosen as the criterion 

to compare the performance of the maximum likelihood method and the estimation results 

E. Köksal Babacan, S. Kaya      / Sigma J Eng & Nat Sci 38 (3), 1609-1621, 2020 



1615 

 

obtained with Bayesian methods. We use 1000 trial for simulation. Accordingly, the selected 

criterion, as an average measure of errors come from both parameters, is calculated as, 
 

𝑴𝑺𝑬 =
∑ (𝜷𝒊−𝜷̂𝒊)

𝟐
+(𝜸𝒊−𝜸̂𝒊)𝟐𝟏𝟎𝟎𝟎

𝒊=𝟏

𝟏𝟎𝟎𝟎
.  

 

Simulation results are given in Table 1. The Figures, from 1 to 4, represent the Weibull 

probability density function with the parameters of which we generate the data and with the 

parameters estimate via MLE, Lindley and MCMC procedures. Here we only report four group of 

density curve plots for 𝒏 = 𝟐𝟎, 𝟏𝟏𝟎 for parameter values 𝜷 = 𝟐, 𝜸 = 𝟐 and 𝜷 = 𝟐, 𝜸 = 𝟑. 

 

Table 1. Estimation results and MSE values  
 

Parameter  

Values 

Maximum Likelihood Method 
Bayes Method: 

Lindley Approximation 

 

Bayes Method: MCMC 

n 𝜷̂ 𝜸̂ MSE 𝜷̂ 𝜸̂ MSE 𝜷̂ 𝜸̂ MSE 

𝜷 = 𝟐 
𝜸 = 𝟐 

20 1.984113 2.148155 0.247663 2.051442 2.028711 0.274917 2.020395 2.087577 0.216158 

50 1.995733 2.057807 0.079207 2.016556 2.022375 0.074327 2.008877 2.035714 0.075657 

80 2.000999 2.033285 0.049009 2.013351 2.012337 0.047336 2.009365 2.019934 0.048222 

110 1.994418 2.025135 0.031421 2.003414 2.009948 0.030370 2.000835 2.015510 0.030826 

𝜷 = 𝟐 
𝜸 = 𝟑 

20 1.987253  3.206099 0.428115 2.056101  3.059351 0.376660 2.003225  3.080299 0.342021 

50 1.998278  3.084720 0.139830 2.023278  3.032213 0.131522 2.004611 3.040264 0.128670 

80 1.999780 3.066825 0.085441 2.015161 3.034573 0.081446 2.003028  3.036147 0.080368 

110 1.996473 3.025229 0.062545 2.007619 3.002079 0.061401 1.998681 3.002910 0.060378 

𝜷 = 𝟐 
𝜸 = 𝟒 

20 1.992641 4.342519 0.844570 2.061743  4.157718 0.723571 2.000871 4.125299 0.616358 

50 1.997864 4.124483 0.234210 2.024203 4.055863 0.217619 2.000572  4.042864 0.205615 

80 1.998724  4.072200 0.138386 2.015006  4.030102 0.132553 2.000463  4.022842 0.128528 

110 1.997488  4.049150 0.107878 2.009338  4.018666 0.104926 1.998562 4.013163 0.102924 

 

According to the simulation study results obtained in Table 1, it can be said that the results 

obtained with the maximum likelihood method and the Bayesian methods are similar. But for 

small sample size, the estimates using with Bayesian  methods are better than the MLE. When 

sample size increases, the maximum likelihood method and the estimates obtained by Lindley 

approximation and Metropolis Hasting algorithm for the Bayesian methods are close to each 

other. When the number of sample size increases the Mean Square Error (MSE) decrease in all 

cases.  
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Figure 1. Weibull density curves (𝑛 = 20, 𝛽 = 2, 𝛾 = 2) 

 

 
 

Figure 2. Weibull density curves (𝑛 = 20, 𝛽 = 2, 𝛾 = 3) 

 

 
 

Figure 3. Weibull density curves (𝑛 = 110, 𝛽 = 2, 𝛾 = 2) 
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Figure 4. Weibull density curves (𝑛 = 110, 𝛽 = 2, 𝛾 = 3) 

 

From the density curves, for small sample size, the estimates with Bayesian methods are 

better fit than MLE. But, for big sample size all estimates are good fit to the real values.  

