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ABSTRACT  
The key issue associated with the thermal power plant is the disposal of ash-water slurry and the process of 

its transportation is accomplished using long length pipelines. The designing of such pipelines is a vital endeavor of 
researchers and designers globally. In this perspective, numerical simulation of 42 mm diameter three-dimensional 
slurry flow pipeline carrying high concentration of mono-dispersed fine ash particles has been carried out. The study 
is enunciated by employing Eulerian- Eulerian two-phase model with RNG k-ɛ turbulence model with the aim of 
visualizing and understanding the characteristics of the slurry flow behavior. The coal ash slurry concentration varies 
between 50% to 70% (by weight) for velocity ranges, 1-3 ms-1. The modeling is done using Fluent commercial 
software with the intention of predicting the characteristics of flow for 300 µm particle size. It is observed that pressure 
drop upsurges non-linearly with solid concentrations and slurry velocity across pipeline. The obtained results of 
predetermined pressure drop are analytically compared with the experimental results. Moreover, the results are also 
compared with that of Eulerian-Langrange model using SST K-ω turbulence model and it is found that RNG k-ɛ 
turbulence model yields more accurate and desirable results. 
 
Keywords:  3D CFD, Eulerian–Eulerian Two-Phase Model, Thermal Power Plants, Slurry Concentration, 
Pressure Drop 
 
INTRODUCTION 

The electrical power generation in thermal power plants utilizes the combustion of coal which results in huge 
amount of fly and bottom ash. Thus, the transportation of ash-water slurry through long pipeline is a major concern 
for thermal power plants and other industries. The concentration of coal ash in water determines the extent of damage 
and deterioration caused to the transportation pipeline. Hence, low ash concentration in slurry results in longer age of 
pipelines and vice-versa. The transportation of coal ash slurry through pipelines is not only economical and 
environment friendly but also offers numerous advantages viz. flexible routing, continuous delivery, ease in 
automation, long distance transportation capability, less manpower/maintenance requirements and low energy 
consumption etc. Several research experiments are available in the literature in order to evaluate the pressure drops in 
the horizontal pipelines. But this real-time monitoring is quite complex in nature and involves longer spans for its 
operation. Recently, investigations of multi-phase fluid flow problems based on Computational Fluid Dynamics 
(CFD) modeling are increasingly used which offers major advantages of predicting variable range flow conditions 
and particle profile characteristics in a short span of time. Colwell and Shook [1] carried out an experiment for slurry 
mixture of sand and polystyrene particle in a horizontal 50 mm diameter pipeline. They evaluated the velocity and the 
concentration profiles at three different positions and found the optimal entry lengths for the chosen particle slurry. 
The effect of Reynolds number and particulate concentration for minute glass beads particle slurry on friction loss is 
experimentally studied by Turian et al. [2]. It is found that in horizontal pipes the inertial effects are more dominated 
for non-colloidal flow as compared to the finer non-colloidal flow. Matousek [3] performed a laboratory experiment 
by using sand water slurry flow in 105 mm diameter pipeline. The flow characteristic at three different inclinations 
viz. horizontal, vertical and −35° descending pipes are analysed. He observed the flow patterns for fully 
stratified/suspended flows. Krampa-Morlu et. al. [4] carried out the numerical simulation of courser particles in a 
vertical pipe line using k-ε approach and studied the effects of particles size, solid concentrations/viscosities for 
different slurry flow constraints. Kraft [5] modelled various processes in order to study the characteristics of 
particulates. Kumar et al. [6] investigated the effects of pressure drops and solid concentrations of bimodal slurries 
using two different Eulerian two-models (namely two-layer/Karabelas models). Lin and Ebadian [7] carried out the 
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numerical simulation of sand and liquid slurry flow at the entry of horizontal pipeline implementing algebraic slip 
mixture model. They analysed the growth of several flow constraints at entry section. Chandel et al. [8] studied the 
pressure drops and rheological features of the fly-ash slurry pipeline. It has been found that the slurry does not show 
settling behaviour for any flow velocity at all test conditions. 

