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ABSTRACT

In this article, we present the theory of fuzzy cone b-metric space as a new type of generalized metric spaces.
We give some basic properties of this new space as Hausdorffness, convergence, completeness etc. In
addition to, we introduce fuzzy cone b-metric Banach contraction theorem using our results.
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1. INTRODUCTION

Firstly, the theory of cone metric space was defined by Huang and Zhang in 2007 [3]. They
handled ordering Banach space in lieu of the R as follows:
Consider a real Banach space E . When the following conditions are satisfied, the set

P < E is defined as a cone: for a,be R" U{0};

1) P isnonempty, P = {6},
2) P isclosed,
3) ax,+bx, P, if x,X, €P,

4) X =0,if X, €P and —X €P,

When P < E s a cone, a partial ordering < according to P is found where X, < X,
means X2 — X1 e P . Moreover, the followings will be used:

o X=X X=X and X #X,,

o X <KX, &> X, —X €intP (intP is the set of interior points of P).
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If there exists a K >0 which holds &< X <X, =X <K|x,| for each

X, X, € E, inthat case P is called a normal cone. Also, the normal constant of P is K that
is the smallest positive number satisfying above inequality.

Definition 1.1 [3] Let X # & bean arbitrary set and a mapping d be defined from X x X
to E. When the followings are hold, d is defined as cone metric on X . Also, (X , d) is

called cone metric space: foreach X, X,, X; € X,

d1. @<d(X,X,) and d(X,X,) =0 < X =X,,

d2. d (X1’ Xz) = d(X21 Xl)!

d3. d(x;, %) < d (%, ;) +d (X, X,)-

Obviously, cone metric spaces are a generalization of metric spaces.
Example 1.2 [3] Let E =R?, P={(X,%,): X,X, >0} E and X =R .Let d be
defined from X x X to E where d(X;,X,) = (X —X,|, | —X,|) for a constant

a > 0. In that case, (X .d ) is a cone metric space.

In 2011, the structure of cone b-metric space was presented by Hussain and Shah [4]. They
examined some basic properties of this space.

Definition 1.3 [4] Let X #(J be an arbitrary set, P be a cone of E and
D : X x X — P be a vector-valued function. If the following conditions are hold, then D

is said to be a cone b-metric on X with the constant K >1. Also, (X, D) is called a cone b-
metric space: for each X, X;,X; € X,

M1. @< D(X,X,) and D(X,X,) =60 < X, =X,,

M2. D(X, %) = D(X;, X,),
M3. D(X;, X5) < K[D(X,, X,) + D(X,, X;)].

Lemma 1.4 [4] Let d be a cone b-metric on X . For each t, >>6 and t,>>0,
t,t, €E thereexissa t € E, t >> @ satisfying t <<t and t <<t,.

The notion of fuzzy sets was defined by Zadeh [8]. Later, the theory of fuzzy metric space
given by Kramosil and Michalek was modified by George and Veeramani and they give basic
properties of this space [1, 5].

Definition 1.5 [7] A continuous t —norm * : [0,1] X [0,1] - [0,1] is a binary operation if
the followings are satisfied: for all X, Y, Z,t €[0,1],

(1) * is associative and commutative,
(2) * is continuous,
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(3) X*1=X,
(4) X*y <z*t whenever X< Z and Y <t.

The following equalities which are given by the symbols *,,,*, and * respectively are the
three basic continuous t-norms:

. X%, y=min{x,y},
o X#FY=XY,
o X#_ y=max{x+y-10}.

Definition 1.6 Let X be an arbitrary set and * be a continuous t —norm. A fuzzy set M on

X2 x(0,00) is called a fuzzy metric on X if for each X, X,,X; € X and t,5>0, the
following axioms are hold:

FML. M (X, X,,t) >0,

M2, M (X, X,,t) =1 < X =X,

FM3. M (X, X,,t) = M (X,, X, 1),

FM4. M (X, X5, 1 +S) > M (X, X, 1) * M (X,, X5, 9),

FM5. M (X, X,,-) : (0,00) —[0,1] is continuous.

