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ABSTRACT 

Phase change materials are vastly used in thermal engineering applications. The model studies reduce 

the experimental time and cost and gives insight into the physical process and and provides relation between the 

process outcomes and the influencing parameters on the process. One of the challenges in the model study 

related to the phase change problem is setting the appropriate boundary conditions across the phases. This is 

because of the fictitious definition of the mush zone across the phases. This situation becomes complicated 

when setting the boundary conditions across the odd geometric shapes. In this study, mathematical formulation 

of the condition for energy-balance at the interface of the phase changing is investigated using the curvilinear 

coordinate system without requiring the coordinate system. The proposed arrangement enables to create a 

curvilinear system via transformation equations from another curvilinear coordinate system. It also provides 

mathematical formulation of the interfacial boundary conditions across the phases. 
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INTRODUCTION 

Interfacial conditions for the phase changing materials remain important in terms of computational 

efforts and correct description of the physical process involved during the phase change. Considerable research 

studies were carried out to examine phase change problem and the interfacial conditions. The turbulence-

induced interfacial instability in two-phase flow with moving interface was studied by Balabel [1]. He 

introduced the transition from one phase to another through incorporating a consistent balance of kinematic and 

dynamic conditions on the interface separating the two phases. However, the topological changes of the 

interface were formulated via adopting the level set approach. In this case, through using the interfacial markers 

on the intersection points, the interfacial stresses and the interfacial driving forces were estimated. This 

arrangement allowed prodicting the normal interface velocity, which could be extended to the higher 

dimensional level set function and used for the interface advection process. The interfacial conditions 

incorporating Stefan boundary at solid-liquid interface was examined by Turkyilmazoglu [2] after using the 

single and double phase models. The findings revealed that the physical phase transition process took place at a 

constant speed due to the imposed movement of the material along or reverse directions. In addition, the 

coefficients determining the movement of the phase change interface could be presented analytically. The 

interfacial moving boundary problem occurred in chemical processes, such as combustion. The conservation 

equations and constitutive equations, within the framework of moving interface, could be incorporated to 

formulate the interfacial conditions. Coordinate transformation should be incorporated towards achieving a fixed 

interface formulation from the moving interface problem, which resulted in a fixed domain of each phase 

ranging from 0 to 1. The interfacial boundary conditions and residual trapping in relation to wetting phase flow 

was investigated by Heshmati and Piri [3]. They considered the effect of changes in invading wetting phase flow 

rate and injection of a non-wetting droplet on pore fluid configuration. They demonstrated the local 

perturbations of non-wetting phase in the flow system. A sharp-interface level-set method for the phase change 

interfacial conditions was presented by Lee and Son [4] towards simulating growth and collapse of a 

compressible vapor bubble. However, the interface tracking method was extended including the influence of 

bubble compressibility and liquid-vapor phase change. They used the ghost fluid method implementing the 

matching conditions of velocity, stress and temperature at the interface. In phase change problems, such as 

evaporation or condensation, there were two-way coupling of momentum, heat and species transfer took place.  

In formulating the interfacial conditions for phase change problem, such as cavitation problem, a sharp interface 

approach incorporating the volume-of-fluid and ghost-fluid methods was demonstrated to be very effective 
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Michael et al. [5]. However, the level set function should be constructed from the volume fraction function. A 

marching cubes method could be used determining the interface area at the interface grid cells. A parametric 

study exploring the approximation of the exact analytical solution of the Stefan problem in a finite phase 

changing layer was carried out by Mazzeo and Oliveti [6]. They have undertaken the exact analytical solution 

determining the sensible and latent stored energy in the layer through incorporating the implicit transcendental 

equation with complex thermal parameters. In this case, the dimensionless solution was demonstrated to be a 

function of the Fourier and Stefan numbers for the two phases. The analytical and numerical analysis for the 

solidification of the phase change material inside a rectangular finned container with time-dependent boundary 

condition was untaken by Taghilou and Talati [7]. They introduced two special cases of linear and sinusoidal 

time-dependent boundary conditions and presented analytical results for non-dimensional temperature 

distribution and position of the solidification front. The findings were compared with those of the lattice 

Boltzmann method with respect to the Fourier number at which the Stefan number was fixed. The gradient 

augmented level set method for phase change simulations was introduced by Anumolu and Trujillo [8]. They 

demonstrated that the gradient augmented level set method enabled to obtain sharp capturing of the vaporization 

process.  This arrangement provided i) identification of the vapor–liquid interface at the subgrid level, ii) 

discontinuous treatment of thermal physical properties (except for viscosity), and iii) enforcement of mass, 

momentum, and energy jump conditions, where the gradients of the dependent variables were obtained at 

interface. The solution of the two-phase Stefan problem using analytical method was presented by Khaled et al. 

[9]. The Eigen-conditions pertinent to the governing equations were formulated using the separation of variable 

technique. The eigenvalues were obtained by applying the boundary conditions for liquid and solid phases. They 

noted that the radial eigenvalues were free from imaginary values and interface equation were solved and 

analyzed through varying the Stefan number.  

