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ABSTRACT 

 

Modeling of the claim frequency is crucial from many respects in the issues of non-life insurance such 

ratemaking, credibility theory, claim reserving, risk theory, risk classification and bonus-malus system. For 

analysing claims in non-life insurance the most used models are generalized linear models, depending on the 
distribution of claims. The distribution of the claim frequency is generally assumed Poisson, however 

insurance claim data contains zero counts which effects the statistical estimations. In the presence of excess 

zero, there are more appropriate distributions for the claim frequency such as zero-inflated and hurdle models 
instead of a standard Poisson distribution. In this study, using a real annual comprehensive insurance data, the 

zero-inflated claim frequency is modeled via several models with and without consideration of zero-inflation. 

The underlying models are compared using information criteria and Vuong test. Parameter estimations are 
carried out using the maximum likelihood. 

Keywords: Claim frequency, count data, generalized linear model, hurdle model, zero-inflation. 

2000 Mathematics Subject Classification: 62J12, 62J99, 62P05. 
 

 

1. INTRODUCTION 

 

In non-life insurance mathematics, aggregate loss is total amount paid on all claims by an 

insurance system and there are two components of aggregate loss. The claim frequency is the 

counts of claims in an insurance pool through the insurance duration, while the claim severity 

shows the monetary losses of insurance claims. Modeling claim frequency is essential from many 

respects in different analyses of non-life insurance such as ratemaking, credibility, claim 

reserving, classification, risk and bonus-malus system.  

For instance, in the ratemaking of the property and casualty insurance, it is aimed to 

determine the net premium. The net premium can be calculated under two assumptions. When the 

claim frequency and claim severity assumed to be independent, the components are modeled 

separately and the selection of risk factors to be used in the ratemaking is based on significant 

variables according to the distribution of claim frequency [1], [2]. Net premium also can be 

calculated in the case of violation of independence. Then, claim frequency can be taken as an 

explanatory variable for the claim severity and total claim is estimated [3], [4]. In both 

dependency and independency cases, it is crucial to model the claim frequency correctly. 
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In the credibility theory which combines the recent and the past experience for the pricing of 

insurance, the distribution of the claim frequency is important for the determination of the 

credibility model [5]. 

Moreover, in the risk theory, while using the collective risk model, it is assumed that the 

claim frequency is a random variable and has a distribution function. According to the collective 

risk model, the aggregate loss has a joint distribution as the primary distribution being the claim 

frequency and the secondary one being the claim severity. To determine the appropriate collective 

risk model, the distribution of the claim frequency should be determined accurately. On the other 

hand, for the calculations such as convolution and Panjer recursion, the distribution of claim 

frequency is also important [6]. 

In addition to these calculations, actuarial modeling of claim counts is substantial in non-life 

insurance with respect to risk classification and bonus-malus systems [7]. While risk classification 

divides a portfolio into homogeneous risk groups, bonus-malus systems fairly determine the 

insurance premium considering the claim history of insureds. Thus, both of these regulations aim 

the fair premium. 

Afore-mentioned reasons, in almost all fields of non-life insurance, modeling of the claim 

frequency is crucial and the statistical distribution should be determined appropriately. The claim 

frequency is commonly assumed as to be distributed Poisson. Although, Poisson distribution is 

widely used, it has a strong assumption such as the equality of the mean and variance. However, 

this assumption, can be violated due to the heterogeneous nature of the real data and 

overdispersion is occurred.  

Moreover, claim frequency data may contain high density of zero counts. For instance, in the 

automobile insurance which is one of the branches of non-life, the implementations such as 

bonus-malus system, the owners of the policy do not inform the company of any small consistent 

damages. The hunger of bonus which emerge when the insureds do not report all of the claims to 

save bonus on premiums may appear to be undamaged and may cause an increase in the number 

of zero claims [8]. Hence in such situations, insurance claim data may show aberration such as 

overdispersion and zero-inflation. 

In the presence of overdispersion, negative binomial distribution can be an alternative to 

Poisson distribution. If the zero counts cause the overdispersion, it is better to use zero-inflated 

models [9]. Zero-inflated models can be considered as a mixture of a zero-point mass and any 

count data regression under the original generalized linear modeling framework [10]. 