Later, they performed experiments on pilot’s plant trial ring for fly-ash slurry with/without additives. They 
noticed a slight dip in pressure drop by adding an additive i.e., soap solution at high concentration of 60% [9]. Further, 
the rheological characteristics are studied at different temperatures using cationic surfactant and counter ion. The 
addition of the cationic and the counter ions reduces the surface tension with the aim of enhancing the suspension 
strength in particulates. An increase in the wetting and spreading properties is found which results in low power/water 
requirements [10].  Senapati et al. [11] investigated the fly/bottom ash slurries to predict the effects of friction on the 
concentrated slurry. They studied the flow characteristics of the slurry implementing power model laws. Afterwards, 
the numerical simulations on slush nitrogen flow in 15 mm diameter, 1.5 m length horizontal pipe has been carried 
out for 1.0 mm particle using k-ε turbulence model. It has been concluded that 2-D multiphase model incurs less 
computational time as compared to 3-D models [12]. Kaushal et al. [13] carried out the numerical simulation of mono-
dispersed glass beads particle at high concentration in 54.9 mm diameter pipeline using Eulerian and mixture models. 
It is found that Eulerian model outperforms in terms of predicting pressure drop in the pipeline. Thereafter, they 
experimented on high concentration fly ash slurry using pilot plant test loop in order to estimate its rheological 
behaviour. The optimum concentrations of fly-ash slurries on the basis of specific energy consumptions is found to 
be 65 % (by weight) [14] The numerical investigation on the sand-water slurry flow through pipeline has been carried 
out by Nabil et al. [15]. They considered three different particle sizes of 0.2, 0.7 and 1.4 mm for 0.5 to 5 m/sec velocity 
range and found that the irregularities goes up with particle’s size due to gravitational effect. Silva et al. [16] studied 
the settling behaviour of slurry flow and investigated the effects of flow velocity on it. Gopaliya and Kaushal [17] 
analysed the effects of grain sizes on the slurry flow characteristics in horizontal pipelines implementing RNG k-ɛ 
turbulence model. Pani et al. [18] studied the rheological behaviour of coal ash slurry and investigated the effects of 
chosen additives on it. Assefa and Kaushal [19] carried the experimental investigations on bottom/fly-ash slurry 
with/without additions of fly/bottom ash in order to evaluate its rheological behaviour. The extensive drop in the yield 
stress and the viscosity is observed with 30% mixing proportions to the fly ash slurry whereas the aforesaid parameters 
rapidly shoot up with 40% of mixing proportions at all solid concentrations. Afterwards, the CFD modeling of sand 
water slurry in a horizontal pipeline has been accomplished using Eulerian two-phase model by Swamy et al. [20]. 
The simulated results are verified with experimental data and heterogeneous flow regimes are found for larger particle 
sizes. Wu et al [21] established a simulation model in order to investigate the flow characteristics of the CGF slurry 
in the pipeline. The CGF mixture consists of cement, coal gangues/fly-ash and liquid. Messa and Malavasi [22] 
presented a novel two- fluid model in order to simulate the liquid solid slurry in horizontal pipeline. They have chosen 
50-200mm pipe diameter for 90-640µm particle size. Furthermore, the experimental and numerical simulation of sand 
water slurry flow in 263 mm diameter pipe at different velocities is done using Eulerian multiphase renormalization 
group k-ε turbulence model. They noticed that the pressure gradient is more dominant on the efflux concentrations. 
The velocity profile is observed as symmetric/ asymmetric for fine/coarse particle concentrations [23]. Ofei and Ismail 
[24] carried out the numerical simulation of particulate liquid slurry in a horizontal pipe using Eulerian-Eulerian two-
phase model with k-ԑ turbulence model. They have chosen different particle sizes ranging 90-270 μm for 10-40% 
solid concentrations.  It is noticed that frictional pressure loss goes down as the particle size increases for 
predetermined volume fractions. Peng and Cao [25] utilized Eulerian Lagrangian method to investigate the flow 
characteristics in bend pipe. They studied the variations of different parameters on the slurry flow. The experimental 
investigations on bi modal slurry comprising of fly ash and silica particles has been carried out by Kaushal et. al. [26]. 
The study is carried out for six silica sand/fly ash ratios (namely100/0, 90/10, 80/20, 70/30, 60/40 and 0/100). The 
flow velocity ranges 1.78-3.56 m/sec for 75-450 µm mean diameter particle sizes at efflux concentrations of 8.82% 
and 16.28%. The lower values of pressure drop for bi-modal slurry is observed as compared with the mono disperse 
silica particle. Assefa and Kaushal [27] proposed a novel empirical model to investigate the viscosity profile for multi 
size particulates Bingham slurry at higher values of concentration (>50%, by weight). The proposed model utilizes 
non-linear least square curve fitting and optimization method for solid volume fractions, particle size and uniformity 
coefficient as input parameters. Melorie and Kaushal [28] experimentally studied the impact of chemical additives on 
rheological characteristics in an iron ore slurry having concentration range, 18.8-25.8%.  They found that the addition 
of hydrated lime increases yield stress at different solid concentrations. Naveh et al [29] employed various turbulence 
models in order to see the pressure drops for diluted slurry in horizontal pipes. They noticed that the pressure drop is 
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a sturdy function of Archemede’s number. Singh et al. [30] predicted the flow characteristics of bottom ash and water 
slurry flow in a 50 mm diameter horizontal pipeline for wide velocity ranges using Eulerian- Lagrange two-phase 
approach with SST K-ω turbulence model based on CFD modelling. The simulated results are also compared with the 
experimental ones. It is found that the pressure drops increase non-linearly with increase in velocity and solid 
concentrations. The computational fluid dynamic analysis carried out in the present study can be further enhanced on 
the characterisation and profile analysis of heat transfer characteristics of Nano fluids. This study will be very helpful 
in setting up of practical systems with the help of Nano particles [31-72].  