 On the other hand, heat conduction problems related to a phase change from liquid to solid phases or 

vice versa require an energy balance equation to be satisfied at the liquid-solid interface with the condition that 

the temperature at the interface remains the melting temperature. Moreover, to introduce the interface conditions 

in computations while satisfying the energy-balance, it is necessary to modify the conditions appropriate to the 

particular applications. Some of these modifications were reported in the previous studies [1 - 12]. Although the 

interface conditions were provided separately either in the Cartesian or in the Curvilinear coordinate system in 

the previous studies [1 - 12], the conditions describing the interface of the phase changing materials were not 

generalized for any coordinate system. In the present study, the condition of energy-balance at the phase change 

interface is presented comprehensively without referencing to any particular coordinate system. In addition, the 

proposed arrangement allows to generate a curvilinear coordinate system through transformation equations from 

another curvilinear coordinate system. 

 

MATHEMATICAL ANALYSIS 

 Consider the heat conduction problem in which there is a phase change taking place from liquid to 

solid or vice versa at a single temperature 𝑇𝑚 in a pure substance. At the liquid-solid interface two conditions 

have to be satisfied, 

 

                                                                                         𝑇𝑙 = 𝑇𝑠 = 𝑇𝑚      (1) 

 

                                                                        (𝑞𝑙
″ − 𝑞𝑠

″) ⋅ 𝑁 = (𝜌𝑠𝐿)𝑉 ⋅ 𝑁    (2) 

 

where 𝑇is the liquid/solid temperature, 𝑇𝑚 is the melting temperature, 𝑞″ is the liquid/solid heat flux vector 

evaluated at the solid/liquid interface, 𝜌𝑠 is the density of the solid phase, 𝐿 is the latent heat of melting, 𝑉 is the 

‘coordinate velocity’ at the interface [5], 𝑁 is a vector normal to the interface, but not necessarily of unit 

magnitude, and the subscripts 𝑙 and 𝑠 denote the  liquid and solid phases, respectively. 

 The energy-balance at the interface condition (Equation 2) is symbolic and it is not suitable for use in 

computations; therefore, various researchers have modified this condition so as to be of the practical 

applicability [10 - 12]. One such result was presented by Patel [10] for the Cartesian coordinate system. Ozisik 

[12] describes the interface condition in the cylindrical coordinate system. The concern is that the interface 

conditions described in [10, 12] solely depend on the variables of the particular coordinate system, the Cartesian 
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or cylindrical, without referencing to any other coordinate system. The energy-balance interface condition, 

Equation 2, for a general, non-orthogonal, curvilinear coordinate system is derived earlier [12]. Although the 

derivation is general, it has a shortcoming of incorporating transformation equations explicitly. In this case, the 

energy-balance interface condition involves the transformation equations from the Cartesian coordinate system 

to the non-orthogonal, curvilinear coordinate system. This implicitly demonstrates that their interface condition 

has the short come of the generality of those described in [10, 12]. This paper is an attempt to address this 

shortcoming by restating Equation 2 in a mathematical form that only makes reference to the curvilinear 

coordinate system for which it has been derived. A further benefit of restating the energy-balance interface 

condition in this form is that the curvilinear coordinate system can be generated from another curvilinear 

coordinate system and not solely from the Cartesian coordinate system. In the following analysis Tensor 

calculus is to be used and the final result incorporates the metric tensor. The range and summation conventions 

are to be employed as used in Tensor Calculus. 

 Let (𝜉, 𝜂, 𝜁) be the coordinates in a general, non-orthogonal, curvilinear coordinate system that is 

generated from the Cartesian system by means of the transformation equations, 

 

                                                        𝑥 = 𝑥(𝜉, 𝜂, 𝜁),  𝑦 = 𝑦(𝜉, 𝜂, 𝜁),  𝑧 = 𝑧(𝜉, 𝜂, 𝜁)   (3) 

 

One can use the following terminology so as to be able to employ the methods of Tensor Calculus, 

 

                                                                    (𝑥, 𝑦, 𝑧) → (𝑦1, 𝑦2, 𝑦3) or simply 𝑦𝑖   (4) 

 

                                                                     (𝜉, 𝜂, 𝜁) → (𝑥1, 𝑥2, 𝑥3) or simply 𝑥𝑖   (5) 

 

The liquid-solid interface is in general a three-dimensional surface and in a curvilinear coordinate 

system it can be defined as, 

                                                                      𝑥3 = 𝑥3(𝑥1, 𝑥2, 𝑡)                   (6a) 

 

The interface can also be defined parametrically as, 

 

                                                   𝑥1 = 𝑥1(𝑢, 𝑣, 𝑡),  𝑥2 = 𝑥2(𝑢, 𝑣, 𝑡),  𝑥3 = 𝑥3(𝑢, 𝑣, 𝑡)  (6b) 

