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ABSTRACT 

 

In this study, the solution of a random component heat equation is obtained by using Crank-Nicolson Method. 

The initial condition of this equation is examined by Normal distribution. The expected value and variance of 
solution of this equation are obtained. Crank-Nicolson method is applied to analyze the solution of this 

equation. Also, the solution and the graphs of the expected value and variance are obtained by using 

MATLAB software. The results of the heat equation are compared with random characteristics of this 
equation. Firstly, a random component heat equation is solved by this method.  
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1. INTRODUCTION 

 

The random partial differential equations (RPDEs) are defined as random partial differential 

equations with random inputs that can be a random variable or a stochastic process. The subject of 

the random component partial differential equations is one of much current interests due to the 

great importance of many applications in engineering, mathematics, biology, physics and a lot of 

applied sciences.  

In the literature, there are very few studies on random partial differential equations (RPDEs). 

Babuska et al. proposed and analysed a stochastic collocation method to solve elliptic partial 

differential equations by random coefficients and forcing terms [2]. Nobile et al. proposed and 

analysed an anisotropic sparse grid stochastic collocation method for solving partial differential 

equations with random coefficients and forcing terms [21]. Charrier examined the problem of the 

numerical solution of an elliptic partial differential equation by random coefficients and 

homogeneous Dirichlet boundary conditions [3]. Kuo applied quasi-Monte Carlo methods to a 

class of elliptic partial differential equations by random coefficients which was parametrized by a 

countably infinite number of terms in a Karhunen–Loeve expansion [17]. Gunzburger used the 

stochastic finite element methods for solving partial differential equations by random input data 

[10]. It is generally impossible to solve random nonlinear partial differential equations 
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analytically. Thus, va rious numerical methods and approximation schemes for RPDEs, ordinary 

differential equations and partial differential equations have been developed. There are a lot of 

numerical methods and approximation schemes as adomian decomposition method (ADM) [16], 

homotopy perturbation method [12-14,22,27], collocation method [24,25,28], Galerkin-type 

method [29],  differential transformation method (DTM) [1,15,19,20,26,30], variational iteration 

method (VIM) [11], finite difference method [7,8,23], Crank-Nicolson method [4,6,18,23], 

random finite difference scheme [5,8] and many other methods. The main motivation of this 

paper is to analyze a random component heat equation by the Crank-Nicolson method which is 

the reliable computational method. 

This work studies a random component heat equation solve numerically by the Crank-

Nicolson method. Crank and Nicolson established a practical method for numerical evaluation of 

solutions of partial differential equations of the heat conduction type [4]. The aim of this study is 

to present the application of Crank-Nicolson method for obtaining the approximate analytical 

solution of the random component heat equation and for calculating the expected value and 

variance of this solution. It is observed that the numerical solution obtained by Crank-Nicolson 

method for this equation is almost similar to exact solution for this equation.  

 

2. CRANK-NICOLSON METHOD 

 

In this section, we present Crank-Nicolson method [18].  

Consider the one-dimensional heat equation, for 0 ≤ 𝑥 < 𝑎,  and 0 < 𝑡 < 𝑏, 
  

𝑢𝑡(𝑥, 𝑡) = 𝑐2𝑢𝑥𝑥(𝑥, 𝑡)                                                                                                                    (1) 
 

with the initial condition   
 

𝑢(𝑥, 0) = 𝑓(𝑥)                            for 𝑡 = 0 and 0 ≤ 𝑥 ≤ 𝑎                                                            (2) 
 

with the boundary conditions 
 

𝑢(0, 𝑡) = 𝑐1 for 𝑥 = 0 and 0 ≤ 𝑡 ≤ 𝑏, 
 

𝑢(1, 𝑡) = 𝑐2 for 𝑥 = 𝑎 and 0 ≤ 𝑡 ≤ 𝑏. 
 

If the Crank- Nicolson discretization is applied to the problem (1) and (2), then it is obtained 

as [18] 
 

𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘
= 𝑐2 𝑢𝑖−1,𝑗+1−2𝑢𝑖,𝑗+1+𝑢𝑖+1,𝑗+1+𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗

2ℎ2                                                                     (3) 
 

Moreover, 𝑟 =
𝑐2𝑘

ℎ2  is substituted in Eq. (3). If Eq. (3) is rearranged, then the following 

implicit difference formula is obtained. For 𝑖 = 2,3, … , 𝑛 − 1 [18] 
 

−𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = (2 − 2𝑟)𝑢𝑖,𝑗 + 𝑟(𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗)                          (4) 
 

where the terms on the right hand side of this equation are all known. Formula (4) is 

sometimes implemented by using ratio r=1. In this case, Eq. (4) become [18] 
 

−𝑢𝑖−1,𝑗+1 + 4𝑢𝑖,𝑗+1 − 𝑢𝑖+1,𝑗+1 = 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗                                                                         (5) 
 

for 𝑖 = 2,3, … , 𝑛 − 1. Also, The boundary conditions gives the first and last equations (i.e. 