Zero-inflated models are used in many studies to model data which has high zero density. Yip 

and Yau [11] studied on zero-inflated distributions for claim frequency and they used the 

generalized Pearson χ2 statistic and information criteria. Tüzel and Sucu [12] investigated zero-

inflated regression models using Turkish insurance data. Mouatassim and Ezzahid [13] compared 

Poisson and zero-inflated Poisson model for health insurance and they used Vuong test for model 

comparison. Ismail and Zamani [14] investigated negative binomial and generalized Poisson 

regression model to fit German health insurance count data. Covrig and Badea [15] compared 

different models for insurance claim counts and they investigated the effect of overdispersion. A 

new zero-inflated regression model for zero-inflated count data and a new regression model so 

called Poisson quasi-Lindley regression model for over-dispersed count data are proposed by 

Altun [16], [17]. 

There are also hurdle models as an alternative to zero-inflated models. Boucher et al. [8] used 

compound frequency models and they examined different risk classification models for count data 

by using Score and Haussmann tests. Yang et al. [18] proposed new link functions for hurdle 

Poisson and hurdle negative binomial to deal with zero-inflation, overdispersion and missing 

observations in clinical trials. Saffari et al. [19] proposed negative binomial hurdle model. Sarul 

and Şahin [20] compared Poisson models, zero-inflated models and hurdle models for claim 

frequency data. Gilenko and Mironova [21] used hurdle model to model claim frequency for a 

pricing study and they model claim frequency and severity separately to calculate the price of a 
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policy using a real Russian motor own damage insurance data. Baetschmann and Winkelmann 

[22] introduced a new dynamic hurdle model for zero-inflated count data related to stochastic 

process. Sakthivel and Rajitha [23] compared methods with back propagation neural network for 

modeling the count data which has excessive number of zeros by using mean square error for 

model selection. 

In this study, a more comprehensive comparative statistical analysis is performed by 

considering both overdispersion and zero-inflation for actuarial count data models. Models are 

evaluated by information criteria and Vuong test. This study is organized as follows: Firstly, 

models such as generalized linear models, zero-inflated models and hurdle models for count data 

are examined in Section 2. The properties of the count data models for actuarial sciences are 

briefly given in Section 3. An application study is carried out using a real annual comprehensive 

insurance data of a non-life insurance company with a high density number of zero claims in 

Section 4. In the application part, models are established, compared and the results of the models 

have been interpreted. Finally, concluding remarks are briefly given in Section 5. 

 

2. METHOD 

 

Linear models assume that the residual errors follow a normal distribution. However, 

especially in the field of applied sciences, the data are frequently distributed discrete and limited 

to non-negative values. These type of data are called as count data and usually analysed by 

generalized linear models (GLMs). 

 

2.1. Generalized Linear Models 

 

GLMs are an extended family of linear models for non-normal error distributed data from the 

exponential family such as Bernoulli, Poisson, Gamma, etc. [24]. The methodology of the 

generalization is to transforming the mean response to a linear predictor and relating the model 

parameters to the predictors by a link function [25].  

GLMs have a long history and over time the models of that family have been specialized and 

extended depending on the properties of the error distribution. Poisson and negative binomial 

models are the most commonly used cases when the structure of the studied data is count. 

 

Poisson Model 

 

Let  𝑦𝑖 =  0, 1, 2, … , (𝑖 =  1, 2, … , 𝑛) be a scalar variable distributed Poisson with 

probability density function 
 

𝑃(𝑌𝑖  = 𝑦𝑖|𝒙𝒊) =
𝜇𝑖

𝑦𝑖𝑒𝑥𝑝(−𝜇𝑖)

𝑦𝑖!
                                                                         (2.1) 

  

where 𝜇𝑖 is the conditional mean of 𝑦𝑖 on k covariates 𝒙𝒊 = (𝑥𝑖1, 𝑥𝑖1, … , 𝑥𝑖𝑘)′, 𝐸(𝑦𝑖|𝒙𝒊) = 𝜇𝑖 . 

Then the Poisson model can be written as,   
 

𝜇𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘𝑥𝑖𝑘)                                                                  (2.2) 
 

via the canonical logarithmic link function 𝑔(𝜇𝑖) = 𝑙𝑜𝑔(𝜇𝑖). 

 

Negative Binomial Model 

  

The probability of a negative binomial model distributed event count 𝑦𝑖 is, 
 

𝑃(𝑌𝑖  = 𝑦𝑖|𝒙𝒊) =
Γ(𝑦𝑖+𝜃)

Γ(𝜃)𝑦𝑖!