 

where 𝑢 and 𝑣 are the surface coordinates. In the present analysis we will first define the interface by means of 

Equation (6b) and later we will switch to the form defined by Equation (6a). Let 𝑟 = 𝑟(𝑥𝑖(𝑢, 𝑣, 𝑡)) be the 

position vector of a point on the interface in the curvilinear coordinate system. Then two, linearly independent 

tangent vectors on the interface are given as, 

 

                           𝑟𝑢 =
𝜕𝑟

𝜕𝑢
=

𝜕𝑟

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑢
=

𝜕𝑥𝑖

𝜕𝑢
𝐸𝑖  and 𝑟𝑣 =

𝜕𝑟

𝜕𝑣
=

𝜕𝑟

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑣
=

𝜕𝑥𝑖

𝜕𝑣
𝐸𝑖   (7a) 

 

where 𝐸𝑖 are the covariant bases vectors in the general curvilinear coordinate system. The normal vector 𝑁 to 

the surface is written as [13], 

                                                   𝑁 = 𝑟𝑢 × 𝑟𝑣 = 𝜀𝑖𝑗𝑘
𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

𝜕𝑣
𝐸𝑘 = √𝑔𝑒𝑖𝑗𝑘

𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

𝜕𝑣
𝐸𝑘    (7b) 

 

where 𝜀𝑖𝑗𝑘 is the Levi-Civita symbol, 𝑔 = |𝑔𝑖𝑗| is the determinant of the metric tensor, 𝑒𝑖𝑗𝑘 is the e-permutation 

symbol and 𝐸𝑘 are the contravariant bases vectors in the general, curvilinear, coordinate system. The coordinate 

velocity 𝑉 of the surface is given as [14], 

 

                                                                                      𝑉 =
𝜕𝑥𝑖

𝜕𝑡
𝐸𝑖       (8) 
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The heat flux vectors are written as, 

 

                                                               𝑞𝑙
″ = −𝑘𝑙

𝜕𝑇𝑙

𝜕𝑥𝑚 𝐸𝑚, 𝑞𝑠
″ = −𝑘𝑠

𝜕𝑇𝑠

𝜕𝑥𝑚 𝐸𝑚       (9) 

 

The interface conditions, Equation 1 and Equation 2 are now written as, 

 

                                                         𝑇𝑙(𝑥𝑖(𝑢, 𝑣, 𝑡), 𝑡) = 𝑇𝑠(𝑥𝑖(𝑢, 𝑣, 𝑡), 𝑡) = 𝑇𝑚     (10) 

 

                             √𝑔𝑒𝑖𝑗𝑘
𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

𝜕𝑣
𝑔𝑚𝑘 (𝑘𝑠

𝜕𝑇𝑠

𝜕𝑥𝑚 − 𝑘𝑙
𝜕𝑇𝑙

𝜕𝑥𝑚) = 𝜌𝑠𝐿√𝑔𝑒𝑖𝑗𝑘
𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

𝜕𝑣

𝜕𝑥𝑘

𝜕𝑡
              (11a) 

 

                                          𝑒𝑖𝑗𝑘
𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

𝜕𝑣
𝑔𝑚𝑘 (𝑘𝑠

𝜕𝑇𝑠

𝜕𝑥𝑚 − 𝑘𝑙
𝜕𝑇𝑙

𝜕𝑥𝑚 − 𝑔𝑚𝑝𝜌𝑠𝐿
𝜕𝑥𝑝

𝜕𝑡
) = 0                            (11b) 

 

Also, one can note that for a pure substance, the solid-liquid interface is an isotherm. This implies that 

as one moves from one point to another on the interface, the temperature remains constant and is equal to the 

melting temperature of the substance. Since the position on the interface is defined by the surface coordinates 𝑢 

and 𝑣 therefore, the partial derivatives of the solid/liquid temperatures with respect to the coordinates 𝑢 and 𝑣 

vanishes. Therefore, from Equation (10) we get, 

 

                                             
𝜕𝑇𝑙

𝜕𝑢
=

𝜕𝑇𝑙

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑢
= 0 ⇒  

𝜕𝑇𝑙

𝜕𝑥1

𝜕𝑥1

𝜕𝑢
+

𝜕𝑇𝑙

𝜕𝑥2

𝜕𝑥2

𝜕𝑢
= −

𝜕𝑇𝑙

𝜕𝑥3

𝜕𝑥3

𝜕𝑢
              (12a) 

 

                                              
𝜕𝑇𝑙

𝜕𝑣
=

𝜕𝑇𝑙

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑣
= 0 ⇒  

𝜕𝑇𝑙

𝜕𝑥1

𝜕𝑥1

𝜕𝑣
+

𝜕𝑇𝑙

𝜕𝑥2

𝜕𝑥2

𝜕𝑣
= −

𝜕𝑇𝑙

𝜕𝑥3

𝜕𝑥3

𝜕𝑣
              (12b) 

