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ABSTRACT 

 

The dynamic analysis of a truss system modelled by the finite element method in the frequency domain is 

studied. The truss system is modelled by 22 elements and has 44 degrees of freedom. The stiffness matrix and 

mass matrix of the truss system are obtained by using the finite element method. Differential equations of the 

truss system are obtained by using the obtained stiffness and mass matrix. By applying the Laplace 
transformation, the displacements of each node are calculated, and the equation is arranged in the frequency 

domain. The obtained differential equations are solved by using MATLAB. Eigen values are calculated and 

represented depending on the frequencies. Thus, static displacements, dynamic displacements, static reaction 
forces and dynamic reaction forces for each frequency are graphically obtained. Additionally, dynamic 

amplification factors are calculated and simulated depending on the frequencies. Dynamic displacements 

increased near the eigenvalues, and the dynamic amplification factors also increased dramatically depending 
on the related eigenvalues. By avoiding the natural frequency, it is possible to design a better structure to 

reduce vibration. 

Keywords: Truss system, finite elements, eigenvalues, natural frequency. 
 

 

1. INTRODUCTION 

 

Truss systems are widely used in machine industries for tools such as cranes. Vibration 

characteristics and vibration dynamic factors are crucial for these truss systems. It is necessary to 

avoid the resonance frequency for these kinds of machine industries to prevent working accidents. 

Therefore, the vibration dynamic factors of the truss system are calculated depending on the 

frequency of each node of the truss system and obtained for the worst-case loading situations.  

Furthermore, public or service structures should be designed so that their dynamic behaviour, 

expressed by their natural frequency and acceleration, will not affect the comfort of an occupant. 

For the serviceability limit state of a structure not to be exceeded when subjected to vibration, the 

natural frequency of the vibrations of the structure should be kept above appropriate values [1]. 

The following studies are presented in the literature: 

A decoupled approach to the integrated optimum design of structures and robust control 

systems by using H2 and H∞ is presented. A truss system and beam system were modelled by 
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using the finite el ement method. It is determined that the conventional simultaneous optimization 

approach can be approximated by a decoupled optimization approach [2]. 

The concurrent optimization of controlled structures for robustness was presented. A truss 

system was modelled by using a finite element model, and the controller was modelled by H2 and 

H∞ Thus, the structure was optimized by minimizing the singular value system [3]. 

The integrated optimization of beam structures and the LQR controller was studied. A beam 

system was modelled by using a finite element model. The structures and controllers are 

optimized simultaneously and successively. It is shown that simultaneous optimization of 

structures and controllers can be achieved by an equivalent decoupled optimization problem [4]. 

The structural optimization of a beam system modelled by the finite element method under 

stress constraints is realized. Dynamic amplification factors in terms of the frequency at each 

mode are obtained. It is shown that the dynamic amplification factor increases at the natural 

frequency [5]. 

An integrated optimization of structures and LQR control systems for reduced order models 

are studied. The structures and controllers are optimized simultaneously and successively. Since 

the degree-of-freedom (DOF) of a structure is very large in practice, model order reduction 

techniques must be employed at every controller design iteration during optimization, which 

increases the CPU time and can introduce modelling errors [6]. 

Equivalence and dynamic analyses for jointed trusses based on improved finite elements are 

presented. Two improved finite elements are presented for a link and a bending beam to calculate 

the dynamic characteristics of non-jointed and jointed trusses. The results indicate that the natural 

frequencies of the jointed structure increase with the excitation force and the stiffness of the joints 

[7]. 

 

2. STUDIES 

    

Structural analysis of dynamic systems can be realised by using analytical methods or 

numerical methods. Analytical methods provide the exact behaviour of a system at any point 

within the system, while numerical solutions approximate exact solutions only at discrete point, 

called nodes. There are two common classes of numerical methods such as finite difference 

method and finite elements method. 

With finite difference method, the differential equation is written for each node, and the 

derivatives are replaced by difference equations. Finite difference methods result in a set of 

simultaneous linear equations. Although finite difference methods are easy to understand and 

employ in simple problems. Finite difference methods become difficult to apply to problems with  

complex geometries or complex boundary conditions. 

