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ABSTRACT 

 

In this paper, we investigate the initial boundary problem of a class of doubly nonlinear parabolic systems. We 

prove a nonexistence of global solutions and exponential growth of solution with negative initial energy. 

Keywords: Blow up, exponential growth, parabolic equation, multiple nonlinearities.  
 

 

1. INTRODUCTION 

 

In this work, we are interested in the blow up and growth of solutions of the following 

parabolic system: 
 

{
 

 
𝑢𝑡 − 𝑑𝑖𝑣(|∇𝑢|

𝑝−2∇𝑢) + |𝑢|𝑞−2𝑢𝑡 = 𝑓1(𝑢, 𝑣),         𝑥 ∈ 𝛺, 𝑡 > 0,

𝑣𝑡 − 𝑑𝑖𝑣(|∇𝑣|
𝑝−2∇𝑣) + |𝑣|𝑞−2𝑣𝑡 = 𝑓2(𝑢, 𝑣),          𝑥 ∈ 𝛺, 𝑡 > 0,

𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) = 0,                                                   𝑥 ∈ 𝜕𝛺, 𝑡 ≥ 0,
𝑢(𝑥, 0) = 𝑢0(𝑥),       𝑣(𝑥, 0) = 𝑣0(𝑥)                                       𝑥 ∈ 𝛺,

                                       (1) 

 

where 𝑝, 𝑞 > 2 are real numbers and 𝛺 is a bounded domain in 𝑅𝑛 (𝑛 ≥ 1) with smooth 

boundary 𝜕𝛺. 𝑓𝑖(𝑢, 𝑣) (𝑖 = 1,2) will be given later. 

In the case of 𝑝 = 2, Pang and Qiao [1] considered 
 

{
𝑢𝑡 − ∆𝑢 + |𝑢|

𝑞−2𝑢𝑡 = 𝑓1(𝑢, 𝑣),

𝑣𝑡 − ∆𝑣 + |𝑣|
𝑞−2𝑣𝑡 = 𝑓2(𝑢, 𝑣),
  

                                                                                 (2) 

  

where 𝑞 > 2. They studied the blow up properties of the problem (2) with negative and 

positive initial energy. 

Equation (2) without |𝑢|𝑞−2𝑢𝑡 and |𝑣|𝑞−2𝑣𝑡 term become the following problem 
 

{
𝑢𝑡 − ∆𝑢 = 𝑓1(𝑢, 𝑣),

𝑣𝑡 − ∆𝑣 = 𝑓2(𝑢, 𝑣).
  

                                                                                              (3) 
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Problems like equation (3) not only is important from the theoretical viewpoint, but also is 

much interest in applied science. It appears naturally in the models of physics, chemistry, biology, 

ecology and so on (see [2-12]). In [13], the authors obtained the global existence solution, blow-

up in finite time solu tion, and asymptotic behavior of solution in subcritical energy level and 

critical energy level, which are divided from potential well theory, respectively. Furthermore, 

they showed the sufficient conditions of global well posedness with supercritical energy level by 

combining with comparison principle and semigroup theory. 

Recently, In [14] the author also investigated the problem (3). He studied global existence of 

the solutions by combining the energy method with the Faedo-Galerkin's procedure. Moreover, he 

discussed the asymptotic stability by using Nakao's technique. Finally he got blow up of solution 

when initial energy is negative. 

The remaining part of this paper is organized as follows: In the next section, we present some 

notations and statement of assumptions. In section 3, the blow up of the solution is given. In 

section 4, the growth of solution is given. 

 

2. PRELIMINARIES 

 

In this section, we shall give some assumptions for the proof of our results. Let ‖. ‖,  ‖. ‖𝑝 and 

(𝑢, 𝑣) = ∫ 𝑢(𝑥)𝑣(𝑥) 𝑑𝑥
𝛺

 denote the usual 𝐿2 (𝛺) norm, 𝐿𝑝 (𝛺) norm and inner product of 

𝐿2 (𝛺), respectively. Throughout this paper, 𝐶 is used to point out general positive constants. 