𝑢1,𝑗 = 𝑢1,𝑗+1 = 𝑐1  and 𝑢𝑛,𝑗 = 𝑢𝑛,𝑗+1 = 𝑐2 , respectively). Equations (5) are usually solved in 

their tridiagonal matrix form 𝐴𝑥 = 𝐵 [18] 
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4 −1 0 … 0
−1 ⋱ ⋱ ⋱ ⋮
0
⋮
0

⋱
⋱
…

4 ⋱ 0
⋱ ⋱ −1
0 −1 4]

 
 
 
 

 

[
 
 
 
 
 
 

𝑢2,𝑗+1

𝑢3,𝑗+1

⋮
𝑢𝑝,𝑗+1

⋮
𝑢𝑛−2,𝑗+1

𝑢𝑛−1,𝑗+1]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

2𝑐1 + 𝑢3,𝑗

𝑢2,𝑗 + 𝑢4,𝑗

⋮
𝑢𝑝−1,𝑗 + 𝑢𝑝+1,𝑗

⋮
𝑢𝑛−3,𝑗 + 𝑢𝑛−1,𝑗

𝑢𝑛−2,𝑗 + 2𝑐2 ]
 
 
 
 
 
 

.  

 

If the Crank-Nicolson m ethod is applied in Matlab software, then this linear system 𝐴𝑥 = 𝐵 

is solved by either direct means or by iteration. 

 

3. NORMAL DISTRIBUTION  
 

Definition (Normal random variable): If the probability density function of a random variable 

𝑋 has the following form, this random variable has the Normal distribution and is called a Normal 

random variable.  
 

𝑓(𝑥) =
1

σ√2π
𝑒

−
1

2
(
𝑥−𝜇

𝜎
)
2

,   − ∞ < 𝑥 < ∞,−∞ < 𝜇 < ∞, 𝜎2 > 0                                                   (6) 
 

If the random variable 𝑋 gets a normal distribution with parameters 𝜇 and 𝜎2, the expected 

value and variance of the random variable 𝑋 are given as [9] 
 

𝐸(𝑋) = 𝜇, 𝑉𝑎𝑟(𝑋) = 𝜎2                                                                                                                 (7) 

 

4. NUMERICAL EXPERIMENT 

 

Consider the following random component heat equation.  For 0 < 𝑥 < 1 and 0 < 𝑡 < 0.1, 
  

𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡)                                                                                                                        (8) 
 

with the initial condition   
 

𝑢(𝑥, 0) = 𝐴𝑠𝑖𝑛(𝜋𝑥) + 𝐵𝑠𝑖𝑛(3𝜋𝑥) for 𝑡 = 0 and 0 ≤ 𝑥 ≤ 1                                                        (9) 
 

with the boundary conditions 

 

𝑢(0, 𝑡) = 0 for 𝑥 = 0 and 0 ≤ 𝑡 ≤ 0.1 

𝑢(1, 𝑡) = 0 for 𝑥 = 1 and 0 ≤ 𝑡 ≤ 0.1 

 

where 𝐴 and 𝐵 are normal distributed random variable with parameters μ = 1, 𝜎 = 1, i.e. 

𝐴, 𝐵~𝑁(μ = 1, 𝜎2 = 1). 

If we use the step sizes ∆𝑥 = ℎ = 0.1 and ∆𝑡 = 𝑘 = 0.01, the ratio 𝑟 = 1. The grid is 

obtained 𝑛 = 11 columns wide with 𝑚 = 11 rows high. If we apply the algorithm, then it is 

generated the expected values of the approximate solutions of Eq. (8) for 0 < 𝑥𝑖 < 1 and 

0 ≤ 𝑡𝑗 ≤ 0.1. Also, Monte Carlo simulation is performed 1000 times for the expected values of 

these solutions of the Eq. (8) using the Matlab software. Then the expected values of approximate 

solutions of Eq. (8) in Table 1 is obtained for 0 < 𝑥𝑖 < 1 and 0 ≤ 𝑡𝑗 ≤ 0.1.  

