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ABSTRACT  

This study ensures experimental and numerical investigation of different airfoils to observe and understand how 

camber ratio affects the flow characteristics over surface of different airfoils.  Experimental results in the previous 

studies were used while the numerical study was performed for present investigation.  Reynolds numbers based on 

the airfoil chords were 1x105 and the angle of attack of 8°. Instantaneous voltage output data were used in order to 

detect transition location for NACA 4412, oil surface visualization experiments were presented for NACA 2415. In 

the numerical analysis, values of u/U∞ and turbulent kinetic energy were presented for NACA 4415 airfoil. The 

experimental results denoted that the change of camber ratio and thickness significantly affected the flow 

phenomenon such as boundary layer separation or formation and progress of the laminar separation bubble. The long 

bubble was clearly observed with accumulation of pigments at oil-flow measurement experiment. By increasing the 

camber ratio with the use of NACA 4412 airfoil, the long bubble turned into the short bubble. Briefly, not only the 

progress and formation of laminar separation bubble was being affected, but also the onset of transition point was 

obviously influenced by changing of camber ratio.  
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INTRODUCTION  

For over 75 years, there are many studies and investigations with regards to boundary layer transition over 

the surface of airfoil or wind turbine blade especially at operating low Reynolds number, but it still remains as a 

subject of research. According to the study presented by Arcara et al [1], fuel cost could be saved at 8% if delaying 

the transition phenomenon in boundary layer over the airfoil could be happened to 50%. Boundary layer transition is, 

thus, an open field as a researchable topic. The statements like flow separation or laminar separation bubble (LSB) 

which affects the aerodynamic performance can be observed at boundary layer separation happening on the suction 

side of airfoil because of adverse pressure gradient (APG). In such circumstances, the flow’s momentum becomes 

inadequate to cope with APG [2, 3]. The flow adjacent to surface of airfoil, consequently, separates from the surface, 

as illustrated in Figure 1. Furthermore, the vortices shedding from leading-edge as well as trailing-edge of airfoil can 

be observed. 

A private situation can be observed at transition region on surface of airfoil. The laminar separation exists 

and wall normal momentum on surface of airfoil can be changed. That momentum variation causes the separated 

flow to be reattached. As denoted at a schematic in Figure 2 lodged by Hu and Yang [4], the enclosed region limited 

by separation and reattachment point at fluid is named as LSB. The grade of both transition and separated region are 

characteristically larger at low Reynolds number cases.  

Over the past decades, flow involving LSB was investigated by means of earlier studies carried out by 

Gaster [5] and Tani [6]. The studies as following research efforts were performed with regards to laminar to turbulent 

transition, which has been exhibited the key role to understand the characteristics and formation of LSBs in detail. 

Dovgal et al. [7] showed that the viscous effects were diminished when Reynolds number and the distance among 

wall and shear layer increased. As the study debated in detail by Diwan and Ramesh [8], the slow convective 
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elaboration of disturbance owing to Tollmien-Schlichting instability can be signified as a natural vanguard to the 

major amplification occurred in LSB. The discussion based on the work of Brinkerhoff and Yaras [9], the later 

phases of transition phenomenon may also be impressed because of the small amplitude disturbances turning into 

LSB. LSB composed over the rectangular leading edge carried out by Cherry et al. [10] and the flow visualization in 

their study spilled the separate turbulent structures. Hain et al. [11] and McAuliffe and Yaras [12] clarified the 

formation of structures in the laminar separated flow and their importance in resurgence of turbulence around the 

airfoil for different angle of attacks by using Particle Image Velocimetry (PIV). LSB over an SD7003 airfoil was 

experimentally analyzed by Burgmann and Schröder [13] at low angle of attacks and Reynolds number ranging from 

2x104 to 6x104. They examined that no steady formation statement was observed in zone of transitioning shear layer. 

Coherent structures composed in LSB passed the abrupt three-dimensional deformation. In terms of prediction of 

LSB, behavior of both turbulence and transition models were tested by Genç et al. [14-18] at low and high Reynolds 

number. They studied controlling of LSB by utilizing blowing and suction systems. Their study indicated that results 

of transition models correctly predicted progress of LSB, whilst results of turbulence models in terms of predicting 

flow phenomena in boundary layer showed changeable degrees of performance. Furthermore, LSB was extinguished 

in conjunction with use of blowing, suction and slat, revealing important results such as increasing of lift and 

decreasing of drag forces.  