For the numbers 𝑚 and 𝑞, we suppose that 
 

{
2 < 𝑞 < 𝑚 ≤

2(𝑛−1)

𝑛−2
  𝑖𝑓 𝑛 > 2,

2 < 𝑞 < 𝑚 ≤ +∞  𝑖𝑓 𝑛 = 1, 2.
  

                                                                                      (4) 

 

Regarding the functions 𝑓1(𝑢, 𝑣), 𝑓2(𝑢, 𝑣) ∈ 𝐶
1 such that 

 

𝑓1(𝑢, 𝑣) =
𝜕𝐹(𝑢,𝑣)

𝜕𝑢
, 𝑓2(𝑢, 𝑣) =

𝜕𝐹(𝑢,𝑣)

𝜕𝑣
  

 

and 
 

{
𝑘0(|𝑢|

𝑚 + |𝑣|𝑚) ≤ 𝐹(𝑢, 𝑣) ≤ 𝑘1(|𝑢|
𝑚 + |𝑣|𝑚),

𝑢𝑓1(𝑢, 𝑣) + 𝑣𝑓2(𝑢, 𝑣) = (𝑚 + 1)𝐹(𝑢, 𝑣)
                                                                       (5) 

 

where 𝑘0, 𝑘1 are positive constants. 

Combining arguments of [15,12,16], 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) are called a solution of problem (1) on 

𝛺 × [0, 𝑇) if 
 

{
𝑢, 𝑣 ∈ 𝐶(0, 𝑇;𝑊0

1,𝑝(𝛺)) ∩ 𝐶1(0, 𝑇; 𝐿2(𝛺)),

|𝑢|𝑞−2𝑢𝑡 ,   |𝑣|
𝑞−2𝑣𝑡 ∈ 𝐿

2(𝛺 × [0, 𝑇))
                                                                        (6) 

 

satisfying the initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥) and 
 

∫ ∫ [|∇𝑢|𝑝−2∇𝑢∇𝑤 + 𝑢𝑡𝑤 + |𝑢|
𝑞−2𝑢𝑡𝑤 − 𝑓1(𝑢, 𝑣)𝑤] 𝑑𝑥 𝑑𝑠 = 0,𝛺

𝑡

0
                                  (7) 

 

∫ ∫ [|∇𝑣|𝑝−2∇𝑣∇𝑤 + 𝑣𝑡𝑤 + |𝑣|
𝑞−2𝑣𝑡𝑤 − 𝑓2(𝑢, 𝑣)𝑤] 𝑑𝑥 𝑑𝑠 = 0𝛺

𝑡

0
                                         (8) 

 

for all 𝑤 ∈  𝐶(0, 𝑇;𝑊0
1,𝑝(𝛺)). 

The energy functional associated with problem (1) is 
 

𝐸(𝑡) =
1

𝑝
‖∇𝑢‖𝑝

𝑝
+

1

𝑝
‖∇𝑣‖𝑝

𝑝
− ∫ 𝐹(𝑢, 𝑣)𝑑𝑥,

𝛺
                                                                         (9) 

 

where 𝑢, 𝑣 ∈ 𝑊0
1,𝑝(𝛺). 

 

Lemma 1  Suppose that (4) and (5) hold. 𝐸′(𝑡) is noncreasing function 𝑡 > 0 and  
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𝐸′(𝑡) = −‖𝑢𝑡‖
2 − ‖𝑣𝑡‖

2 − ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥 − ∫ |𝑣|𝑞−2𝑣𝑡

2
𝛺

𝑑𝑥 < 0
𝛺

.                                       (10) 
 

Proof. Multiplying 𝐸𝑞. (1)1 by 𝑢𝑡 and 𝐸𝑞. (1)2 by 𝑣𝑡 and integrating over 𝛺, we obtain 
 

∫ 𝐸′(𝜏)𝑑𝜏 = − [∫ (‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2)𝑑𝜏 + ∫ ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥𝑑𝜏 + ∫ ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥𝑑𝜏
𝛺

𝑡

0𝛺

𝑡

0

𝑡

0
]

𝑡

0
,  

𝐸(𝑡) − 𝐸(0) = − [∫ (‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2)𝑑𝜏 + ∫ ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥𝑑𝜏 + ∫ ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥𝑑𝜏
𝛺

𝑡

0𝛺

𝑡

0

𝑡

0
]  

 

for t>0. 