Finite element method uses integral formulation rather than difference equations to create a 

system of algebraic equations. Moreover, a continuous function is assumed to represent the 

approximate solution for each element. Then, the complete solution is generated by connecting or 

assembling the individual solutions, allowing for continuity at the inter-elemental boundaries. 

 

2.1. Structural Finite Element Equations  

    

Structural finite element analysis approaches are used to obtain the desired node displacement 

solution and dynamic analysis of the truss system. 

 

2.1.1. Element Analysis 

    

Structural finite element analysis requires knowledge of the behaviour of each element in a 

structure. Once each element is described, the governing equations of the entire structure may be 

derived for all structural systems. Energy methods are used to obtain governing equations. To 
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apply energy theorems to the struc tural analysis of a system, it is necessary to define the strain 

energy, kinetic energy and change in the external dimensions due to bending. The main aim is to 

select element displacement functions that are uniquely specified when displacements at the 

nodes of the element are known [8]. 

 

2.1.1.1. Beam Element Stiffness Matrix 

    

A typical planar beam element, with its displacement sign convention, is shown in Figure 1. 

The displacement coordinates 421 ,, qqq  and 5q  are components of the endpoint 

displacements, and 3q  and 6q  are endpoint rotations [8]. 

The longitudinal displacement of a point x  on a beam )0( lx  due to longitudinal 

strain is approximated by the following Equation [8]: 
 

l

x
q

l

lx
qxs 41

)(
)( 


                                                                       (1) 

 

which is the exact solution for a beam element with a constant section and no axial 

distribution load. It should be emphasized that the longitudinal displacement )(xs is due to only 

the longitudinal strain in the beam and not to the change in the length caused by the lateral 

displacement w(x). 

The lateral displacement of the beam at point x  is approximated by the following Equation 

[8]: 
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which is the exact solution for beam elements with a constant cross section and no laterally 

distributed load.  

 

q1

q2

q3

q4

q5

q6

Figure 1. Planar beam element. 

 

The strain energy SE due to the deformation of the beam is written as follows [8]: 
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where h is the cross-sectional area of the beam, I is the second moment of the cross-sectional 

area about its centroidal axis, and E is the Young’s modulus of the material. Carrying out the 

integrations in Equation (3), the following quadratic form is obtained for  Tqqqq 621 ...,  

[8]: 
 

qkqSE B

T

2

1
                                                                                (4) 

 

where Bk  is the beam element stiffness matrix and is given as follows [8-10]: 
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2.1.1.2. Truss-Element Stiffness Matrix 

    

If bending effects are neglected, a truss element is obtained for which only coordinates 1q  

and 4q  of Figure 1 influence the strain energy. In this case, the strain energy is as given in 

Equation (4) but with the truss-element stiffness matrix Tk  [8-10]. 
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Note that only 1q  and 4q have an effect on the truss element strain energy. While 2q  and 

5q  need to be retained in the analysis, since the truss element does not bend, 

lqqqq /)( 2563  , and these rotation variables may be suppressed [8]. 

 

2.1.1.3. Beam and Truss-Element Mass Matrices 

    

The kinetic energy of a beam element, neglecting the rotary inertia of the beam cross section, 

is 
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where   is the mass density of the beam material and the dot over the variable (.) denotes 

the time derivative. The integration KE is obtained as follows [8]: 
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where Bm  is the beam-element mass matrix and is given as follows [8-12]: 
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Since the kinetic energy of the beam element is positive for any 0iq , it is expected that 

Bm is positive definite and is hence non-singular [8]. 

To obtain a truss element, bending is neglected and lxqqqxw /)()( 252  . 

Equation (7) yields a quadratic form, as in Equation (8), but with the truss-element mass matrix 

[8-12]. 
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Note that 3q  and 6q  are suppressed in the kinetic energy expression and are not needed in a 

truss analysis. The velocities 2q  and 5q , however, play an important role. Since the third and 

sixth columns of Tm  are zero, the matrix is singular. In fact, Tm is only of rank 4. It is also 

worth noting that, as in the case of the strain energy, the area h and length l may depend on the 

design variables [8]. 