 

 

Figure 1. The visualization of boundary layer separation and vorticity around the airfoil. 

 

 

Figure 2. The schematic of laminar separation bubble [4]. 

 

A detailed analysis of blades for the flight vehicles is more crucial since the aerodynamic performance will 

be affected because of the presence of an unsteady loading such as different wind conditions [19]. These unsteady 

loads causing the instability over the airfoils can be suppressed or mitigated thanks to material of airfoil [20-22] or 

active-passive flow control techniques [23-26].  
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In terms of explaining aerodynamic phenomenon in accordance with thickness and camber variation, the 

objective of this study is to investigate the thickness and camber effects on aerodynamic performance of different 

airfoils. Thus, they were carried out and discussed with their results obtained from wind tunnel experiments and 

numerical study. Transition phenomenon as well as formation and characteristics of LSB, which was negative 

statement for aerodynamic performance of wind turbine airfoils, were investigated at Reynolds number of 1x105 and 

angle of attack of 8º. Novelty of this study was to identify the flow structures over suction surface of different airfoils 

and how thickness and camber ratio affected the aerodynamic characteristics of airfoils. Hence, it may potentially be 

pioneer study in terms of developing of wind turbine airfoils and contributing the desirable information to 

aerodynamic researchers interested in MAV and UAV designs.  

 

NUMERICAL METHOD 

Computational Grid and Boundary Conditions 

For sufficient number of grid nodes, research of mesh independency was performed at CL graph of NACA 

4415 airfoil as demonstrated in Figure 3. It was observed that CL value increased gradually from nodes number of 

4.5x106 to 7.5x106, but there was no important variation between nodes number of 8x105 and 1x106 and CL curve 

was not affected significantly. Hence, number of grid nodes was composed about 1x106 in terms of reasonable results 

of NACA 4415 airfoil. Furthermore, computational grid was meshed in conjunction with structured tetrahedron 

grids. As computational domain, inlet and outlet were described as velocity inlet and pressure outlet, respectively. 

Other walls were defined as symmetry. As shown in computational domain in Figure 4, a second domain in C form 

was adopted to exactly imitate the flow above and wake of airfoil. In addition, inflation was utilized over the surface 

so that flow phenomena were investigated in detail. Height of first grid node was selected as 0.1 mm and aggregate 

boundary layer mesh deepness was 20 mm. Enlargements and agent of mesh was 1.15 in boundary layer [27]. Hence, 

not only LSB and transition region over surface of airfoil were searched, but also effects of vortex shedding, which 

was caused by flow phenomena over surface, at the wake region were discussed. Regarding numerical model for this 

study, SST (Shear Stress Transport) transition model was utilized in terms of giving better solution for the LSB 

formation and transition onset. Air density was taken as 1.05 kg/m3, which was used as same value for experiments.  

 

 

Figure 3. CL values obtained from numerical study of mesh independency for NACA 4415 airfoil, Re=1x105, α=8º
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Figure 4. Mesh structures in local domain of NACA 4415 airfoil, Re=1x105, α=8º 

 

 

EXPERIMENTAL RIGS AND TEST SAMPLE 

 

The Wind Tunnel, Test Sample and Experimental Apparatus 

Suction type and low speed wind tunnel was utilized for experiments. As illustrated from sketch of wind 

tunnel in Figure 5, it has square test chamber of 500 mm x 500 mm. Maximum velocity of wind tunnel is 40 m/s. 