In the literature, many experimental and numerical studies are found on the parametric designing of high 
concentration slurry pipeline for fly ash, bottom ash, glass beads and sand etc. However, it is observed that the 
experimental determination of velocity, pressure drop and concentration profile at various pipeline locations is very 
rigorous and time-consuming process. Henceforth, computational fluid dynamics possess abundant scope and 
competence for evaluating aforementioned parameters at any cross-section of the pipeline. In this paper, an attempt 
has been made to develop concentration, velocity and pressure drop profiles for 300 µm particle size employing 
Eulerian- Eulerian two-phase model with RNG k-ɛ approach. The modeling of 42 mm diameter pipeline has been 
carried out for solid concentration ranging 50% to 70% (by weight) with wide velocity span of 1-3 m/s. The validation 
of the numerical simulation is done by comparing the simulated outcomes with the experimental results. The results 
are further compared with that of Eulerian-Langrange model using SST K-ω turbulence model and it is found that the 
proposed model gives more precise and accurate results. 
 
MATHEMATICAL MODEL 

In this paper, an efficient Eulerian-Eulerian multi-phase model is adopted for numerical simulation. The 
following governing equations are used for the turbulent flow of fly ash particles in the Newtonian fluid. 
 
Eulerian Model 

This model comprises of most complex equations of multiphase modelling in FLUENT software. In Eulerian 
model, the slurry is assumed to be comprised of solid and liquid phases. The concentrations of the two phases are 
assumed to be αs and αf for αs + αf = 1. It is based on solving a set of continuity/momentum equations for every phase 
viz. solid/liquid.  In the present study, granular flows have been undertaken comprised of fluid/solid intermixing whose 
modelling can be achieved by appropriate constraints of interphase exchange and pressure coefficients. Moreover, the 
characteristics of the flow has been derived with the applications of kinetic theory. The forces acting on each particle 
in the slurry comprises of: 

1. Static/solid pressure gradients, ∇P/∇Ps. 

2. Forces due to the difference in velocities of two phases, ( )sf s fK v v−
 

 

3. Viscous and body forces, . f∇ τ  and ρg�⃗ , where fτ  represents the stress tensor of fluid, ρ denotes the mass 

density and g is gravitational acceleration. 
4. Lift/virtual mass forces. The coefficient of virtual mass/ lift forces, CL/Cvm are assumed to be 0.5. 
5. The particles in the analysis are assumed to be fluid in nature. 