 

2.1.2. Global Stiffness and Mass Matrices 

    

The total strain and kinetic energy of a structure may be obtained by summing the strain and 

kinetic energies of all the elements that make up the structure. Before a meaningful expression for 

the total system strain and kinetic energies may be written, it is first necessary to define a system 

for the global displacements of all the nodes in the structure relative to a global coordinate 

system. Let 
n

g Rz   denote this global displacement vector [8]. 

 

2.1.2.1. Transformation from Local to Global Coordinates 

    

Since the individual elements of the structure have their own inherent displacement 

coordinates relative to a body-fixed coordinate system, as in Figure 1 and Figure 2, the 

displacements must first be transformed from the element’s body-fixed coordinate system to a 

coordinate system parallel to the global coordinates. Let 
iq denote the vector of the nodal 

displacement coordinates of the ith element in its body-fixed system. A rotation matrix 
iS may be 

defined as follows [8]: 
 

iii qSq ˆ                                                                                          (11) 
 

The transformed element displacements now coincide with the components of the global 

displacement vector gz . Therefore, a Boolean transformation matrix 
i  may be defined, 

consisting of only zeros and ones, that gives the following relation [8]: 
 

g

ii zq ˆ                                                                                          (12) 
 

Note that if 
iq̂  is an r-vector and gz is an n-vector (n>r), then 

i  is an rxn matrix that 

consists only of r unit components, with zeros as the remaining entries [8]. 
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2.1.2.2. Generalized Global Stiffness Matrix 

    

Denoting the ith element stiffness matrix as 
ik , the strain energy in the ith elementary may be 

written as follows [8]: 
 

iiiTi qkqSE
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1
                                                                                   (13) 

 

Substituting from Equations (11) and (12),
iSE  is rewritten as follows [8]: 
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The strain energy of the entire structure is now obtained by summing the strain energy over 

all NE elements in the structure to obtain 
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where gK is the generalized global stiffness matrix and is given as follows [8-12]: 
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2.1.2.3. Reduced Global Stiffness Matrix 

    

If all the boundary conditions associated with the structure have been imposed so that no 

rigid-body degrees-of-freedom exist, then the generalized global stiffness matrix gK is positive 

definite, denoted simply by K, and it is called the reduced global stiffness matrix. However, if the 

generalized global stiffness matrix is assembled without considering the boundary conditions, it 

will generally not be positive definite [8]. 

 

2.1.2.4. Generalized Global Mass Matrix 

    

As in the case of the strain energy, the kinetic energy of the ith element may be written in 

terms of generalized velocities. Since the matrices 
iS  and 

i  do not depend on generalized 

coordinates, 
 

iiqSq  ˆ                                                                                                (17) 
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Using these relationships, the kinetic energy of the ith element may be written as follows [8]:  
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Summing the kinetic energy over all elements, the total kinetic energy KE for the system is as 

follows [6]: 
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where gM  is the generalized global mass matrix, which is written as follows [7]: 
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
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g SmSM
1
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Presuming that all structural elements have mass, it is impossible to obtain a nonzero velocity 

without investing a finite amount of kinetic energy. Therefore, a global system mass matrix will 

always be positive definite [8]. 

 

2.1.2.5. Reduced Global Mass Matrix 

    
If boundary conditions have been taken into account before the global displacement vector is 

defined, the reduced global mass matrix will be denoted by M, as in the case of the corresponding 

reduced global stiffness matrix K. 

Note that in the case of member size design variables and on geometrical design variables that 

appear in the rotation matrices 
iS , the global stiffness and mass matrices depend on design 

variables that appear in the element stiffness and mass matrices. 

 
2.2. Dynamic Response of a Structure 

   

Consider the case of the dynamic response of a structure with no boundary or interface 

conditions, that is, with independent generalized coordinates. Lagrange’s equations apply in this 

case and may be written in matrix form, using ,, gg MMFF  and gKK  , as 
 

0 FKzzM                                                                                    (22) 
 

The initial conditions of motion for such a system consist of specifying the position and 

velocity of the system at some initial time, e.g., t=0; that is,   00 zz   and   00 zz   [8]. 