If we compare these values obtained from Crank-Nicolson method, it is seen that these are 

almost similar with the analytical solution  𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜋𝑥)𝑒−𝜋2𝑡 + 𝑠𝑖𝑛(3𝜋𝑥)𝑒−9𝜋2𝑡 for 

𝐴 = 𝐵 = 1.    
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Table 1. The expected values of approximate solutions of Eq. (8) 
 

 𝑥2 = 0.1 𝑥3 = 0.2 𝑥4 = 0.3 𝑥5 = 0.4 𝑥6 = 0.5 𝑥7 = 0.6 𝑥8 = 0.7 𝑥9 = 0.8 𝑥10 = 0.9 

𝑡1 1,14413 1,55603 1,08649 0,27368 -0,11527 0,27368 1,08649 1,55603 1,14413 

𝑡2 0,61866 0,91861 0,82517 0,55235 0,41301 0,55235 0,82517 0,91861 0,61866 

𝑡3 0,38665 0,62802 0,68160 0,62741 0,58988 0,62741 0,68160 0,62802 0,38665 

𝑡4 0,27804 0,48414 0,59028 0,62156 0,62449 0,62156 0,59028 0,48414 0,27804 

𝑡5 0,22190 0,40347 0,52367 0,58549 0,60353 0,58549 0,52367 0,40347 0,22190 

𝑡6 0,18863 0,35105 0,47000 0,53998 0,56274 0,53998 0,47000 0,35105 0,18863 

𝑡7 0,16580 0,31214 0,42414 0,49339 0,51669 0,49339 0,42414 0,31214 0,16580 

𝑡8 0,14815 0,28045 0,38373 0,44893 0,47116 0,44893 0,38373 0,28045 0,14815 

𝑡9 0,13341 0,25322 0,34757 0,40769 0,42831 0,40769 0,34757 0,25322 0,13341 

𝑡10 0,12059 0,22914 0,31499 0,36992 0,38881 0,36992 0,31499 0,22914 0,12059 

𝑡11 0,10918 0,20757 0,28554 0,33551 0,35272 0,33551 0,28554 0,20757 0,10918 

 

Also, the graph of the expected values of approximate solutions of the Eq. (8) is given in 

figure 1. 
 

 
 

Moreover, if we apply the algorithm, then it is generated the variances of the approximate 

solutions of Eq. (8) for 0 < 𝑥𝑖 < 1 and 0 ≤ 𝑡𝑗 ≤ 0.1. Also, Monte Carlo simulation is performed 

1000 times for the variances of these solutions of the Eq. (8) using the Matlab software. Then then 

the variances of approximate solutions of Eq. (8)  in Table 2 is obtained for 0 < 𝑥𝑖 < 1 and 

0 ≤ 𝑡𝑗 ≤ 0.1. 

 

Table 2. The variances of approximate solutions of Eq. (8) 
 

 𝑥2 = 0.1 𝑥3 = 0.2 𝑥4 = 0.3 𝑥5 = 0.4 𝑥6 = 0.5 𝑥7 = 0.6 𝑥8 = 0.7 𝑥9 = 0.8 𝑥10 = 0.9 

𝑡1 1,60787 2,77220 3,32875 3,45015 3,44174 3,45015 3,32875 2,77220 1,60787 

𝑡2 1,26553 2,28933 2,95050 3,27783 3,36993 3,27783 2,95050 2,28933 1,26553 

𝑡3 1,06739 1,98239 2,64701 3,03423 3,15924 3,03423 2,64701 1,98239 1,06739 

𝑡4 0,93447 1,75856 2,38828 2,77700 2,90762 2,77700 2,38828 1,75856 0,93447 

𝑡5 0,83340 1,57829 2,16053 2,52864 2,65426 2,52864 2,16053 1,57829 0,83340 

𝑡6 0,74986 1,42428 1,95688 2,29716 2,41405 2,29716 1,95688 1,42428 0,74986 

𝑡7 0,67748 1,28856 1,77342 2,08466 2,19189 2,08466 1,77342 1,28856 0,67748 

𝑡8 0,61326 1,16715 1,60758 1,89090 1,98864 1,89090 1,60758 1,16715 0,61326 

𝑡9 0,55561 1,05775 1,45741 1,71476 1,80360 1,71476 1,45741 1,05775 0,55561 

𝑡10 0,50359 0,95884 1,32135 1,55487 1,63551 1,55487 1,32135 0,95884 0,50359 

𝑡11 0,45652 0,86927 1,19801 1,40983 1,48298 1,40983 1,19801 0,86927 0,45652 
 

H. Anaç, M. Merdan, T. Kesemen        / Sigma J Eng & Nat Sci 38 (1), 475-480, 2020 



479 

 

 

 

Also, the graph of the variances of approximate solutions of Eq. (8) is given in figure 2. 
 

 
 

5. CONCLUSION 

 

In this study, we successfully applied Crank-Nicolson method to solve a random component 

heat equation. Also, the expected value and variance of this solution are obtained. Graphs of the 

expected value and variance are plotted with MAPLE software. Numerical results show that this 

method is very effective and practical. 
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