𝜇𝑖
𝑦𝑖𝜃𝜃

(𝜇𝑖+𝜃)𝑦𝑖+𝜃                                                                        (2.3) 
 

where 𝜇𝑖 is again the conditional mean of 𝑦𝑖 and 𝜃 is the shape parameter. Then the negative 

binomial model is written as, 
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𝜇𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘𝑥𝑖𝑘)                                                                  (2.4) 
  

via again the canonical logarithmic link function 𝑔(𝜇𝑖) = 𝑙𝑜𝑔(𝜇𝑖). Poisson model and 

negative binomial models are nested models since when  
1

𝜃
= 𝛼 → 0 the negative binomial model 

reduces to Poisson. 

In count data analysis, in addition to non-normally distributed errors, data are also composite 

with issues such as excessive zeros and overdispersion. Overdispersion describes the observation 

that variation is higher than would be expected. Negative binomial model is alternative to Poisson 

model when the sample variance is larger than the sample mean because of being longer and 

fatter tailed distribution compared to Poisson [26], [27]. For capturing the excess number of zeros, 

zero-inflated and hurdle models have been developed and generated for both distributions. The 

difference between two different approaches is the treatment to sources of zeros.  

In applied sciences, the zeros split into two kinds, structural zeros and sampling zeros. As is 

evident from its name, sampling zeros are the random zeros from the sampling distribution. On 

the other hand, structural zeros are the only possible values. Depending on the distinction of 

zeros, zero-inflated models treat zeros as a combination of both types whereas hurdle models treat 

all zeros only as structural. 

 

2.2. Zero Inflated Models 

 

Zero inflated models allow for modeling the outcome as a mixture of Bernoulli distribution 

and a count data distribution. In zero-inflated models, Bernoulli distribution is defined for 

structural zeros and the other count data distribution governs for random sampling zeros. Thus, 

zero inflated models drive two different zero generating processes. 

Following Lambert [10] zero-inflated Poisson (ZIP) model incorporating covariates can be 

written as a mixture of two components: 
 

𝑃(𝑌𝑖  = 0|𝒙𝒊) = 𝜋𝑖 + (1 − 𝜋𝑖)exp(−𝜇𝑖)                                                                 (2.5) 
 

𝑃(𝑦𝑖 = 𝑧𝑖|𝒙𝒊) = (1 − 𝜋𝑖)
𝜇𝑖

𝑧𝑖exp(−𝜇𝑖)

𝑧𝑖!
 ,     𝑧𝑖 ≥ 1                                                    (2.6) 

 

where 𝑦𝑖 = 0 with probability 𝜋𝑖. Hence the number events has a Poisson (𝜇𝑖) distribution 

with probability (1 − 𝜋𝑖).  

In the presence of overdispersion, the zero-inflated negative binomial model (ZINB) usually 

provides more accurate results. ZINB model is given by, 
 

𝑃(𝑌𝑖  = 0|𝒙𝒊) = 𝜋𝑖 + (1 − 𝜋𝑖)(1 + 𝛼𝜇𝑖)− 
1

𝛼                                                           (2.7) 
 

𝑃(𝑦𝑖 = 𝑧𝑖|𝒙𝒊) = (1 − 𝜋𝑖)
Γ(𝑦𝑖+

1

𝛼
)

Γ(
1

𝛼
)𝑦𝑖!

(𝛼𝜇𝑖)𝑦𝑖

(1+𝛼𝜇𝑖)𝑦𝑖+𝛼  ,     𝑧𝑖 ≥ 1                                                   (2.8) 

 

2.3. Hurdle Models 

 

Hurdle models are two part models. In the first part model, a binary model is used for zeros or 

non-zero values and in the following part of the model, zero-truncated distributions, is defined for 

the positive values.  

Hurdle Poisson (HP) model uses truncated Poisson distribution. Let 𝑦𝑖 be truncated Poisson 

(𝜇𝑖) distributed random variable then HP model is set as, 
 

𝑃(𝑌𝑖  = 0|𝒙𝒊) = 𝜋𝑖                                                                                            (2.9) 
    

𝑃(𝑦𝑖 = 𝑧𝑖|𝒙𝒊) =
(1−𝜋𝑖)

1−𝑒𝑥𝑝(−𝜇𝑖)

𝜇𝑖
𝑧𝑖exp(−𝜇𝑖)

𝑧𝑖!
 ,     𝑧𝑖 ≥ 1                                                  (2.10) 
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In a similar way hurdle negative binomial (HNB) model uses truncated negative binomial 

distribution. 