 

2.3. Natural Vibration of a Structure 

    

The natural vibration of a structure is defined as the harmonic motion of the structural system, 

with no applied load and F=0. In this case, the equation of the natural vibration of the structure is 

written as follows: 
 

0KzzM                                                                                     (23) 

 

2.3.1. Transfer Function 

    

Assuming zero initial conditions, one obtains the following harmonic response of a structure 

by taking the Laplace transform of the transfer matrix (22) as follows [8]: 
 

)()()(2 sFsKZsZMs                                                                      (24) 
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)()()( 2 sFsZKMs                                                                        (25) 
 

Then, the transfer function of the system is written as follows: 
 

KMssF
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
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                                                                          (26) 

 

The complex Laplace transform variable s is substituted by s=jω, where ω is the excitation 

frequency, and j is an imaginary unit. Then, Equation (24) is written in the frequency domain as 

follows: 
 

  FKMz
12 

                                                                       (27) 

 

2.4. Eigenvalues and Eigenvectors 

    

A linear equation can be written in the following form [9-12]: 
 

    bZA                                                                                      (28) 
 

For a set of linear equations, the values of the elements of the  b  matrix are typically 

nonzero.  These types of problems render a set of linear equations of the following form [9-12]: 
 

     0 ZZA                                                                                                                  (29) 
 

In practice, Equation (29) can be written as follows [9-12]: 
 

      0 ZIA                                                                             (30) 
 

where [I] is the identity matrix having the same dimension as the [A] matrix. In Equation 

(30), the unknowns of matrix {Z} are called the eigenvectors. 

 

2.4.1. Eigenvalues and eigenvectors of a dynamic system 

    

By considering Equation (27),   FKMz
12 

  , the above equations can be 

applied for a dynamic system as follows: 

If the matrices are the stiffness matrix [K] and the mass matrix [M], then the eigenvectors {Z} 

will be the modes of vibration and the eigenvalues will be the square roots of the natural 

frequencies of the system [9-12]. 

The eigenvalue problem can be solved by considering Equation (27) as follows: 
 

  02  KM                                                                                   (31) 
 

We note that  2
 and based on the degree of freedom of the systems, each natural 

frequency is written as follows: 
 

ii  2
  ni ,...,1  

 

The roots of Equation (30) or Equation (31), the characteristic equation, are the natural 

frequencies of the dynamic system [9-12]. 

The relationship between the amplitudes {z1,…zn}of a mass oscillating at its natural 

frequency is called the natural mode [9-12]. 
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2.4.2. Reaction Forces R 

    

The determination of the difference between the reaction forces and applied load is important. 

The reaction forces are written as follows [9-12]: 
 

      FuKR                                                                                                                  (32) 
 

where R  denotes the reaction force matrix,  K  denotes the stiffness matrix,  u  denotes 

the displacement matrix and F  denotes the applied load matrix [9-12]. 

 

2.4.3. Dynamic amplification factor  

    

The dynamic amplification factor  is described in terms of displacements as follows [9-

12]. 
 

                                                              (33) 

 

where  is the displacement in the static loading case and  is the displacement in the 

dynamic loading case.  

 

3. NUMERICAL EXAMPLE 

 

Definition of truss 
 

A truss is an engineering structure consisting of straight members connected at their ends by 

means of bolts, rivets, pins, or welding. Trusses offer practical solutions to many structural 

problems in engineering such as tower, bridges, and roofs of buildings. Two-dimensional trusses 

(or plane trusses) is defined as a truss whose members lie in a single plane.  

A truss system modelled by the finite element method is shown in Figure 2. The applied load 

is applied at 21. The node and worst case loading conditions are investigated. There are 40 

element numbers, 22 node numbers and 44 displacement numbers for the truss system. 

 

Boundary conditions  
 

The displacements are zero on node 1, node 5 and node 22. That is, z1=0, z2=0, z5=0, z6=0 and 

z43=0, z44=0.  

During the dynamic analysis of the truss system in the frequency domain, static and dynamic 

reaction forces and the displacement on node 21 are considered. 