   

3. BLOW UP OF SOLUTIONS 

 

In this section, we deal with the blow up results of the solution for the problem (1). 
 

Theorem Suppose that (4) holds, 𝑢0, 𝑣0 ∈ 𝑊0
1,𝑝(𝛺) and 𝑢, 𝑣 are local solution of the system (1) 

and 𝐸(0) < 0. Then, the solution of the system (1) blows up in finite time. 
 

Proof. We set 
 

𝐻(𝑡) = −𝐸(𝑡).                                                                                                       (11) 
 

From (10) and (11), we have 
 

𝐻′(𝑡) = −𝐸′(𝑡) ≥ 0.                                                                                                  (12) 
 

Since 𝐸(0) < 0, we get 
 

𝐻(0) = −𝐸(0) > 0.                                                                                              (13) 
 

By the integrate (12), we get 
 

0 < 𝐻(0) ≤ 𝐻(𝑡).                                                                                                    (14) 
 

By using (11) and (9) 
 

𝐻(𝑡) − ∫ 𝐹(𝑢, 𝑣)𝑑𝑥
Ω

= −
1

𝑝
(‖∇𝑢‖𝑝

𝑝
+ ‖∇𝑣‖𝑝

𝑝
) < 0.                                                           (15) 

 

Then, by using (5), we have 
 

0 < 𝐻(0) ≤ 𝐻(𝑡) ≤ ∫ 𝐹(𝑢, 𝑣)𝑑𝑥
Ω

≤ 𝑘1(‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚).                                                   (16) 
 

Then, we define 

 

𝛹(𝑡) = 𝐻1−𝜎(𝑡) +
𝜀

2
‖𝑢‖2 +

𝜀

2
‖𝑣‖2,                                                                        (17) 

 

where 𝜀 > 0 small to be chosen later and 0 ≤ 𝜎 ≤ (𝑚 − 2) 𝑚⁄  since 2 < 𝑚. By 

differentiating (17) and by using (1) and (5), we get 
 

𝛹′(𝑡) = (1 − 𝜎)𝐻−𝜎(𝑡)𝐻′(𝑡) + 𝜀 ∫ 𝑢𝑢𝑡𝑑𝑥Ω
+ 𝜀 ∫ 𝑣𝑣𝑡𝑑𝑥Ω

  

           = (1 − 𝜎)𝐻−𝜎(𝑡)𝐻′(𝑡) − 𝜀‖∇𝑢‖𝑝
𝑝
− 𝜀‖∇𝑣‖𝑝

𝑝
  

              +𝜀(𝑚 + 1)∫ 𝐹(𝑢, 𝑣)𝑑𝑥 −
Ω

𝜀 ∫ |𝑢|𝑞−2𝑢𝑢𝑡𝑑𝑥 − 𝜀 ∫ |𝑣|𝑞−2𝑣𝑣𝑡𝑑𝑥.𝛺𝛺
                    (18) 

 

In order to estimate the last terms in (18), we use the following Young's inequality 
 

𝑎𝑏 ≤ 𝛿−1𝑎2 + 𝛿𝑏2,  
 

so we have 
 

∫ |𝑢|𝑞−2𝑢𝑢𝑡𝑑𝑥 ≤ ∫ |𝑢|
𝑞−2

2 𝑢𝑡|𝑢|
𝑞−2

2 𝑑𝑥
𝛺𝛺

  

≤ 𝛿−1 ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥 + 𝛿 ∫ |𝑢|𝑞

𝛺𝛺
𝑑𝑥.  