 
Governing Equations 

The following governing equations are used for the turbulent flow of fly ash particles in the Newtonian fluid. 
The continuity/momentum equation for each phase is defined as [14]: 
 
Continuity Equation 
 
                                                                                   ∇. (αtρtv�⃗ t) = 0                                                                            (1) 

 
Here, t can be considered as f or s. 
 
Momentum Equations for fluid and solid phases 
For Fluids: 
 



Journal of Thermal Engineering, Research Article, Vol. 6, No. 1, pp. 187-203, January, 2020 

190 

    ,) .( ) ( ) ( . . ) ( ) ( v )sf f f f f f t f f f sf s f vm f s s f f L s f f s fv v P g K v v C v v v v C v v∇. (α ρ = −α ∇ + ∇ τ + τ + α ρ + − + ρ ∇ − ∇ + α ρ − × ∇×α
           

      (2) 

For Solids: 
 

   ,) .( ) ( ) ( . . ) ( ) ( v )s s s s s s s t f s s fs f s vm s f f f s s L s f s f fv v P P g K v v C v v v v C v v∇. (α ρ = −α ∇ − ∇ + ∇ τ + τ + α ρ + − + α ρ ∇ − ∇ + α ρ − × ∇×
           

        (3) 

where, 

                                             
2( ) ( ) .
3

tr
s s s s s s s s sv v v Iτ = α µ ∇ + ∇ + α λ − µ ∇

  

                                                         (4) 

 

                                                            ( )tr
f f f f fv vτ = α µ ∇ + ∇

 

                                                                            (5) 

 

                                                    

1
2

,
4 (1 )
3

s
s s s s o ss ssd g e

π
Θ λ = α ρ +  

 
                                                                    (6) 

 
ds is the diameter of the particles which is taken as 300 µm in the present study.  
 
Solid Shear Viscosity 
The shear viscosity, μs  is given as: 
 
                                                                 , , ,s s col s kin s frµ = µ + µ + µ                                                                         (7) 

where,       

                                                  

1
2

, ,
4 (1 )
5

s
s col s s s o ss ssd g e

π
Θ µ = α ρ +  

 
                                                                 (8) 

 
where,  

                                            
2 3/2

,

,max

3
6

s s s o ss ss s
s

s

v gK
n

ρ α
γ α γ

∏ Φ ΘΘ ∂Θ
Θ = − +

∂
                                                       (8a)  

 

                                                                     ,
2

sin
2

s
s fr

D

P
I

ϕ
µ =                                                                                  (9) 

 

                                       , ,
21 (1 )(3e 1)

6(3 ) 5
s s s s

s kin ss ss s o ss
ss

d
e g

e
πα ρ Θ  µ = + + − α −  

                                                   (10) 

 
The inter-phasial momentum exchange coefficient, Ksf  is given as: 
 

                                           
2
, ,

Re3
4

s f f s
sf fs D s f

r s s r s

K K C v v
V d V

 α α ρ
= = −  

 

                                                            (11) 

 
The drag coefficient, CD is given as: 
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21
2

,

Re0.63 4.8 s
D

r s

C
V

− 
  = +    
   

                                                                         (12) 

 
WALL FUNCTION 

The gradient quantities are very large in number near the wall area which requires fine grid near the wall. 
Therefore, the simulation software needs more memory, faster processor and large computation time in order to 
simplify complex equations. The standard wall function projected by Launder and Spalding has been employed in the 
current work. The chosen wall function provides more precise and meticulous results for both fluid and liquid phases 
using Eulerian two-phase model. 
 