Moreover, turbulent intensity is about 0.7% for lowest velocity, whilst it is about 0.3% for highest velocity. NACA 

4412 was chosen for experimental test model. It was produced by means of 3D printer [28, 29]. In order to reduce 

surface roughness, surface was rubbed with a sandpaper. To prevent effect of tip-vortices, two plexiglass materials 

was utilized at each tip of airfoil as denoted in Figure 6. Measurement technique in conjunction with hot-film probes 

is proper for the discovery of the boundary layer transition [30, 31]. However, the sum of heat transfers at hot-film’s 

wire mounted over the surface of airfoil may unavoidably be affected by unwanted factors like flow characteristics 

and model substance [32]. The suitable calibration for hot-film probes are, hence, too complicated. To accomplish 

that puzzling statement and obtain the semi-measurable info about the condition of boundary layer, Hodson [33] and 

Zhang et al. [34] recognized the quasi wall-shear stress as followed:  

 

                                                                 𝜏 = (
𝐸2−𝐸0

2

𝐸0
2 )3                                                                        (1) 

 

where E indicates the voltage value coming from hot-film sensor and E0 indicates the voltage value at zero flow. In 

this study, the calibration procedure of hot-film probe was not enforced. Moreover, the hot-film sensor (type: glue-

on) with its usage code of 55R47 was performed by mounting on NACA 4412 airfoil as shown in Figure 7. It was 

installed over the surface of airfoil by using the double side type so as not to disturb the flow. Data was composed at 

chord (c) length of airfoil ranging from 0.1c to 0.8c, respectively. 
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Figure 5. Sketch of the wind tunnel 

 

 

Figure 6. Experimental test model of NACA 4412 airfoil [29]. 

 

 

Figure 7. Hot-film probe [35]. 
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RESULTS 

Numerical Analysis of Velocity and Vorticity 

In order to explain flow phenomena, numerical result of velocity analysis for NACA 4415 airfoil was shown 

in Figure 8. Flow over the suction surface of airfoil encountered in conjunction with adverse pressure gradients 

(APGs) and it separated from surface at x/c= 0.34, since it did not have enough momentum to keep flow direction. 

After a while, separated flow reattached to surface at x/c= 0.46. As illustrated in enlarged view, LSB occurs over 

suction surface. After LSB, APGs played a dominant role on flow and reverse flow area at the trailing-edge of airfoil 

expanded gradually. Thus, trailing-edge separation phenomenon was observed with completely separating flow.  

 

 

Figure 8. Numerical result of streamwise magnitude for NACA 4415 airfoil, Re=1x105, α=8º 

 

 

 

Figure 9. Turbulent kinetic energy distribution for NACA 4415 airfoil, Re=1x105, α=8º 

 

Also, in terms of understanding of flow phenomena over suction surface of airfoil, turbulent statistics can 

play a key role in fluid mechanics. In Figure 9, LSB was revealed in bounded area where point of separation was at 

x/c=0.34 and point of reattachment was at x/c=0.46. Moreover, onset of transition point could be observed by planar 

contour and it was at x/c=0.35. In this point, undulations in boundary layer started to increase and flow was 
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energized by means of these undulations. After a while, energized flow in boundary layer helped to overcome APGs 

after the transition to turbulence occurred at x/c= 0.45 and the turbulent flow reattachment was observed at x/c= 

0.46. After that region, trailing-edge separation was occurred, because APGs were more dominant. Also, turbulent 

zone of NACA 4415 airfoil was denoted obviously. The flow in turbulent region was more chaotic. Moreover, 

vortices continued its way along vortex trajectory by increasing its size.  

 

Overview of Experimental Results and Comparison with Numerical Study 

In order to compare and understand how camber and thickness affected boundary layer phenomena, the 

experiments including hot-film probes at the NACA 4412 airfoil and oil-flow visualization at the NACA 2415 airfoil 

as well as numerical study for NACA 2415 were fulfilled at Reynolds number of 1x105 and the angle of attack of 8º. 

The voltages coming from the glue-on probe was simultaneously measured and it was showed at each x/c. As seen in 

Figure 10(a), the voltage at x/c=0.3 was 1.25. It was read as 1.2 at x/c=0.4. It was pointed out that 0.4c of the airfoil 

was the onset of transition (Xt). Additionally, it was estimated that there was a LSB at x/c=0.4, because the voltage 

value at x/c=0.4 was less than other x/c’s values. Flow might be most probably in dead air region located at the aft of 

LSB. That is, it can be interpreted that the flow is nearly stagnant. However, undulations at x/c=0.5 and x/c=0.6 was 

more than the x/c=0.4. It was showed that the increase of undulations was caused by reverse flow vortices positioned 

at head of LSB. The undulations at x/c=0.7 and x/c=0.8 were also higher, but the voltage’s value was less than the 

x/c=0.6. It can be said that the region at between x/c=0.5 and x/c=0.8 might be referred as turbulent region, because 

the flow was completely separated and voltage’s values at this region increased because of shedding vortices having 

higher momentum at airfoil trailing-edge. Furthermore, it was obviously sighted that the transition length (Lt) was 

0.2c of airfoil. Despite semi-measurable information from hot-film sensor, it was useful to gain information in terms 

of the flow phenomena over the surface of airfoil.  