 

In the same way, we get 
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∫ |𝑣|𝑞−2𝑣𝑣𝑡𝑑𝑥 ≤ 𝛿
−1 ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥 + 𝛿 ∫ |𝑣|𝑞
𝛺𝛺

𝑑𝑥,
𝛺

  
 

where 𝛿 are constant depending on the time 𝑡 and specified later. So, (18) becomes 
 

𝛹′(𝑡) ≥ (1 − 𝜎)𝐻−𝜎(𝑡)𝐻′(𝑡) − 𝜀‖∇𝑢‖𝑝
𝑝
− 𝜀‖∇𝑣‖𝑝

𝑝
  

                                                  +𝜀(𝑚 + 1)(‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚) − 𝜀𝛿(‖𝑢‖𝑞
𝑞
+ ‖𝑣‖𝑞

𝑞
)   

                                                  −𝜀𝛿−1 ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥 − 𝜀𝛿−1 ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥
𝛺𝛺

.                      (19) 
 

From the definition 𝐻(𝑡), it follows that 
 

‖∇𝑢‖𝑝
𝑝
+ ‖∇𝑣‖𝑝

𝑝
= −𝑝𝐻(𝑡) + 𝑝 ∫ 𝐹(𝑢, 𝑣)𝑑𝑥,

Ω

 

 

𝛹′(𝑡) ≥ (1 − 𝜎)𝐻−𝜎(𝑡)𝐻′(𝑡) + 𝜀(𝑚 + 1 − 𝑝)(‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚)  

                                          −𝜀𝛿(‖𝑢‖𝑞
𝑞
+ ‖𝑣‖𝑞

𝑞
) + 𝜀𝑝𝐻(𝑡)  

                                         −𝜀𝛿−1 ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥 − 𝜀𝛿−1 ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥
𝛺𝛺

.                               (20)  
 

As the embedding 𝐿𝑚 ↪ 𝐿𝑞 ↪ 𝐿2, 𝑚 > 𝑞 > 2, we have 
 

{
‖𝑢‖𝑞

𝑞
≤ 𝐶‖𝑢‖𝑚

𝑞
≤ 𝐶(‖𝑢‖𝑚

𝑚)
𝑞

𝑚,

‖𝑣‖𝑞
𝑞
≤ 𝐶‖𝑣‖𝑚

𝑞
≤ 𝐶(‖𝑣‖𝑚

𝑚)
𝑞

𝑚.
                                                                               (21) 

 

Since 0 <
𝑞

𝑚
< 1, now applying the following inequality 

 

𝑥𝑙 ≤ (𝑥 + 1) ≤ (1 +
1

𝑧
) (𝑥 + 𝑧),  

 

which holds for all 𝑥 ≥ 0, 0 ≤ 𝑙 ≤ 1, 𝑧 > 0, especially, taking 𝑥 = ‖𝑢‖𝑚
𝑚, 𝑙 =

𝑞

𝑚
, 𝑧 =

𝐻(0), we get 
 

𝐶(‖𝑢‖𝑚
𝑚)

𝑞

𝑚 ≤ (1 +
1

𝐻(0)
) (‖𝑢‖𝑚

𝑚 + 𝐻(0)),  
 

Similarly 
 

𝐶(‖𝑣‖𝑚
𝑚)

𝑞

𝑚 ≤ (1 +
1

𝐻(0)
) (‖𝑣‖𝑚

𝑚 + 𝐻(0)).  
 