Mathematical Solutions 
Geometrical Considerations 

The computation grid for straight horizontal pipe of length 3.8 m and 42 mm diameter is created in ICEM 
CFD using software ANSYS 16.  
 

 

 
 

Figure 1. Mesh geometry 
 
 

The length of the pipeline in the present study is more than 50 diameters, which is sufficiently long for fully 
developed flow. In order to improve the wall function performance, the grid is refined near the wall of the pipeline as 
shown in Figure 1. Consequently, the dimensionless adjacent cell distance from the wall, y+  becomes 30 and thereby 
y+  =30 condition, has also been pacified with the refinement of the grid. The grid independent test is carried out for 
pipe geometry containing 4.12 Lakhs; 5.49 Lakhs; 6.16 Lakhs and 7.30 Lakhs, quad and hexahedral cells. It is seen 
that identical results obtained for 5.49 Lakhs; 6.16 Lakhs and 7.30 Lakhs cells. Hence, a grid with 5.49 Lakhs cells is 
chosen for computations as obtained in Fig. 1. 
 
BOUNDARY CONDITIONS 

The pipeline geometry comprises of three bounded faces viz. inlet, outlet and wall boundaries to accomplish 
fluid domain calculations. The velocity inlet, pressure outlet and no slip condition is considered for fluid flow area 
computations. The conditions for inlet/outlet boundaries are applied to the fluid domain at particular velocity and 
volume fractions. The assumption of no slip conditions has been considered at the wall. Additionally, the roughness 
constant of the wall is assumed as 0.5. 
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Strategy towards Converging solutions 
In order to simplify momentum, turbulence kinetic energy and fluid flow dissipation rates equation, a second 

order windward structure is utilized. This arrangement offers high precision, fidelity and converging of the solutions. 
The converging condition works on the basis of residual value of various constraints viz. mass, turbulent kinetic, 
velocity, dissipation energy and volume fractions. In the current study, the value is reset to 0.001 time the initial 
residual values for every constraint. With the aim to couple the pressure and velocity of the fluid flows, SIMPLE 
algorithm has been adopted. The other solution strategy includes the under relaxation factors of pressure - 0.7, 
momentum – 0.5, volume fraction – 0.5, turbulent viscosity – 0.8, turbulent kinetic/dissipation energies as 0.8. This 
converges the non-linear equations into linear ones. 
 
MODELING RESULTS 
Concentration Distribution 

The results predicted by Eulerian-Eulerian two-phase model at different velocities and solid concentrations 
have been plotted in the Figs 2-8. It has been found that as the flow velocity increases from 1 m/sec to 3 m/sec, the 
particles interaction with the wall also goes up. The numerical simulation process has been accomplished for fly ash 
concentrations ranging 50% to 70% (by weight) in flow velocities varying between 1 m/sec and 3 m/sec. The results 
are plotted for the vertical plane at the outlet section of the pipeline. It is clearly shown that the higher fly ash 
concentrations region is lying near the bottom of the pipe because of gravitation effects, as illustrated in Figs 2-3. It 
is also found that the fly ash particles have a tendency to settle down near the lower portion of the pipeline at low 
velocities. Besides, with the increase in flow velocities, the suspension stability of the particles also goes up, causing 
more interaction with the wall of the pipeline. One can also notice the decrease in fly ash concentrations from bottom 
to top zone of the pipeline, as shown in the Figs 5-8.  

 
                    (a)                                           (b) 

Figure 2. Fly Ash concentration distribution predicted at Cw= 50% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1. 
 