Let 𝑦𝑖 be truncated Negative Binomial (𝜇𝑖) distributed random variable then HNB model can 

be given as, 
 

𝑃(𝑌𝑖  = 0|𝒙𝒊) = 𝜋𝑖                                                                                          (2.11) 
    

𝑃(𝑦𝑖 = 𝑧𝑖|𝒙𝒊) = (1 − 𝜋𝑖)
Γ(𝑦𝑖+

1

𝛼
)

Γ(
1

𝛼
)𝑦𝑖!

(1+𝛼𝜇𝑖)−(
1
𝛼

+𝑦𝑖)𝑦𝑖+𝛼(𝛼𝜇𝑖)𝑦𝑖

1−(1+𝛼𝜇𝑖)−
1
𝛼

 ,     𝑧𝑖 ≥ 1                             (2.12) 

 

In ZIP, ZINB, HP and HNB models, the canonical link functions 𝑙𝑜𝑔(𝜇𝑖) and 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) =

𝑙𝑜𝑔
𝜋𝑖

(1−𝜋𝑖)
 are used for mean and Bernoulli probability of success, respectively. 

 

3. COUNT DATA MODELS FOR ACTUARIAL SCIENCES 

 

In most of the non-life insurance studies, the first step is to analyse the relationship between 

the number and risk factors. Thus, the dependent variable 𝑦𝑖 is usually defined as the claim 

frequency and the vector of 𝒙𝒊 = (𝑥𝑖1, 𝑥𝑖1, … , 𝑥𝑖𝑘)′ is consisted of k explanatory variables such as 

age, gender, properties of car, engine capacity, previous claim experiences and etc (𝑖 =
1,2, . . . , 𝑛). 

As it is mentioned in previous sections, 𝑦𝑖 is usually observed with an excessive number of 

zeros more than what standard distributions can yield and zero-inflated or hurdle versions of the 

standard models are the appropriate statistical techniques in modeling of claim frequency.  

As in the case of standard GLMs, in zero-inflated and hurdle version of models, parameters 

are estimated by maximum likelihood (MLE). In hurdle models the specification and the 

maximization of the likelihoods of two components can be carried out separately [28]. 

The best fit the claim frequency is usually found out by a model selection analysis. The 

commonly used model selection methods are information criteria such as AIC and BIC. For a 

model with intercept, they are defined as follows: 
 

𝐴𝐼𝐶 =  −2𝐿𝑜𝑔 − 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  2𝑝                                                                                         (3.1) 
 

𝐵𝐼𝐶 =  −2𝐿𝑜𝑔 − 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  𝑝𝑙𝑛(𝑛)                                                                                  (3.2) 
 

where 𝑝 = 𝑘 + 1 and 𝑛 represent the number of parameters and observations, respectively. 

Especially in actuarial sciences, depending on the structure of the claim frequency data, the 

mentioned models are usually nested for instance Poisson GLM and negative binomial GLM. 

Thus, a Voung test can be used as an alternative to AIC and BIC for the comparison of non-nested 

models. The Vuong test basically compares the predicted probabilities of two non-nested models 

[29]. Generally, zero-inflated models are compared with their non-zero-inflated versions such as 

ordinary Poisson GLM versus ZIP or ordinary negative binomial GLM versus ZINB. 

 

4. CASE STUDY 

 

A comprehensive insurance (motor own damage insurance) data set taken from an insurance 

company for year 2014 is used for application. After regulations, a portfolio comprised 15767 

policies is obtained. The data contains the claim counts of policyholders and risk factors, some of 

them are related to policyholders and some are related to vehicles. 

The age of policyholders is ranged between 21 and 90. While 11127 policyholders are male, 

the rest 4640 are female. Vehicles are categorized into four groups: car, pickup, rental vehicle and 

taxi, and age of vehicles are ranged 1 to 18. Type of usage is classified as private, commercial and 

leasing. The levels of No Claim Discount (NCD) are assigned as 0, 30, 40, 50 and 60. Only 

vehicles with two types of fuel (benzine and diesel), are taken into consideration by excepting 
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LPG powered vehicles. The status of new or renewal and the price of vehicle are considered as 

additional risk factors. The frequency distribution of the claim counts is given in Table 1. 