 

and, 

 

                                             
𝜕𝑇𝑠

𝜕𝑢
=

𝜕𝑇𝑠

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑢
= 0 ⇒  

𝜕𝑇𝑠

𝜕𝑥1

𝜕𝑥1

𝜕𝑢
+

𝜕𝑇𝑠

𝜕𝑥2

𝜕𝑥2

𝜕𝑢
= −

𝜕𝑇𝑠

𝜕𝑥3

𝜕𝑥3

𝜕𝑢
              (13a) 

 

                                             
𝜕𝑇𝑠

𝜕𝑣
=

𝜕𝑇𝑠

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑣
= 0 ⇒  

𝜕𝑇𝑠

𝜕𝑥1

𝜕𝑥1

𝜕𝑣
+

𝜕𝑇𝑠

𝜕𝑥2

𝜕𝑥2

𝜕𝑣
= −

𝜕𝑇𝑠

𝜕𝑥3

𝜕𝑥3

𝜕𝑣
              (13b) 

 

One can now restrict the analysis to interfaces that can be described by equation (6a), 𝑥3 =

𝑥3(𝑥1 , 𝑥2, 𝑡). This can be achieved by letting 𝑢 = 𝑥1 and 𝑣 = 𝑥2 in equations (12), (13). Furthermore, since 

𝑥3 = 𝑥3(𝑢, 𝑣, 𝑡), therefore, now the coordinate 𝑥3 on the surface will be a function of the coordinates 𝑥1 and 𝑥2 

as well as that of time 𝑡, i.e. 𝑥3 = 𝑥3(𝑥1, 𝑥2, 𝑡). From Eq. (12) one can obtain, 

 

                                                             𝑘𝑠
𝜕𝑇𝑠

𝜕𝑥1 − 𝑘𝑙
𝜕𝑇𝑙

𝜕𝑥1 = (𝑘𝑙
𝜕𝑇𝑙

𝜕𝑥3 − 𝑘𝑠
𝜕𝑇𝑠

𝜕𝑥3)
𝜕𝑥3

𝜕𝑥1                (14a) 

 

and from Eq. (13) we obtain, 

 

                                                               𝑘𝑠
𝜕𝑇𝑠

𝜕𝑥2 − 𝑘𝑙
𝜕𝑇𝑙

𝜕𝑥2 = (𝑘𝑙
𝜕𝑇𝑙

𝜕𝑥3 − 𝑘𝑠
𝜕𝑇𝑠

𝜕𝑥3)
𝜕𝑥3

𝜕𝑥2              (14b) 

 

Carrying out the implied summations in Eq. (11b); noting that now 
𝜕𝑥2

𝜕𝑡
=

𝜕𝑥3

𝜕𝑡
= 0 and using the results 

in Eq. (14) one can finally obtain the following result after some algebraic simplification, 
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[𝑔33 + 𝑔11 (
𝜕𝑥3

𝜕𝑥1)
2

+ 𝑔22 (
𝜕𝑥3

𝜕𝑥2)
2

− 2 (𝑔13 𝜕𝑥3

𝜕𝑥1 + 𝑔23 𝜕𝑥3

𝜕𝑥2 − 𝑔12 𝜕𝑥3

𝜕𝑥1

𝜕𝑥3

𝜕𝑥2)] (𝑘𝑠
𝜕𝑇𝑠

𝜕𝑥3 − 𝑘𝑙
𝜕𝑇𝑙

𝜕𝑥3) =

𝜌𝑠𝐿
𝜕𝑥3

𝜕𝑡
                          (15) 

 

One may also replace (𝑥1 , 𝑥2, 𝑥3) → (𝜉, 𝜂, 𝜁) to get, 

 

[𝑔33 + 𝑔11 (
𝜕𝜁

𝜕𝜉
)

2

+ 𝑔22 (
𝜕𝜁

𝜕𝜂
)

2

− 2 (𝑔13 𝜕𝜁

𝜕𝜉
+ 𝑔23 𝜕𝜁

𝜕𝜂
− 𝑔12 𝜕𝜁

𝜕𝜉

𝜕𝜁

𝜕𝜂
)] (𝑘𝑠

𝜕𝑇𝑠

𝜕𝜁
− 𝑘𝑙

𝜕𝑇𝑙

𝜕𝜁
) = 𝜌𝑠𝐿

𝜕𝜁

𝜕𝑡

                          (16) 

 

Noting that at the interface 𝜁 = 𝜁(𝜉, 𝜂, 𝑡), Eq. (1) may now be written as, 

 

                                                 𝑇𝑙(𝜉, 𝜂, 𝜁(𝜉, 𝜂, 𝑡), 𝑡) = 𝑇𝑠(𝜉, 𝜂, 𝜁(𝜉, 𝜂, 𝑡), 𝑡) = 𝑇𝑚    (17) 

 

Equation (16) has been derived by using Equation (3) as the transformation equations and these involve 

the Cartesian coordinates, however, the final mathematical form of Equation (16) is completely independent of 

the Cartesian coordinate system and involves no reference to the transformation Equation (3). The components 

of the metric tensor appearing in Equation (16) are themselves functions of the coordinate variables (𝜉, 𝜂, 𝜁). 