                          (a)                                    (b) 
Figure 3. Fly Ash concentration distribution predicted at Cw= 60% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 
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                        (a)                               (b) 
 

Figure 4. Fly Ash concentration distribution predicted at Cw= 70% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 
 

 
                        (a)                  (b) 

 
Figure 5. Fly Ash concentration distribution predicted at Cw= 50% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 

 

               (a)                                (b) 
Figure 6. Fly Ash concentration distribution predicted at Cw= 60% (a) Vm = 1 ms-1 and (b) Vm =3 ms-1 
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                (a)                            (b) 

Figure 7.  Fly Ash concentration distribution predicted at Cw= 70% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 
 

 
                                                     (a)                                                                       (b) 

Figure 8. Different fly ash concentration profile at mean flow velocity of (a) 1 m/s and (b) 3 m/s 
 
VELOCITY DISTRIBUTION OF SOLID PHASE 

Figs 9-15 shows the velocity contours and profiles for the fly ash concentrations between 50-70 % (by 
weight) at mean slurry velocities of 1-3 m/s. The symmetrical nature of vertical velocity profile depends upon the 
mean flow velocity and solid concentrations. It is seen that the velocity profile is asymmetric in nature at low 
velocities and concentrations. This is due to the high shear force of the particulate with the pipeline wall and lack 
of turbulence mixing between fly ash and water. As the solid concentration and flow velocity increases, the 
velocity profile becomes symmetric in nature which is the result of increased turbulent mixing. 

 

 
(a) (b) 

Figure 9. Velocity distribution predicted at Cw= 50% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1
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        (a)                            (b) 

Figure 10. Velocity distribution predicted at Cw= 60% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 
 

    (a)                      (b) 
Figure 11. Velocity distribution predicted at Cw= 70% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 

 

 
        (a)             (b) 

Figure 12. Vertical velocity profile of fly ash concentration at Cw = 50% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 
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(a)      (b) 

Figure 13. Vertical velocity profile of fly ash concentration at Cw = 60 % (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 

 

 

(a)      (b)
Figure 14. Vertical velocity profile of fly ash concentration at Cw = 70% (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 

 
 (a)           (b) 

Figure 15. Vertical velocity profile at different fly ash concentrations at (a) Vm = 1 ms-1 and (b) Vm = 3 ms-1 
 

PRESSURE DROP 
The variations of pressure drop with different slurry velocities i.e., 1-3 m/s for a range of 50-70% (by 

weight) solid concentration are shown in Fig. 16. The simulation has been carried out for span of pressure drop 
from 0-160 m of water column (mWc/100 m length of pipe) over large variations of flow parameters. The 
variations in the slurry velocities are taken as 1-3 m/s for 50% to 70% solid concentrations of fly ash. It can be 
perceived from Fig. 10 that as velocity increases, pressure drop also goes up for concentration level. Moreover, at 
higher velocities, the rate of inclination is observed to be much higher as compared to the other one. The rate of 
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enhancement of pressure drop is more prominent at higher solid concentrations and linearly varies with flow 
profile of the slurry in the pipeline. The values of pressure drop for 50%, 60% and 70% solid concentrations at 
1m/s slurry velocity are observed as 4.5, 5.9 and 56 mWc per 100 m length of pipe respectively. On the other 
hand, the pressure drop values at slurry velocity of 3 m/s are found to be 37.3, 40 and 147.8 mWc per 100 m 
length of pipe. Moreover, the obtained results are in covenant with that of Chandel et. al. (2009) and Singh et. al. 
(2017). 

 
Figure 16. Variations of pressure drop with flow velocities at different values of concentrations 

 
SLIP VELOCITY 

Figs 17 (a-c) shows the variations of the slurry slip velocity across the vertical plane (i.e., Y-Z plane) of 
the pipeline. It is noticed that the water flows with higher velocity compared to fly ash particles near the bottom 
zone of the pipe line. It is also experienced that slip velocities initially increase with the elevation from the 
bottommost portion of the pipeline and reduces near the top zone. Moreover, the slurry slip velocities goes up 
with solid concentration and mean flow velocity at bottom zone of the pipeline. At lower concentrations, the 
effects of flow velocities over slip velocities are more prominent.  