Then, from (16) and (21), we get  
 

‖𝑢‖𝑞
𝑞
+ ‖𝑣‖𝑞

𝑞
≤ 𝐶(‖𝑢‖𝑚

𝑞
+ ‖𝑣‖𝑚

𝑞
)    

                                                      ≤ 𝐶1(‖𝑢‖𝑚
𝑚 + ‖𝑢‖𝑚

𝑚).                                          (22)  
 

Insert (22) into (20), it follows that 
 

𝛹′(𝑡) ≥ (1 − 𝜎)𝐻−𝜎(𝑡)𝐻′(𝑡) + 𝜀𝑝𝐻(𝑡) + 𝜀𝑐′(‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚)  

                                         −𝜀𝛿−1 ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥 − 𝜀𝛿−1 ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥,
𝛺𝛺

                               (23) 
 

where we pick 𝛿 small enough such that 𝑐′ = 𝑚 + 1 − 𝑝 − 𝐶1𝛿 > 0 and taking  𝛿−1 =
𝑘𝐻−𝜎(𝑡) (23) follows that 
 

𝛹′(𝑡) ≥ (1 − 𝜎 − 𝑘𝜀)𝐻−𝜎(𝑡)𝐻′(𝑡) + 𝜀𝑝𝐻(𝑡) + 𝜀𝑐′(‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚)  
                                 ≥ 𝛽(𝐻(𝑡) + ‖𝑢‖𝑚

𝑚 + ‖𝑣‖𝑚
𝑚),                                                     (24)  

 

where 𝛽 = 𝑚𝑖𝑛{𝜀𝑝, 𝜀𝑐′} and we pick 𝜀 small enough such that 1 − 𝜎 − 𝑘𝜀 ≥ 0. 

We now estimate 𝛹
1

1−𝜎(𝑡). From definition of 𝛹(𝑡) 
 

𝛹
1

1−𝜎(𝑡) = (𝐻1−𝜎(𝑡) +
𝜀

2
‖𝑢‖2 +

𝜀

2
‖𝑣‖2)

1

1−𝜎
.                                                                  (25) 
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As the embedding 𝐿𝑚 ↪ 𝐿2, 𝑚 > 2, we have 
 

𝛹
1

1−𝜎(𝑡) ≤ 𝐶(𝐻(𝑡) + ‖𝑢‖𝑚
2 1−𝜎⁄

+ ‖𝑣‖𝑚
2 1−𝜎⁄

).                                                                  (26) 
 

Now, by the inequality 𝑥𝑙 ≤ (𝑥 + 1) ≤ (1 +
1

𝑧
) (𝑥 + 𝑧) for 𝑥 = ‖𝑢‖𝑚

𝑚, 𝑙 = 2 𝑚(1 − 𝜎)⁄ < 1, 

since  𝜎 < (𝑚 − 2) 𝑚,⁄  𝑧 = 𝐻(0), we get 
 

‖𝑢‖𝑚
2 1−𝜎⁄

≤ (‖𝑢‖𝑚
𝑚)2 𝑚(1−𝜎)⁄   

                                                ≤ (1 +
1

𝐻(0)
) (‖𝑢‖𝑚

𝑚 +𝐻(0))  

                                                ≤ 𝐶‖𝑢‖𝑚
𝑚.                                                              (27)  

 

In the same way, we get 
 

 ‖𝑣‖𝑚
2 1−𝜎⁄

≤  𝐶‖𝑣‖𝑚
𝑚 .                                                                                              (28)  

 

Therefore, (26) becomes that 
 

𝛹
1

1−𝜎(𝑡) ≤ 𝐶(𝐻(𝑡) + ‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚).                                                                         (29) 
 

By associatining of (24) and (29) we reach 
 

 𝛹′(𝑡) ≥ 𝜉𝛹
1

1−𝜎(𝑡),                                                                                                        (30) 
 

where 𝜉 > 0 is a constant. A simple integration (30) from 0 to 𝑡 yields that 
 

𝛹
𝜎

1−𝜎(𝑡) ≥
1

𝛹−
𝜎
1−𝜎(0)−

𝜉𝜎𝑡

1−𝜎

,  

 

which implies that the solution blows up in a finite time 𝑇∗, with 
 

𝑇∗ ≤
1−𝜎

𝜉𝜎𝛹
𝜎
1−𝜎(0)

.  