 

6. APPLICATION (Kevlar 49/Epoxy Strands Failure At 90% Stress Level) 

 

In this section, an actual data set is used to illustrate the estimation procedure developed in 

section 3-4. The following 101 data points represent the stress-rupture life of kevlar 49/epoxy 

strands which were subjected to constant sustained pressure at the 90% stress level until all had 

failed, so that we have complete data with exact times of failure. This data set was studied by 

Andrews and Herzberg (1985), Cooray and Ananda (2008) and Paraniaba et al. (2013). 

The failure times in hours are shown below:  
 

0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07,0.08, 0.09, 0.09, 0.1, 0.1, 0.11, 

0.11, 0.12, 0.13, 0.18, 0.19, 0.2, 0.23, 0.24, 0.24, 0.29 , 0.34, 0.35, 0.36, 0.38, 0.4, 0.42, 0.43, 

0.52, 0.54, 0.56, 0.6, 0.6, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.8, 0.8, 0.83, 

0.85, 0.9, 0.92, 0.95, 0.99, 1, 1.01, 1.02, 1.03, 1.05, 1.1, 1.1, 1.11, 1.15, 1.18, 1.2, 1.29, 1.31, 1.33, 

1.34, 1.4, 1.43, 1.45, 1.5, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.8, 1.8, 1.81, 

2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.2, 4.69, 7.89. 
 

As mentioned earlier, Weibull distribution is widely used in modeling the failure time data. In 

this study, two-parameter Weibull distribution is used for modelling the stress-rupture life of 

kevlar data. We estimated the parameters by using the MLE and Bayesian methods which are 

given in Section 3-4.  

The estimations of the 𝛽 and 𝛾 parameters obtained by using MLE and Bayesian methods are 

given in Table 2.   

 

Table-2. Parameter estimates for the Stress-rupture life of kevlar data 
 

 𝜷̂ 𝜸̂ 

Mle 0.925888 1.009400 

Bayes-MCMC 0.927481 1.004326 

Bayes-Lindley 0.947262 1.049954 
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Figue 5. The cumulative distribution  function for stress-rupture life of kevlar data 

 

 
 

Figure 6. The histogram and fitted densities for stress-rupture life of kevlar data 

 

It is clear that the results in Figure 5-6 are consistent with Table 2. Because of the sample size 

is big, parameter estimations are similar for classical and Bayesian methods. All estimated 

densities are good fitted to data. So, we say that we can use Weibull distribution to model the 

stress-rupture life of kevlar data. 

 

 7. CONCLUSION 

 

In this paper, we use maximum likelihood estimation and Bayesian estimation for the two 

parameter Weibull distribution. MLE is one of the most frequently used parameter estimation 

methods. Newton-Raphson is one of the widely used methods for solving the system of equations 

especially in maximum likelihood estimation.  
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Bayesian estimation method receives a lot of attention in recent times. When we want to make 

conclusion via Bayesian method, if there isn’t conjugate prior distribution, to get the posterior 

distribution has many difficulties. In this case, we need to use a numerical method or a MCMC 

method. 

In this paper, Bayesian estimations are first obtained using Lindley approximation under the 

assumption of exponential priors while MLE are obtained using Newton-Raphson method. 

Second, Bayesian estimations are obtained using Metropolis-Hasting algorithm, which is a 

MCMC method. 

A simulation study is conducted to examine and compare the performance of the estimates for 

different sample sizes with different values for parameters.  

As a result of study, we can say that, Bayesian methods can be used as an alternative to the 

maximum likelihood method when the two parameters of the Weibull distribution are estimated. 

Especially, if sample size is small we can prefer to use the Bayesian estimation method. 

 

Appendix 1.  