 

Table 1. Number of Claim Frequencies 
 

Frequency Observed Claim Count 

0 13955 

1 1333 

2 399 

3 70 

4 9 

5 1 

 

In this study, claim frequency ranged 0 to 5 is taken as the response variable. The distribution 

of claim counts is visualized by the histogram as given in Figure 1. 

 

 
 

Figure 1. Histogram of Claim Frequency 

 

According to Table 1 and Figure 1, 80.1 % of policyholders made no claims or do not report 

the claims during the year 2014. The high ratio of zeros is resulted as zero-inflation. Remainder 

19.9 % of policyholders made a least one claim. 

Zero-inflation is also analysed by testing the fit between observed and expected number of 

zeros. The zero test [30] gives a chi-square test statistic on one degree of freedom. The chi-square 

test statistic is calculated as 1136.258 and the presence of zero-inflation is reasonable (p-

value<2.2e-16).  

Moreover, dispersion test introduced by Cameron and Trivedi [31] is used to test 

overdispersion. The null hypotheses of no dispersion is tested against the overdispersion. 

According to the dispersion test, the overdispersed claim frequency is considered to be significant 

(z=15.435, p-value<2.2e-16). 

For modeling the mentioned claim frequency, with and without consideration of zero-

inflation, 6 different GLMs are analysed. The underlying models are Poisson GLM, negative 

binomial GLM, ZIP, ZINB, HP and HNB. Following a pre-modeling process, three explanatory 

variables are selected for the comparison of models. Age of insured, age of vehicle and NCD are 

detected as significant and summarized by Table 2 as follows. 
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Table 2. Summary of Explanatory Variables 
 

Variables Min 
1st  

Quartile 
Median Mean 

3rd  

Quartile 
Max 

Age of insured 21.0 40.0 48.0 48.9 57.0 90.0 

Age of vehicle 1.0 4.0 7.0 6.9 9.0 18.0 

 

NCD 
0 30 40 50 60  

536 875 1034 2060 11262 

 

The parameter estimations for considered models are given by Table 3 where 𝛽0 is the 

intercept, 𝛽1, 𝛽2and 𝛽3 are the model parameters representing age of vehicle, NCD and age of 

insured, respectively. 

 

Table 3. MLEs of the Parameters for Poisson GLM, Neg. Bin. GLM, ZIP, ZINB, HP, HNB 
 

Models 

Parameters Poisson GLM Neg.Bin.GLM ZIP ZINB HP HNB 

𝛽0 -0.747262 -0.717794 -0.904352 -0,90447 -0.663402 -0.663402 

s.e. (0.103627) (0.131239) (0.307765) (0.30777) (0.129550) (0.129550) 

p-value 5.55e-13* 4.52e-08* 0.003299* 0.003295* 3.04e-07* 3.04e-07* 

𝛽1 -0.013131 -0.014202 -0.025468 -0.02546 -0.00601 -0.006601 

s.e. (0.006436) (0.007790) (0.018121) (0.01812) (0.007858) (0.007858) 

p-value 0.04134* 0.06830 0.159877 0.160121 0.400907 0.400907 

𝛽2 -0.186382 -0.188004 0.294989 0.29487 -0.218193 -0.218193 

s.e. (0.016605) (0.021458) (0.050891) (0.05089) (0.020946) (0.020946) 

p-value <2e-16* <2e-16* 6.77e-09* 6.85e-09* <2e-16* <2e-16* 

𝛽3 -0.005203 -0.005518 0.016699 0.021671 -0.008053 -0.008053 

s.e. (0.001821) (0.002213) (0.004429 (0.00443) (0.002239) (0.002239) 

p-value 0.006756* 0.003466* 0.000163* 0.000162* 0.000321* 0.000321* 

* significant at 𝛼 = 0.05. 

 

For model evaluation; the Log-Likelihood, AIC and BIC statistics are used. Furthermore, for 

non-nested comparisons Vuong test is carried out. The model selection criteria and the results of 

Voung test are given in Table 4 and Table 5. 