 

4. EXPONENTIAL GROWTH OF SOLUTIONS 

 

In this section, we state and prove exponential growth result. 
 

Theorem Suppose that (4) holds, 𝑢0, 𝑣0 ∈ 𝑊0
1,𝑝(𝛺) and 𝐸(0) < 0. Then, the solution of the 

system (1) grows exponentially. 
 

Proof. Let us define the functional 
 

𝛷(𝑡) = 𝐻(𝑡) +
𝜀

2
‖𝑢‖2 +

𝜀

2
‖𝑣‖2,                                                                                (31) 

 

where 𝐻(𝑡) = −𝐸(𝑡). By differentiating (31) and using Eq.(1), we get 
 

𝛷′(𝑡) = 𝐻′(𝑡) + 𝜀 (∫ 𝑢𝑢𝑡𝑑𝑥Ω
+ ∫ 𝑣𝑣𝑡𝑑𝑥Ω

)  

           = ‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2 −  𝜀‖∇𝑢‖𝑝
𝑝
− 𝜀‖∇𝑣‖𝑝

𝑝
+ 𝜀(𝑚 + 1)∫ [𝑢𝑓1(𝑢, 𝑣) + 𝑣𝑓2(𝑢, 𝑣)]𝑑𝑥Ω

  

             +∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥 + ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥
𝛺𝛺

− 𝜀 ∫ |𝑢|𝑞−2𝑢𝑢𝑡𝑑𝑥 − 𝜀 ∫ |𝑣|𝑞−2𝑣𝑣𝑡𝑑𝑥𝛺𝛺
   

          = ‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2 −  𝜀‖∇𝑢‖𝑝
𝑝
− 𝜀‖∇𝑣‖𝑝

𝑝
+ 𝜀(𝑚 + 1)∫ 𝐹(𝑢, 𝑣)𝑑𝑥

Ω
  

             +∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥 + ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥
𝛺𝛺

− 𝜀 ∫ |𝑢|𝑞−2𝑢𝑢𝑡𝑑𝑥𝛺
   

             −𝜀 ∫ |𝑣|𝑞−2𝑣𝑣𝑡𝑑𝑥𝛺
.                                                                      (32) 

 

In order to estimate the last two terms in the right-hand side of (32), we use the following 

Young's inequality, 
 

𝑎𝑏 ≤ 𝛿−1𝑎2 + 𝛿𝑏2, 
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so we have 
 

∫ |𝑢|𝑞−2𝑢𝑢𝑡𝑑𝑥 ≤ ∫ |𝑢|
𝑞−2

2 𝑢𝑡|𝑢|
𝑞−2

2 𝑑𝑥
𝛺𝛺

  

≤ 𝛿−1 ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥 + 𝛿 ∫ |𝑢|𝑞

𝛺𝛺
𝑑𝑥.  

 

Similarly, 
 

∫ |𝑣|𝑞−2𝑣𝑣𝑡𝑑𝑥 ≤ 𝛿
−1 ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥 + 𝛿 ∫ |𝑣|𝑞
𝛺𝛺

𝑑𝑥.
𝛺

  
 

Then, (32) becomes 
 

𝛷′(𝑡) ≥ ‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2 −  𝜀‖∇𝑢‖𝑝
𝑝
− 𝜀‖∇𝑣‖𝑝

𝑝
+ 𝜀(𝑚 + 1)(‖𝑢‖𝑚

𝑚 + ‖𝑣‖𝑚
𝑚)   

                               −𝜀𝛿(‖𝑢‖𝑞
𝑞
+ ‖𝑣‖𝑞

𝑞
) + (1 − 𝜀𝛿−1) ∫ |𝑢|𝑞−2𝑢𝑡

2𝑑𝑥
𝛺

  

                               +(1 − 𝜀𝛿−1) ∫ |𝑣|𝑞−2𝑣𝑡
2𝑑𝑥

𝛺
.                                                             (33) 

 

By using follows equality that 
 

−‖∇𝑢‖𝑝
𝑝
− ‖∇𝑣‖𝑝

𝑝
= 𝑝𝐻(𝑡) − 𝑝 ∫ 𝐹(𝑢, 𝑣)𝑑𝑥.