The ordered triple ( X,M ,*) is called a fuzzy metric space.

In 2015, the theory of fuzzy cone metric space was defined by Oner et al. [6].

Definition 1.7 [6] Let X be an arbitrary set, E be a real Banach space and P be a cone of
E. Afuzzy set M on X?x int(P) is called a fuzzy cone metric on X if for each

X, Xy, X € X and t,s €int(P), the following axioms are hold:

FcM1. M (X, X,,t) >0,

Fem2. M (X, X,,t) =1 < X =X,,

Fem3. M (X, X,,t) = M (X,, X, 1),

FeM4. M (X, X, t+5) > M (X, X, 1) * M (X,, X5, 9),
Fcms. M (X, X,,-) = int(P) —[0,1] is continuous.

The ordered triple ( X,M ,*) is called a fuzzy cone metric space.

2. FUZZY CONE B-METRIC SPACE

We introduce a new concept of generalized metric space called fuzzy cone b-metric space.
Also, we give some basic properties of this new space as Hausdorffness, convergence,
completeness etc.
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Definition 2.1 Let X be an arbitrary set, E be a real Banach space, P be a cone of E and *

be a continuous t-norm. A fuzzy set M on X 2 x int( P) is said to be fuzzy cone b — metric
with the constant D >1 on X if for each X, X,,X; € X and t,s eint(P), the following
axioms are hold:

FcBL. M(x, X,,t) >0,

FcB2. M (X, %,,1) =1 < X, =X,,

Fce3. M (X, X,,t) = M (X,, X, ),

FCB4. M (X, X3, b(t+5)) = M (X, X,,t) * M (X,, X5, ),

FcB5. M (X, X,,-) : Int(P) —[0,1] is continuous.

The ordered triple (X M ,*) is said to be fuzzy cone ) — metric space.

Note that if we take =1 in the definition of fuzzy cone b-metric space, then condition
FCMA4 in the definition of fuzzy cone metric space is satisfied. So, every fuzzy cone metric space
is a fuzzy cone b-metric space. Also the family of fuzzy cone b-metric spaces is larger than that of

the fuzzy cone metric spaces. If we take E =R, P =(0,00) and X*, y=X.y for all

X, ye [0,1] in the definition of fuzzy cone metric space, then fuzzy cone metric space becomes

a fuzzy metric space. So, every fuzzy metric space is a fuzzy cone metric space. Also the family
of fuzzy cone metric spaces is larger than that of the fuzzy metric spaces. Consequently, if we

take =1 E=R, P=(0,00) and X%, Y= XY forall X,y €[0,1] in the definition

of fuzzy cone b-metric space, it becomes a fuzzy metric space. Namely, every fuzzy metric space
is a fuzzy cone b-metric space.

Fuzzy cone b-metric \b=tFuzzy cone metric \E=R. P=(0.=).x* y=x.y Fuzzy metric
= =
space space space

Example 22 Let E=R?*, X =R and m*, Nn=mn for all mne[0,1]. Take a
normal cone P ={(k;,K,): k,K, 20} E such that K =1 [2]. Let M be defined
from X xint(P) to [0,1] by

_Paxl
It

M(X11X21t) =€

for all X11 X2 e X and t >> 8. Inthat case, M is a fuzzy cone b-metricon X .
First three conditions can be easily verified.

FCB4. For each X, X,,X; € X,

X, = X <X = X, | +[%, = Xs.
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S<t+S and t<T+S imply ||S||S||'[+S|| and ||t||<||t+S|| for all t>>6@ and

S>> @, respectively because of normal cone P . Then, HWH >1 and HIH:HSH >1. Thus, we

have
o<l e,
t] I

=] =l % =
[t+s Il sl

and for b >1,
X =] =] ] x|
bfft+s| — ft+s| — [t Is|

Hence,

x| Pa—xol  [xo—xg|

Qb <o [ g

g% _ Py =%, _ %2~

e sl 5o W g Bl

Thus the condition is satisfied.
FCBS5. Let N be defined from int(P) to (0,00) by n(t) =||t|| and f be defined from

_ X =,

(0,00) to [0,1] by f(uUy=e Y . Then, M can be thought as composition of f and

N.Since both N and f are continuous functions, M is also a continuous function.