This mathematical form of the interface condition is in contrast to the one derived in [12] and has the character 

of those described in [11]. 

 An important implication of the particular mathematical form of Equation (16) is that it is now not 

necessary that the curvilinear coordinate system with coordinates (𝜉, 𝜂, 𝜁), be generated from a Cartesian 

coordinate system by means of Equation (3). It can now be generated from another curvilinear coordinate 

system with the coordinates (𝜉, �̄�, 𝜁) and the mathematical form of the interface condition Equation (16) remains 

unchanged. This is again in contrast to the interface condition described in [12]. To further elaborate this point, 

consider the transformation equation between two curvilinear coordinate systems, 

 

                                               �̄� = �̄�(𝜉, 𝜂, 𝜁),  �̄� = �̄�(𝜉, 𝜂, 𝜁),  𝜁 = 𝜁(𝜉, 𝜂, 𝜁)   (18) 

 

or, 

 

                                          �̄�1 = �̄�1(𝑥1, 𝑥2, 𝑥3),  �̄�2 = �̄�2(𝑥1, 𝑥2, 𝑥3),  �̄�3 = �̄�3(𝑥1, 𝑥2, 𝑥3) (19) 

 

with metric tensors 𝑔𝑖𝑗 and �̄�𝑖𝑗. The metric tensor �̄�𝑖𝑗 is known and the metric tensor 𝑔𝑖𝑗 can be determined as, 

 

                                                                                   𝑔𝑖𝑗 = �̄�𝑚𝑛
𝜕�̄�𝑚

𝜕𝑥𝑖

𝜕�̄�𝑛

𝜕𝑥𝑗      (20) 

 

The metric tensor so obtained can be substituted into Equation (16) to obtain the interface condition. 

Finally, if the curvilinear coordinate system is orthogonal then the interface condition simplifies to, 

 

                                              [
1

ℎ3
2 + (

1

ℎ1

𝜕𝜁

𝜕𝜉
)

2

+ (
1

ℎ2

𝜕𝜁

𝜕𝜂
)

2

] (𝑘𝑠
𝜕𝑇𝑠

𝜕𝜁
− 𝑘𝑙

𝜕𝑇𝑙

𝜕𝜁
) = 𝜌𝑠𝐿

𝜕𝜁

𝜕𝑡
                 (21) 

 

where (ℎ1, ℎ2, ℎ3) are the scale factors corresponding to the labeling (𝜉, 𝜂, 𝜁) → (𝑥1, 𝑥2, 𝑥3). In particular for a 

Cartesian coordinate system we get, 

 

                                                       [1 + (
𝜕𝑧

𝜕𝑥
)

2

+ (
𝜕𝑧

𝜕𝑦
)

2

] (𝑘𝑠
𝜕𝑇𝑠

𝜕𝑧
− 𝑘𝑙

𝜕𝑇𝑙

𝜕𝑧
) = 𝜌𝑠𝐿

𝜕𝑧

𝜕𝑡
   (22) 

 



Journal of Thermal Engineering, Technical Note, Vol. 6, No. 1, pp. 87-98, January, 2020 

92 

 

APPLICATION TO AN AXISYMMETRIC LASER HEATING OF A SOLID SUBSTRATE 

 Consider the problem of the axisymmetric, laser heating and subsequent melting of a solid substrate in 

line with the previous study [15]. Since the problem is axisymmetric therefore, 

 

                                                                𝑇𝑙 = 𝑇𝑙(𝑟, 𝑧, 𝑡)  ,𝑇𝑠 = 𝑇𝑠(𝑟, 𝑧, 𝑡)                                               (23) 

 

 
Figure 1. Schematic of an axi-symmetric laser melting process 

 

The numerical solution of this problem may require the generation of body-fitted grids in the irregular 

liquid and solid regions as shown in figure 1. Now, for the convenience of the numerical solution it may be 

necessary to preserve the axisymmetric nature of the problem. This problem is then essentially equivalent to 

generating a curvilinear coordinate system from another curvilinear (cylindrical) coordinate system. In other 

words, the grid generation involves Equation (18), and we require the use of the following transformation 

equations, 

 

                                                                    𝑟 = 𝑟(𝜉, 𝜁),  𝜃 = 𝜂,  𝑧 = 𝑧(𝜉, 𝜁)    (24) 

 

We make the following designations, 

 

                                                                   (𝑟, 𝜃, 𝑧) → (�̄�1, �̄�2, �̄�3) or simply �̄�𝑖    (25) 

 

                                                                    (𝜉, 𝜂, 𝜁) → (𝑥1, 𝑥2, 𝑥3) or simply 𝑥𝑖    (26) 