 

Using the Lindley Approximation given in Section 3.3.2.1, the approximate solution of the 

integrals obtained by (17) and (18) is found as follows. 
 

g(β,γ)= 𝑎𝑒−𝑎𝛽 × 𝑏𝑒−𝑏𝛾  

=𝑎𝑏𝑒−(𝑎𝛽+𝑏𝛾)  

G(β,γ)=log g(β,γ) =log 𝑎 + log 𝑏 + log 𝑒−(𝑎𝛽+𝑏𝛾)  

=log 𝑎 + log 𝑏 − (𝑎𝛽 + 𝑏𝛾)  

𝑔1 =  
𝑑𝐺(𝛽,𝛾)

𝑑𝛽
=  −𝑎  

𝑔2 =  
𝑑𝐺(𝛽,𝛾)

𝑑𝛾
=  −𝑏  

𝐿(𝛽, 𝛾) = 𝛽𝑛𝛾𝑛  (∏ 𝑥𝑖
𝛽−1𝑛

𝑖=1 ) 𝑒−𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1   

log 𝐿(𝛽, 𝛾) = 𝑛 log 𝛽 + 𝑛 log 𝛾 + (𝛽 + 1)log (∏ 𝑥𝑖
𝑛
𝑖=1 ) − 𝛾 ∑ 𝑥𝑖

𝛽𝑛
𝑖=1   

 

𝐿1 =
𝑑 log 𝐿(𝛽,𝛾)

𝑑𝛽
=  

𝑛

𝛽
+ ∑ log 𝑥𝑖

𝑛
𝑖=1 − 𝛾 ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 log 𝑥𝑖  

𝐿12 =
𝑑2 log 𝐿(𝛽,𝛾)

𝑑𝛽𝑑𝛾
=  

𝑑

𝑑𝛾
(

𝑛

𝛽
+ ∑ 𝑙𝑜𝑔𝑥𝑖𝑥𝑖

𝑛
𝑖=1 − 𝛾 ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 log 𝑥𝑖) = − ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 log 𝑥𝑖   

𝐿112 =
𝑑3 log 𝐿(𝛽,𝛾)

𝑑𝛽2𝑑𝛾
=

𝑑

𝑑𝛽
(− ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 log 𝑥𝑖) = − ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 (log 𝑥𝑖)2  

𝐿121 =
𝑑3 log 𝐿(𝛽,𝛾)

𝑑𝛽𝑑𝛾𝑑𝛽
=

𝑑

𝑑𝛽
(− ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 log 𝑥𝑖) = − ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 (log 𝑥𝑖)2  

𝐿122 =
𝑑3 log 𝐿(𝛽,𝛾)

𝑑𝛽𝑑𝛾2
=

𝑑2

𝑑𝛽𝑑𝛾
(

𝑑

𝑑𝛾
(

𝑛

𝛾
− ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 )) = 0  

𝐿2 =
𝑑 log 𝐿(𝛽,𝛾)

𝑑𝛾
=

𝑛

𝛾
− ∑ 𝑥𝑖

𝛽𝑛
𝑖=1   

𝐿21 =
𝑑2 log 𝐿(𝛽,𝛾)

𝑑𝛾𝑑𝛽
= − ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 log 𝑥𝑖  

𝐿221 =
𝑑3 log 𝐿(𝛽,𝛾)

𝑑𝛾2𝑑𝛽
= 0  

𝐿212 =
𝑑3 log 𝐿(𝛽,𝛾)

𝑑𝛾𝑑𝛽𝑑𝛾
= 0  

𝐿211 =
𝑑3 log 𝐿(𝛽,𝛾)

𝑑𝛾𝑑𝛽2 =
𝑑

𝑑𝛾
(−

𝑛

𝛽2 − 𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (log 𝑥𝑖)2) = − ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (ln 𝑥𝑖)2  

𝐿222 =
𝑑3 log 𝐿(𝛽,𝛾)

𝑑𝛾3 =
2𝑛

𝛾3   

𝐿11 =
𝑑2 log 𝐿(𝛽,𝛾)

𝑑𝛽2 = −
𝑛

𝛽2 − 𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (log 𝑥𝑖)2  
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𝐿111 =
𝑑3 log 𝐿(𝛽,𝛾)