 

Table 4. Comparison of Models 
 

Model Log-Likelihood(df) AIC BIC 

Poisson GLM  -7250.409 (df=4) 14492.36 13712.41 

Neg. Bin. GLM -6899.806 (df=5) 13799.98 14523.03 

ZIP -6852.822 (df=8) 13708.82   13770.14 

ZINB -6852.823 (df=9) 13710.82  13779.81 

HP -6855.543 (df=8) 13710.41  13771.74 

HNB -6855.553 (df=9) 13712.41  13781.40 

df represents the degree of freedom. 

 

On Comparison of Models for Count Data with …      /   Sigma J Eng & Nat Sci 38 (3), 1543-1553, 2020 



1550 

 

The smallest values of AIC and BIC belong to ZIP model. According to Log Likelihood and 

information criteria given in Table 4, zero-inflated and hurdle models fit better data than standard 

GLMs in the presence of zero-inflation. 

In this paper, the ordinary GLMs and zero-inflated versions are categorized as non-nested 

models, hence Vuong test is carried out for the comparison of Poisson GLM versus ZIP and 

negative binomial GLM versus ZINB model. 

 

Table 5. The Results of Vuong Test 
 

 Vuong z-Statistic Model Comparison p-value 

Raw -12.24049 ZIP>Poisson GLM <2.22e-16 

AIC-corrected -12.11678 ZIP>Poisson GLM <2.22e-16 

BIC-corrected -11.64261 ZIP>Poisson GLM <2.22e-16 

Raw -5.473100 ZINB>Neg.Bin. GLM 2.2112e-08 

AIC-corrected -5.022451 ZINB>Neg.Bin. GLM 2.5508e-07 

BIC-corrected -3.295186 ZINB>Neg.Bin. GLM 0.00049178 

 

According to the negative test statistic zero-inflated versions of Poisson and negative 

binomial model better fit the data than standard ones according to the results of Vuong test. 

The QQ plots of residuals shown by Figure 2 is used for assessing the goodness of fit and in 

models which consider zero-inflation, the data are more concentrated. In Figure 2, quantile 

residuals are plotted versus theoretical quantiles. In the presence of overdispersion, the deviance 

and the residuals are not usually normal. In this case, it might better to use randomized quantile 

residuals for GLMs. As it is seen in the left panel of Figure 2, the ordinary models have 

deviations especially in the upper half of the plots.  

 

 
 

Figure 2. Residual Plots of Claim Frequency for Underlying Models 
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Figure 3 displays the rootograms for comparing the square roots of empirical frequencies with 

the fitted ones. Based on the rootograms; ZIP, ZINB, HP and HNB capture the underlying 

distribution better than standard GLMs. In the rootograms of Poisson GLM and negative binomial 

GLM, zero-inflation leads to deviations. 

 

 
 

Figure 3. Rootograms of Claim Frequency for Underlying Models 

 

5. CONCLUSION 

 

In non-life insurance, it is essential to model claim frequency accurately in many respects. 

GLMs are mostly preferred in terms of convenience and applicability in actuarial science and 

generally Poisson GLM is used for modeling claim frequency under the assumption that the 

number of claim has a Poisson distribution. However, actuarial count data may contain too many 

zeroes. Zero inflated and hurdle models are flexible methods dealt with the zero-inflation. In 

order to find out the most suitable model for claim frequency, the models are established using a 

real data set. 

Basically, both residual plots and rootograms point out the zero-inflated and hurdle models 

without an explicit distinction. To obtain the superior fitted model, the information criteria are 

consulted and it is noticed that ZIP with age of vehicle, NCD and age of insured is the best fit 

model to mentioned insurance count data. Although, ZIP has the smallest AIC and BIC, the 

values of hurdle model are quite similar. The reason is that, zeros in non-life insurance are 

generally sampling zeros. Therefore, HP may be an alternative to ZIP in the presence of zero-

inflation. The results of model comparisons are also supported by Vuong test. Based on the test 

results, zero-inflated versions of models better accommodates excess zeros in the claim frequency 

compared to ordinary ones. 

While the present models are set up by considering the overdispersion, models based on 

Poisson fit better than their corresponding models with negative binomial distribution. Based on 
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comparison of ZIP and ZINB and comparison of HP and HNB; models with Poisson distribution 

are better fit than negative binomial-distribution. According to the observed mean and variance of 

claim frequency, there is no extreme overdispersion. 
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