 
                                 (a)                                                                                           (b) 

 (c) 
Figure 17. Slip velocity [vsy(o,z)-vfy(0,y)] distribution predicted by Eulerian Model at (a) Cw=50%, (b) 

Cw=60%, and (c) Cw=70% 
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VALIDATION OF THE STUDY 
The results obtained in the present numerical model are validated with the experimental outcomes 

presented by Chandel et al. [9]. Furthermore, an analytical comparison of the results with that of Eulerian – 
Langrage model using SST K-ω turbulence model has also been carried out. It is found that the simulated 
outcomes are in synchronism with the experimental one. However, one can clearly observe from Figs. 18 (a-c) 
that the pressure drops values obtained with Eulerian model using RNG K-ɛ turbulence model are fairly accurate 
and more appropriate with that of SST K-ω turbulence model. The average percentage errors evaluated on the 
basis of deviation between simulated and experimental values for wide velocity ranges of 1-3 m/s are found to be 
4.86%, 4.18% and 3.26% for solid concentrations of 50%, 60% and 70% respectively. Hence, the major 
contribution of the present study is the lower values of percentage errors ranging 3-5% with RNG K-ɛ turbulence 
model as compared to that of SST K-ω turbulence model. 

 

  
(a)                                                                                      (b) 

 
      (c) 

Figure 18. Validation of numerical simulation model at different values of (a) Cw=50%, (b) Cw=60% and 
Cw=70% 

 
CONCLUSIONS 

Based on the investigations on 42 mm diameter ash-water slurry pipeline using commercial CFD 
software for different efflux concentrations and slurry velocities, the following conclusions have been drawn: 

• It is observed that Eulerian-Eulerian model using RNG k-ɛ turbulence model contributes to more 
appropriate and meticulous predictions of the pressure drop for each chosen concentration and flow 
velocity. 

• The distributions of fly ash concentrations are found to be asymmetric in nature in vertical direction 
under the flow conditions. The high fly ash concentration zone is observed on the lower part of the 
horizontal pipelines.  
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• The vertical velocity profile has also been observed to be asymmetric in nature at low mean flow 
velocity and solid concentration. However, the asymmetric distribution shows diminution at high mean 
flow velocity and solid concentration due to increased turbulent mixing. 

• At higher velocity and concentration, maximum fly ash elements shift towards the centre. 
Consequently, the high concentration zone is found here. 

• Non-linear increase in pressure drop along with rise in slurry concentrations/velocities is observed. 
• At high solid concentration and flow velocity, lateral disparities in solid levels are observed to be more 

dominant.  
• The mean deviation between the projected and the real-time monitoring values of pressure drop is found 

to be in the range of 3-5% for various solid concentrations. 
The obtained results of predetermined pressure drop are observed to be in synchronism with the experiment results. 
Moreover, the comparison of the simulated results with that of Eulerian-Langrange model using SST K-ω 
turbulence model proves the practical utility and high designing capability of Eulerian-Eulerian model with RNG 
k-ɛ turbulence model.  
 
NOMENCLATURE 
Cw Efflux concentration (by weight) 
D Diameter of pipe (m) 
ds Particle diameter (µm) 
G Acceleration due to gravity (m/s2) 

sv


 Velocity of solid phase (m/s) 

fv


 Velocity of fluid phase (m/s) 

Cvm Coefficient of virtual mass 
ρ Mass density (kg/m3) 
ρf Mass density for fluid phase (kg/m3) 
ρs Mass density for solid phase (kg/m3) 
CL Lift force 

Vm Mean flow velocity (m/s) 
Res Relative Reynold number between solid and fluid phase 

I  Identity tensor 

λs Bulk viscosity of solid phase 

fτ  viscous stress tensor for fluid phase 

go,ss Radial distribution function 

µs Shear viscosity for solid phase (Pa-s) 

µf Shear viscosity for fluid phase (Pa-s) 

μs,col collisional viscosity 

μs,kin kinetic viscosity 

μs,fr frictional viscosity 
CD Drag coefficient 
ess Restitution coefficient 
Θs Granular temperature 

I2D Second invariant strain rate tensor for solid phase 

Ksf Inter-phasial momentum exchange coefficient 
Vr,s Terminal velocity for solid phase (m/s) 

Greek symbols 
αs,max Static settled concentration, 
αs Solid phase concentration 
αf   Liquid phase concentration 
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