The vibration analysis of the truss system is investigated by using the obtained stiffness and 

mass matrix in the equation of motion of the system. 
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Figure 2. 44-degree-of-freedom truss structure 

 

Generalized global stiffness matrix gK  
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Element stiffness matrix 
ik  

    

By deleting the rows and columns for q3 and q6 of the stiffness matrix of the truss system 

obtained by Equation (6), the following equation is obtained: 
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Generalized global mass matrix gM  
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Element mass matrix 
im  

    

By deleting the rows and columns for q3 and q6 of the mass matrix of the truss system 

obtained by Equation (6), the following equation is obtained. 
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The matrix 
iS is written as follows: 
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



























ii

ii

ii

ii

iS









cossin00

sincos00

00cossin

00sincos

                                         (11) 

 

i matrix is a [4x44] matrix. It is obtained by putting 1 in for the ith element in the 

corresponding row and column of the global coordinate system. 

 

Simulation results 

The dynamic analysis of the truss system is investigated by using the following simulation 

parameters shown in Table 1. The simulation results are shown in Figure 3 to Figure 10. 

 

Table 1. Simulation parameters 
 

Parameters Unit Value 

Elasticity modulus E [N/m2] 21.1010 

Diameter of truss d [m] 10.10-3 

Cross-sectional area of the truss h [m2] 282,74.10-6 

Truss element length l [m] 1 

Material density ρ [kg/m3] 7850 

Applied load F [N] 3000 

 

Eigenvalues of the system 
 

The natural frequencies of the dynamic system are a characteristic of system vibration 

response related with eigenvalues.  Therefore, eigenvalues are calculated to observe dynamic 

system vibration response. 

The eigenvalues of the system are presented in Table 2. The truss system was modelled by 22 

elements and has 44 degrees of freedom. Therefore, 44 eigenvalues are obtained during the 

simulation study since the eigenvalues of the system are equal to the degrees of freedom of the 

system. 

For the 44 degrees of freedom of the system, we have 44 natural frequencies of the system.  
 

ii  2
  44,...,1i  

 

Additionally, for the 44 degree-of freedom of the system we have 44 natural modes. 
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Table 2. Eigenvalues of the truss system 
 

Node 

ith 

Eigenvalue 

ith 

Node 

ith 

Eigenvalue 

ith 

Node 

ith 

Eigenvalue 

ith 

Node 

ith 

Eigenvalue 

ith 

1 3.0709.109 12 1.7567.109 23 1.3109.108 34 1.0377.109 

2 2.7519.109 13 1.7304.109 24 1.8523.108 35 9.9406.108 

3 2.6404.109 14 1.6796.109 25 2.8425.108 36 9.4950.108 

4 2.6054.109 15 1.5730.109 26 2.7880.108 37 8.3624.108 

5 2.4216.109 16 1.3563.109 27 3.6923.108 38 8.5939.108 

6 2.3663.109 17 3.5099.105 28 1.2424.109 39 7.4144.108 

7 2.1851.109 18 3.4334.106 29 4.6927.108 40 7.3238.108 

8 2.0589.109 19 6.2757.106 30 5.4677.108 41 1.0000 

9 1.8284.109 20 1.9259.107 31 5.8621.108 42 1.0000 

10 1.7810.109 21 5.2348.107 32 1.1229.109 43 1.0000 

11 1.7746.109 22 7.9138.107 33 6.6329.108 44 1.0000 

 

Reaction force simulations 
 

The static reaction force is shown in Figure 3 Although the frequency increases from 0,1 [1/s] 

to 10 [1/s], the static displacement is constant. 

 

 
 

Figure 3. Static reaction force 

 

The dynamic reaction force for the low frequency range is shown in Figure 4. When the 

frequency increases from 0,1 [1/s] to 10 [1/s], the dynamic reaction force dramatically increases 

near the natural frequency. 
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Figure 4. Dynamic reaction force for the low frequency range 

 

The dynamic reaction force for the high frequency range is shown in Figure 5. When the 

frequency increases from 1 [1/s] to 100 [1/s], the dynamic reaction force dramatically increases 

near the natural frequency. 

 

 
 

Figure 5. Dynamic reaction force for the high frequency range 

 

Displacement simulations 
 

The static displacement for the z22 direction for the low frequency range is shown in Figure 4. 

Although the frequency increases from 0,1 [1/s] to 10 [1/s], the static displacement is constant. 
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Figure 6. Static displacement for the z22 direction 

 

The dynamic displacement for the z22 direction for the low frequency range is shown in 

Figure 7. While the frequency increases from 0,1 [1/s] to 10 [1/s], the dynamic displacement 

dramatically increases near the natural frequency. 