 

 
a) 

 
b) 

Figure 10.  a) Instantaneous voltage variance of hot-film sensor at NACA 4412 airfoil [28], b) Result of oil-flow 

visualization experiment over NACA 2415 airfoil [36, 37], Re=1x105, α=8º 

 

 

Besides, according to results of NACA 2415 airfoil as illustrated in Figure 10(b). The region where the flow 

separated at x/c=0.2 and reattached at x/c=0.6 over surface of airfoil was referred as LSB. In this case, the LSB can 

be classified as long bubble over the NACA 2415 airfoil. After x/c=0.6, reattached flow suddenly separated over 

surface and stall phenomenon, was occurred and a fully flow separation at trailing-edge was observed. This was 

because of the fact that the flow did not cope with APGs and the trailing-edge separation occurred after a while. This 
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associated region was named as the turbulent region where the momentum of flow was higher than other part of 

airfoil. 

Moreover, wall shear distribution at x direction of the NACA 4415 airfoil was showed in Figure 11. From 

the legend of wall shear stress distribution, dark blues under value of 0 (zero) stands for flow separation, whilst 

values above 0 (zero) indicates that flow continued to its way along chord-wise without flow separation. As seen the 

distribution, there was a LSB at limited area where presented by dark blue. As mentioned before, that limited area 

was between x/c=0.34 and x/c=0.46. After LSB, the reattached flow was observed via the region presented by 

turquoise blue. x/c=0.8 point denoted by dark blue color stands for start point of trailing-edge separation. Flow 

characteristics in that region were turbulent and its level of energy was higher than other region. Figure 12 indicated 

results of turbulence statistics along chordwise of the NACA 4415 airfoil. After x/c=0.3, there was an abrupt 

increment at amount of turbulence gradually and plateau of graph was about x/c=0.58. It stands for that amount of 

momentum and kinetic energy in flow increased and turbulent flow occurred over suction surface of the NACA 4415 

airfoil.  

 

Figure 11. X wall shear stress distribution at NACA 4415 airfoil, Re=1x105, α=8º  

 

 

Figure 12. Turbulence intensity along chordwise of NACA 4415 airfoil, Re=1x105, α=8º 

Briefly, both experimental and numerical results were shown in Table 1. The flow over surface of the 

NACA 4412 airfoil separated at x/c=0.3 due to adverse pressure gradients and it reattached at x/c=0.5. The length of 

LSB was 0.2c on the NACA 4412 airfoil. Moreover, it was measured that transition onset was at x/c=0.4. In 
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numerical results of the NACA 4415 airfoil, flow separation was observed at x/c=0.34 while point of reattachment 

was occurred at x/c=0.46. LSB, which affected the aerodynamic performance of airfoil negatively, was occurred in 

this region and its length measured as 0.12c. Besides, onset of transition was observed at x/c=0.35 where its location 

was near the leading-edge of airfoil. Regarding the comparison of numerical results of NACA 4415 airfoil and 

experimental result of NACA 4412 airfoil, flow phenomena over the airfoils were affected with thickness increment 

of 25%. The transition onset NACA 4412 airfoil was observed at x/c=0.4, while it was observed at x/c= 0.35 for 

NACA 4415 airfoil. It means that transition onset moved towards up to 0.05c. Moreover, it was concluded that LSB 

over suction surface of NACA 4412 was formed between x/c=0.3 and x/c=0.5, whilst it was occurred between 

x/c=0.34 and x/c=0.46 on NACA 4415. It clearly pointed out that thickness increment at the airfoils caused the 

bubble length to reduce. 
 