 

The components of the metric tensor in the cylindrical coordinates are, 

 

                                                     �̄�11 = �̄�33 = 1,�̄�22 = 𝑟2 and �̄�𝑖𝑗 = 0,  𝑖 ≠ 𝑗    (27) 

 

The components of the metric tensor in the curvilinear coordinates are calculated from Equation (20) 

as, 

 

                                    𝑔𝑖𝑗 =
𝜕𝑟

𝜕𝑥𝑖

𝜕𝑟

𝜕𝑥𝑗 + 𝑟2 𝜕𝜃

𝜕𝑥𝑖

𝜕𝜃

𝜕𝑥𝑗 +
𝜕𝑧

𝜕𝑥𝑖

𝜕𝑧

𝜕𝑥𝑗 = 𝑔𝑖𝑗(𝑥1, 𝑥2, 𝑥3) = 𝑔𝑖𝑗(𝜉, 𝜂, 𝜁) (28) 

 

The contravariant components of the metric tensor can then be determined from the matrix inverse of 

𝑔𝑖𝑗, 

                                                                                         [𝑔𝑖𝑗] = [𝑔𝑖𝑗]
−1

     (29) 
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Finally, the interface condition for the axisymmetric, laser heating problem can be formulated from 

Equation (16). 

Since the heating problem considered is associated with the laser interaction of metallic substrate 

(figure (1)), the output power intensity distribution at the workpiece remains important. In this case, it is 

assumed to be a Gaussian and its spot centre is at the centre of the co-ordinate system is considered (figure (1)). 

This arrangement results in an axisymmetric heating of the substrate material. In the initial stage of the laser 

heating, the conduction heating of the solid substrate with insulated boundary condition at the surface can be 

considered. This is due to that the pulse duration is short and the convective and radiate losses from the surface 

are negligibly smaller than the internal energy gain of the substrate material during heating [16]. Consequently, 

the heat transfer equation for a solid phase heating due to a laser irradiation pulse with a Gaussian intensity 

profile can be written as: 

 

                                                     𝜌𝑠𝑐𝑝𝑠

𝜕𝑇

𝜕𝑡
=

𝑘𝑠

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) + 𝑘𝑠

𝜕2𝑇

𝜕𝑧2 + 𝑆𝑜                                         (30) 

                                                                                                         

where, 𝑆𝑜 = 𝐼𝑜𝛿(1 − 𝑟𝑓) 𝑒𝑥𝑝(−𝛿𝑧) 𝑒𝑥𝑝 (−
𝑟2

𝑎2). 

 

𝐼𝑜, 𝛿, 𝑟𝑓 and 𝑎 are the laser peak power intensity, absorption coefficient, reflectivity and the Gaussian 

parameter, respectively.  Since the heating problem is transient, the initial condition should be defined, i.e. 

initially it is assumed that the substrate material is at a uniform temperature, which can be specified. Therefore: 

at time zero ⇒ 𝑡 = 0: 𝑇(𝑟, 𝑧, 0) = 𝑇𝑜 (specified). 

In order to solve Equation 30, two boundary conditions for each principle axis should be specified. Due 

to the short duration of laser pulse, insulated boundary is assumed at the surface and at a distance considerably 

away from the surface (at infinity), it is also assumed that the heating has no effect on the temperature of the 

substrate material; consequently, at a depth of infinity, temperature is assumed to be constant and equals to the 

initial temperature of the substrate material. The boundary conditions, therefore, are: 𝑧 at infinity is 𝑧 =

∞: 𝑇(𝑟, ∞, 𝑡) = 𝑇𝑜 (specified) and 𝑟 at infinity is 𝑟 = ∞: 𝑇(∞, 𝑧, 𝑡) = 𝑇𝑜 (specified). However, at symmetry 

axis, it is 𝑟 = 0:
𝜕𝑇(0,𝑧,𝑡)

𝜕𝑟
= 0 and at the substrate surface it is 𝑧 = 0:

𝜕𝑇(𝑟,0,𝑡)

𝜕𝑧
= 0. 

In the case of melting and evaporation, phase change takes place. Moreover, the functional relation of 

pressure dependence of boiling temperature is not known for the metals, which are used in industry; therefore, it 

is assumed that the substrate material has single melting and boiling temperatures. To accommodate the phase 

change process, heat transfer equations for solid heating should be modified. In this case, an energy or enthalpy 

methods can be used. In the enthalpy method, the governing equation of energy transport can be written in terms 

of enthalpy equation [16] and interfacial condition introduced in Equation 22 can be incorporated. 