 

 
 

Figure 7. Dynamic displacement for the z22 direction for 10:1.0:1.0  (low frequency) 

 

The dynamic displacement for the z22 direction for the high frequency range is shown in 

Figure 8. While the frequency increases from 1 [1/s] to 100 [1/s], the dynamic displacement 

dramatically increases near the natural frequency. 
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Figure 8. Dynamic displacement for the z22 direction for 100:1.0:1  (high frequency) 

 

Dynamic factor simulations 
 

The dynamic factor for the z22 direction for the low frequency range is shown in Figure 9. 

While the frequency increases from 0,1 [1/s] to 10 [1/s], the dynamic factor dramatically 

increases near the natural frequency. 

 

 
 

Figure 9. Dynamic factor for the z22 direction for 10:1.0:1.0  (low frequency) 

 

The dynamic factor for the z22 direction for the high frequency range is shown in Figure 10. 

While the frequency increases from 1 [1/s] to 100 [1/s], the dynamic factor dramatically increases 

near the natural frequency. 
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Figure 10. Dynamic factor for the z22 direction for 100:1.0:1  (high frequency) 

 

Results and discussion 
 

During the simulation, the following results are obtained. There are 44 eigenvalues of the 

system and the eigenvalues are equal to the degrees of freedom of the system. For the 44 degrees 

of freedom of the system, we have 44 natural frequencies of the system. Additionally, for the 44 

degrees of freedom of the system, we have 44 natural modes. 

In the low frequency case, while the frequency increases from 0,1 [1/s] to 10 [1/s], the 

dynamic reaction force dramatically increases. When the frequency increases from 0,1 [1/s] to 10 

[1/s], the dynamic displacement dramatically increases. Similarly, as the frequency increases from 

0,1 [1/s] to 10 [1/s], the dynamic factor dramatically increases. 

In the high frequency case, while the frequency increases from 1 [1/s] to 100 [1/s], the 

dynamic reaction force dramatically increases. When the frequency increases from 0,1 [1/s] to 10 

[1/s], the dynamic displacement dramatically increases. Similarly, as the frequency increases from 

1 [1/s] to 100 [1/s], the dynamic factor dramatically increases. 

 

4. CONCLUSIONS 

    

Finite element method is an effective numerical method in structural analysis of a dynamic 

system. Therefore, the dynamic analysis of the truss system is modelled by the finite element 

method in the frequency domain.  Since trusses offer practical solutions to many structural 

problems in engineering structures.The truss system is modelled by 22 elements and has 44 

degrees of freedom. Furthermore, the natural frequencies of the dynamic system are a 

characteristic of system vibration response related with eigenvalues. Therefore, 44 eigenvalues 

are obtained during the simulation study since the eigenvalues of the system are equal to the 

degrees of freedom of the system. The static reaction forces and dynamic reaction forces are 

calculated and simulated depending on the frequency. The static displacement and dynamic 

displacement are calculated and simulated depending on the frequency. The dynamic 

amplification factors are calculated in terms of the frequency at each node. The following 

conclusions can be summarized based on the numerical simulation results: 
 

 The modes of vibration and the eigenvalues will be the square roots of the natural 

frequencies of the system. 

 The relationship between the amplitudes of a mass oscillating at its natural frequency is 

called a natural mode. 
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 In the low-frequency case, the static reaction force is constant, while the dynamic reaction 

force increases. Moreover, static displacement is constant, although the frequency increases. 

However, the dynamic displacement dramatically increases near the natural frequency, while the 

frequency increases. The dynamic amplification factor increases at the natural frequency since the 

dynamic displacements increase. 

 In the high-frequency case, the static reaction force is constant, while the dynamic 

reaction force increases. Moreover, the static displacement is constant although the frequency 

increases. However, the dynamic displacement dramatically increases near the natural frequency, 

while the frequency increases. The dynamic amplification factor increases at the natural 

frequency since the dynamic displacements increase. 

 The eigenvalues of the system are equal to the degrees of freedom of the system. By 

avoiding the natural frequency, it is possible to design a better structure to reduce vibration. 
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