𝑑𝛽3
=

2𝑛

𝛽3
− 𝛾 ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 (log 𝑥𝑖)3  

𝐿21 =
𝑑2 log 𝐿(𝛽,𝛾)

𝑑𝛾𝑑𝛽
= − ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 log 𝑥𝑖  

𝐿22 =
𝑑2 log 𝐿(𝛽,𝛾)

𝑑𝛾2 = − 
𝑛

𝛾2  

𝐺𝑖𝑗 = [
𝐿11 𝐿12

𝐿21 𝐿22
]

−1

  

𝐺𝑖𝑗 =
1

det(𝐺𝑖𝑗)
 [

𝐿22 −𝐿2

−𝐿21 𝐿11
]  

=
1

(−
𝑛

𝛾2)×(−
𝑛

𝛽2−𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (log 𝑥𝑖)2)−(− ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 log 𝑥𝑖)2
|

− 
𝑛

𝛾2 − ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 log 𝑥𝑖

− ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 log 𝑥𝑖 −
𝑛

𝛽2 − 𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (log 𝑥𝑖)2
|   

 

𝑇 = (−
𝑛

𝛾2) × (−
𝑛

𝛽2 − 𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (log 𝑥𝑖)2) − (− ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 log 𝑥𝑖)2  

𝑈 = − 
𝑛

𝛾2  

𝑉 = − ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 log 𝑥𝑖  

𝑊 = −
𝑛

𝛽2 − 𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (log 𝑥𝑖)2  

𝐺𝑖𝑗 = [

𝑈

𝑇

𝑉

𝑇
𝑉

𝑇

𝑊

𝑇

]  

 

The approximate Bayes estimators obtained using the Lindley approximation for p = 2 are 

obtained as follows.  
  

If U(β, γ) = β, then 𝑈1 = 1, 𝑈2 = 𝑈12 = 𝑈21 = 𝑈11 = 𝑈22 = 0. Therefore, the Bayes 

estimate of γ is defined as 
 

𝛽̂𝐵𝑎𝑦𝑒𝑠 =  𝛽̂𝑀𝐿𝐸 + 𝐺11𝑔1 + 𝐺12𝑔2 +
1

2
(𝐿111𝐺11

2 + 3𝐿112𝐺11𝐺12 + 𝐿222𝐺12𝐺22)  

𝛽̂𝐵𝑎𝑦𝑒𝑠 = 𝛽̂ +
𝑈

𝑇
(−𝑎) +

𝑉

𝑇
(−𝑏) +

1

2
 (

2𝑛

𝛽3 − 𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (log 𝑥𝑖)3 . (
𝑈

𝑇
)

2
+ 3 (− ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 (ln 𝑥𝑖)2) ×

𝑈

𝑇
.

𝑉

𝑇
 +  

2𝑛

𝛾3
.

𝑉

𝑇
.

𝑊

𝑇
 )  

 

𝐼𝑓 U(β, γ) = γ , then  𝑈2 = 1, 𝑈1 = 𝑈12 = 𝑈21 = 𝑈11 = 𝑈22 = 0. Therefore, the Bayes 

estimate of γ is defined as 
 

𝛾𝐵𝑎𝑦𝑒𝑠 =  𝛾𝑀𝐿𝐸 + 𝐺21𝑔1 + 𝐺22𝑔2 +
1

2
(𝐿222𝐺22

2 + 𝐿112(𝐺11𝐺22 + 2𝐺12
2) + 𝐿111𝐺11𝐺12)  

𝛾𝐵𝑎𝑦𝑒𝑠 = 𝛾 +
𝑉

𝑇
(−𝑎) +

𝑊

𝑇
(−𝑏) +

1

2
 ( 

2𝑛

𝛾3
. (

𝑊

𝑇
)

2
+ (− ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 (log 𝑥)2) . (

𝑈

𝑇
.

𝑊

𝑇
+ 2 (

𝑉

𝑇
)

2
) +

(
2𝑛

𝛽3 − 𝛾 ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 (log 𝑥)3 .
𝑈

𝑇
.

𝑉

𝑇
))  
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