In order to solve Equation 30 with the appropriate boundary conditions, the numerical code is 

developed to incorporate the governing equations of heat transfer and the interface condition (Equation 28) to 

obtain the interface velocity of the phase chaining substrate material. The short description of the numerical 

method is as follows: To discretize the governing equations, a finite difference scheme is introduced. Figure 2 

shows the grid used in the numerical analysis. The details of the numerical scheme are given in [17]. To 

compute the equations discretized for temperature field and relative positions of solid-liquid and liquid-vapor 

interface, an implicit scheme is used, i.e. using the initial conditions, the temperature in the whole domain is 

calculated for following time steps with the respective conditions. The calculation domain is divided into grids 

and grid independence test is being performed for different grid size and orientation. A in home computer 

program based on implicit scheme is developed to compute the temperature field. 
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Figure 2. Grid used in the simulations 

 

The material properties and pulse intensity used in the simulations are given Tables 1 and 2, 

respectively. 

Table 1. Material properties used in the simulations 

Tm 

(K) 

Tb 

(K) 

ρ 

(kg/m3) 

Cp 

(J/kgK) 

K 

(W/mK) 

 

(1/m) 

Lm 

(J/kg) 

Lb 

(J/kg) 

1880 3030 7836 330 52 6.16x107 2.4x105 6.26x106 

 

Table 2. Laser pulse intensity used in the simulations 

Peak intensity 

(W/m2) 

Gaussian Parameter 

(1/m) 

Nominal Pulse length 

(ns) 

1x1013 120000 24 

 

RESULTS AND DISCUSSION 

 Interfacial boundary condition for phase changing material is formulated and its application relevant to 

laser melting and evaporation under the pulse heating of solid substrate is presented. Stainless steel is considered 

as the phase changing material. The spatial and temporal behavior of vapor and liquid fractions are computed. 

 

 
 

Figure 3. Liquid-vapor quality with time at various locations below depth (z-axis) and radial location is the 

symmetry line (r = 0) 
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Figure 3 depicts temporal behavior of fraction of liquid-vapor (𝑥𝑏 = 0) along different locations in the 

axial direction. The liquid-vapor fraction becomes zero at the liquid surface during vaporization of the liquid 

phase. This indicates that at the liquid phase is present on the liquid surface. However, as the heating due to 

laser pulse irradiation progresses, the fraction of the liquid-vapour (𝑥𝑏) increases sharply in the region close to 

surface (0 ≤ 𝑧 ≤ 9.7 × 10−9 m). The rapid increase of (𝑥𝑏) is related to the laser beam irradiation, which 

increases rapidly with progressing time in the surface region, up to the depth (𝑧 =
1

𝛿
 , where  is the laser beam 

absorption depth) below the surface. However, as the depth below the surface increases further, the absorbed 

power reduces significantly and evaporation ceases. It should be noted the source term resembling the laser 

power in Equation 29 reduces exponentially with the depth according to the Lambert’s Beer law. In this case, as 

the depth increases below the surface, beam energy absorbed by the substrate material reduces exponentially. 

This in turn modifies the interfacial conditions for liquid-vapor front; in which case, fraction of liquid-vapor 

changes drastically and size of the mush zone changes.  Despite the fact that the energy gain via the absorption 

of the laser irradiation reduces at a depth𝑧 =
1

𝛿
, the energy transport via conduction (diffusion) from the surface 

region to the depth 𝑧 =
1

𝛿
 below the surface contributes to the phase change process while influencing the size of 

the mushy zone. The change of the radial location from the symmetry axis to 
𝑟𝑜

2
 (𝑟𝑜 being the irradiated spot 

radius) alters the fraction of the liquid-vapor.  Hence, the rise of the fraction of liquid-vapor becomes smaller at 

𝑟 =
𝑟𝑜

2
 than that corresponding to the symmetry axis. The time shift for the increase of the fraction of the liquid-

vapour at 𝑟 =
𝑟𝑜

2
 is associated with the time required for temperature increasing the boiling temperature of the 

substrate material in the liquid phase. In this case, fast change of the fraction of liquid-vapor in the region of 

1.75 ns from the laser pulse beginning at the locations z = 0 and r = ro/2 and z = 1/ and r = 0 is because of the 

rapid heating of the liquid - vapor mushy zone in the early pulse heating. However, when the heating period 

increases, the mushy zone size enlarges and the change of fraction (xb) becomes less. Since the laser heating 

pulse at the surface along the symmetry axis (r = 0) is higher than that of the radial location r = ro/2, the mush 

zone depth becomes larger along the symmetry axis as compared to that of r = ro/2. 