Ω
  

 

Hence, (33) becomes 
 

𝛷′(𝑡) ≥ 𝜀𝑝𝐻(𝑡) + ‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2 + 𝜀(𝑚 + 1 − 𝑝)(‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚)   

                                    −𝜀𝛿(‖𝑢‖𝑞
𝑞
+ ‖𝑣‖𝑞

𝑞
) + (1 − 𝜀𝛿−1) ∫ |𝑢|𝑞−2𝑢𝑡

2𝑑𝑥
𝛺

   

                                    +(1 − 𝜀𝛿−1) ∫ |𝑣|𝑞−2𝑣𝑡
2𝑑𝑥

𝛺
.                                                (34) 

 

Then, from (22) we obtain 
 

𝛷′(𝑡) ≥ 𝜀𝑝𝐻(𝑡) + ‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2 + 𝜀𝑎1(‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚)  

+(1 − 𝜀𝛿−1) ∫ |𝑢|𝑞−2𝑢𝑡
2𝑑𝑥

𝛺
+ (1 − 𝜀𝛿−1) ∫ |𝑣|𝑞−2𝑣𝑡

2𝑑𝑥
𝛺

,  
 

where 𝛿 small enough such that 𝑎1 = 𝑚 + 1 − 𝑝 − 𝛿𝐶1 > 0 and taking 𝜀 and 𝛿 small enough 

such that 1 − 𝜀𝛿−1 > 0, then 
 

𝛷′(𝑡) ≥ 𝐶(𝐻(𝑡) + ‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2 + ‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚).                                                        (35) 
 

On the other hand, by definition of 𝛷(𝑡) and Poincare's inequality, we get 
 

𝛷(𝑡) = 𝐻(𝑡) +
𝜀

2
‖𝑢‖2 +

𝜀

2
‖𝑣‖2  

≤ 𝐶(𝐻(𝑡) + ‖∇𝑢‖2 + ‖∇𝑣‖2).  
 

Now, we estimate 
 

‖∇𝑢‖2 ≤ 𝐶‖∇𝑢‖𝑝
2    

                    = 𝐶(‖∇𝑢‖𝑝
𝑝
)
2

𝑝   

                            ≤ (1 +
1

𝐻(0)
) (‖∇𝑢‖𝑝

𝑝
+𝐻(0))   

                                            ≤ 𝐶 (‖∇𝑢‖𝑝
𝑝
+𝐻(𝑡)).                                                       (36) 

 

Similarly, 
 

‖∇𝑣‖2 ≤ 𝐶 (‖∇𝑣‖𝑝
𝑝
+ 𝐻(𝑡)).  

 

So we have 
 

𝛷(𝑡) ≤ 𝐶(𝐻(𝑡) + ‖∇𝑢‖𝑝
𝑝
+ ‖∇𝑣‖𝑝

𝑝
).  

 

From definition of 𝐻(𝑡), we get 
 

𝛷(𝑡) ≤ 𝐶(𝐻(𝑡) + ‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚)      
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                                        ≤ 𝐶(𝐻(𝑡) + ‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚 + ‖𝑢𝑡‖
2 + ‖𝑣𝑡‖

2).                           (37) 
 

From (35) and (37), we arrive at 
 

𝛷′(𝑡) ≥ 𝑟𝛷(𝑡),                                                                                                (38) 
 

where r is a positive constant. 

Integration of (38) over (0, 𝑡) gives us 
 

𝛷(𝑡) ≥ 𝛷(0) exp(𝑟𝑡).  
 

From (37) and (16), we get 
 

𝛷(𝑡) ≤ 𝐻(𝑡) ≤  ‖𝑢‖𝑚
𝑚 + ‖𝑣‖𝑚

𝑚.  
 

Consequently, we show that the solution in the 𝐿𝑚-norm growths exponentially. 
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