Table 1. Margins the transition (Xt), the separation (Xs), the reattachment (Xr) points and laminar separation bubble 

length (Lb) as x/c acquired from both hot-film sensor and the oil-flow visualization experiments. 

 
NACA 2415 (Exp.) 

[36, 37] 
NACA 4415 (Num.) 

NACA 4412 (Exp.) 

[28] 

Re number 1x105 1x105 1x105 

α (°) 8° 8° 8° 

Chord length (c) 180 mm 180 mm 180 mm 

Xt 0.45 0.35 0.4 

Xs 0.2 0.34 0.3 

Xr 0.6 0.46 0.5 

Lb 0.4 0.12 0.2 

 

On the other hand, in accordance with the experimental result of NACA 2415 airfoil and numerical result of 

NACA 4415 airfoil, increasing of camber ratio caused the flow characteristics to be changed over suction surfaces of 

airfoils. Onset of transition of NACA 4415 airfoil was occurred at x/c= 0.35, whilst it was observed at x/c= 0.45 on 

NACA 2415. Also, flow separated at x/c= 0.34 and reattached at x/c= 0.46 for NACA 4415. Yet, separation and 

reattachment points for NACA 2415 airfoil were observed at x/c= 0.2 and x/c= 0.6, respectively. It obviously 

concluded with increment of camber ratio that both transition onset was delayed by moving towards from x/c= 0.35 

to x/c= 0.45, and the LSB length was decreased at 70%.  

Finally, with respect to two experimental results of airfoil (for both NACA 2415 and NACA 4412 airfoils), 

changing at both thickness and camber ratio of airfoils played a big role in terms of their aerodynamic performance. 

Because, point of flow separation for NACA 2415 was at x/c= 0.2 and reattachment was at x/c= 0.6, whereas 

separation and reattachment points for NACA 4412 were observed at x/c= 0.3 and x/c= 0.5, respectively. It remarked 

that variation of both thickness and camber ratio of airfoil caused the LSB length to reduce at 50%, revealing the 

increment of aerodynamic performance.  

It was clearly indicated from mentioned results that effects of variation of thickness and camber ratio on 

flow phenomena forming over the airfoils were obtained. Regarding contribution of admirable knowledge to 

aerodynamic researchers interested in numerical and experimental studies, this work will be useful in terms of 

comparison with their future work.  

 

CONCLUSION 

In this study, it was investigated how camber ratio and thickness of different airfoils affected their 

aerodynamic performance and LSB formation over suction surface of different airfoils. Results from numerical and 

experimental investigations were achieved as follows:  

Concerning results of NACA 4412 and NACA 4415 airfoils, formation of the LSB was obviously changed 

when thickness of airfoil increased. It was clearly concluded that bubble size reduced with thicker airfoil. 

Furthermore, transition onset as well as the LSB formation was changed.  

It was also revealed that aerodynamic phenomena over both NACA 2415 and NACA 4415 airfoils were 

affected in conjunction with increment of camber ratio. Result indicated that length of the LSB was reduced at 70%. 
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Apart from the LSB formation, results showed that cambered airfoil caused the separation and reattachment points to 

be changed understandably.  

By means of experimental results of NACA 2415 and NACA 4412 airfoils, it was concluded that changing 

of both camber ratio and thickness of airfoils caused the flow properties to be changed. Results pointed out that the 

LSB length was diminished at 50% by changing its formation. In addition to bubble formation, transition onset was 

changed with variation of both thickness and camber ratio of airfoils.  

 

NOMENCLATURE  
 

c Chord length 

U∞ Potential flow 

LSB Laminar Separation Bubble 

APG Adverse Pressure Gradient 

PIV Particle Image Velocimetry 

UAV Unmanned Aerial Vehicle 

MAV Micro Air Vehicle 

SST Shear Stress Transport 

CL Lift Coefficient 

τ Wall shear stress 

E Voltage value coming from hot-film sensor 

E0 Voltage at zero flow condition 

Lt Transition length 

α Angle of Attack 

Tu  Turbulence Intensity 

Xt Transition Point  

Xs, S Separation Point  

Xr, R Reattachment Point  

Lb Length of Laminar Separation Bubble  
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