 Figure 4 depicts the variation of fraction of solid-liquid (𝑥𝑚) phases in the mushy zone at locations 

along the x-axis in the substrate material for two different radial locations. The increase of fraction of solid-

liquid is fast, which is more pronounced along the symmetry axis (𝑟 = 0) in the region close to the surface. This 

behavior is related to the absorption of the incident laser radiation by the substrate material in this region, which 

is considerably high in accordance with the Lambert’s Beer law. Increasing depth lowers the fraction of the 

solid-liquid interface; however, along the symmetry line this reduction is less as compared to other regions. This 

attributed to the heat diffusion from the surface towards the solid bulk along the symmetry axis, which remains 

high as compared to other regions. The increase of the fraction of solid-liquid phases becomes about same at 

various depths below the surface, i.e. high rate of thermal energy is carried through diffusional heat transfer into 

the solid bulk. However, for the radial location at 𝑟 =
𝑟𝑜

2
, the fraction solid-liquid becomes similar to that of its 

counterpart along the symmetry axis; nevertheless, the increase of the fraction remains smaller for 𝑟 =
𝑟𝑜

2
 than 

that corresponding to the symmetry axis. This is due to the fact that the laser irradiated energy absorbed at 

location  𝑟 =
𝑟𝑜

2
 remains less than corresponding to the symmetry axis (𝑟 = 0) because laser intensity 

distribution at the surface, which is Gaussian. 

 



Journal of Thermal Engineering, Technical Note, Vol. 6, No. 1, pp. 87-98, January, 2020 

96 

 

 
 

Figure 4. Solid-liquid quality with time at various locations below depth (z-axis) and radial location is 

the symmetry line (r = 0) 

Figure 5 depicts the surface recession velocity along the radial axis for various heating times. As the 

mush zone thickness approaches zero, the solid surface appears below the liquid layer; therefore, the recession 

of the solid surface with time is considered to be a recession velocity of the surface. During the initial irradiation 

of the laser pulse, the recession velocity becomes high, but the size of the surface recessed along the radial 

direction becomes small.  When the laser pulse heating progresses, melt zone along the radial direction becomes 

large; this in turn causes rapid rise of the recession velocity in this period. When the laser heating progresses 

further (𝑡 ≥ 15.3ns), the surface recessed enhances along the radial direction despite the fact that the velocity of 

the recession decreases. The enlargement of the surface recessed along the radial direction is related to the 

absorbed irradiated energy from the laser pulse, i.e. the laser power intensity distribution at the surface follows 

the Gaussian profile. Figure 6 shows the behavior of the evaporation velocity of the surface at locations along 

the radial direction. Temporal behavior of the vapor front recession velocity becomes almost similar to that of 

the temporal behavior of the laser pulse. This behavior remains true for all the locations along the radial 

directions. However, increasing the radial location to 𝑟 =
𝑟𝑜

2
, the recession velocity decay becomes different than 

that corresponding to  other locations along the  radial directions, particularly for the heating periods of 𝑡 ≥

1.5 × 10−8s. This is attributed to the heat conduction in the radial direction, which remains small when the 

radial location increases away from the center of the irradiated spot, i.e. the irradiated energy absorbed from the 

laser power towards the phase change becomes less in this region, which in turn lowers the recession of the solid 

surface. 

 

 
Figure 5. Surface recession velocity along the radial axis for various heating times 
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Figure 6. Evaporation velocity of the surface at locations along the radial direction 

 

CONCLUSION 

 The general form of the energy-balance interface condition that is applicable in a non-orthogonal, 

curvilinear, coordinate system is derived in this paper. The mathematical form presented here is such that it 

involves no reference to any other coordinate system which might have been used in its generation. The 

formulation introduced for the interface condition can be used in situations where the curvilinear coordinate 

system is generated through transformation equations from another curvilinear system and not exclusively from 

a Cartesian system. The paper also presents the formulation of the energy-balance as an interface condition for 

the special case of an orthogonal coordinate system while demonstrating the equation satisfying the energy 

balance at the interface. The interfacial condition developed from the mathematical analysis is incorporated in 

the high power laser pulse heating of steel surface. The recession velocity of evaporation front and the fraction 

of the liquid-solid interface are predicted via using in the home developed computer code.   

 

ACKNOWLEDGEMENTS 

The authors acknowledge the support of the King Fahd University of Petroleum and Minerals, 

Dhahran, Saudi Arabia, for this work. 

 

NOMENCLATURE 

𝐸𝑘  Covariant basis vectors in the curvilinear coordinate system 

𝐿  Latent heat of melting (J/kg) 

𝑁  Vector normal to the interface 

𝑇  Temperature (K) 

𝑉  Coordinate velocity of the surface (m/s) 

𝑔𝑖𝑗  Covariant components of the metric tensor 

𝑔𝑖𝑗  Contravariant components of the metric tensor 

(ℎ1, ℎ2, ℎ3) Scale factors 

𝑘  Thermal conductivity (W/mK) 

𝑞″  Heat flux vector (W/m2) 

(𝑟, 𝜃, 𝑧)               Cylindrical coordinate variables (m,o,m) 

𝑡  Time (s) 

(𝑢, 𝑣)  Interface coordinates(𝑥, 𝑦, 𝑧)Cartesian coordinates (m) 

𝜀𝑖𝑗𝑘  Levi-Civita symbol 

𝜌  Density (kg/m3) 

(𝜉, 𝜂, 𝜁)               Curvilinear coordinate variables 

𝑙  Liquid 

𝑚  Melting 

𝑠  Solid 
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