In that case, (X, M, *) is a fuzzy cone b-metric space.
Example 2.3 Let d be a cone b-metric on X . Take a normal cone P with K =1 and
M3, N=mn forall m,n[0,1]. Define M : X*xint(P) —[0,1] by
t]
M (Xl’ X2't) — ”—
e+l (% %))

for each X11 X2 e X and t >> 6. Inthat case, M is a fuzzy cone b-metric on X . Also,

M s said to be the standard fuzzy cone b-metric induced by a cone b-metric.
First three conditions and FCB5 can be easily verified.

FCB4. Since d is acone b-metric on X |, for each X X5, X% € X,
d (%, %) <b[d(x,%,) +d (X, %;)]

1305



H. Posul, E. Kaplan, S. Kiitiikcii | Sigma J Eng & Nat Sci 37 (4), 1301-1314, 2019

and we have

o0 %)) < [lod (., x,) +d (%, %) ]|
<b||d (x,, %,)|+b|d (%,, ;)|

S<t+S and t<t+S imply ||S||S||t+$|| and |

t” < ||t + S” for each t >> 6@ and

ft-+s]
Is

E
b|it+s bft+s
jaex =2 e )

o0 )] _ 06, 5] , Jd0e, %)
ofees] © W
il )]+ oo )

sl

>1 and WEl.So,weget

S >> 0, respectively because of normal cone P . Then,

and we have
L 800 o sl 0 %)) + [Eld (. x0)]
bt +] [s[t]
s+ sl 0% )]+ el . )]
i ISl
_ s+ sl (%00 + el O %))+l O %)l 0% )]
. [sfl]
(It +118 0% )M (Il 0 3
[s[[] |

Then,

bft-+ 5] +]d (¢, %) _ ] +[d 0 %), [ +]d (%, )]
bft-+5 ] <]

and we have
2o I | R -
bfjt+sf|+d O )] [t +[d 04 %) 8] +{1d 0. %3)]

Thus, FCB4 is satisfied. As a result, M is a fuzzy cone b-metricon X .
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Example 2.4 Let Ml be a fuzzy cone b-metricon X and M , be afuzzy cone b-metric on

Y .Let M be defined from ( X xY )2 xint(P) to [0,1] by

M0, %), (Y2s ¥2), ©) = My (%, Y1, 1) M, (%, Y, )
for all (X, %), (Y1, Y,) € XxY and t>>6. In that case, M is a fuzzy cone b-

metricon X .
First three conditions and FCBS5 can be easily verified.

FCB4. Forall (X, %,), (Y1, Y,),(2,,2,) € X XY,
M (X, X,), (2, 2,), b(t +5)) = M, (X, 2,,b(t +5)) * M, (X,,Z,,b(t +5))
= M, (%, Y1, 8) * My (Y1, 2,8) * My (%, ¥, 1) ¥ My (Y, 2,,9)
=M (%, %), (Y1, ¥2). ) *M (Y1, ¥,). (2, 2,)9)

Thus, FCB4 is satisfied. As a result, M is a fuzzy cone b-metricon X xY .
Proposition 2.5 Let M be a fuzzy cone b-metric on a set X . In that case it is nondecreasing
mapping for each X, X, € X.

Proof Showing that M is a nondecreasing mapping according to t € int(P) is easy. Firstly,
assume that M (X, X,,t) > M (X, X,,t;) for t, >>t>>6. For b>1,
M (X, X;,bt5) = M (5, %, ) # M (%, X, 8, —1)
=M (X1’ Xzit)
> M (X, X,,1,).
So, we obtain a contradiction. Then, M ()(1, X, ) is nondecreasing.
Remark 2.6 (1) Let M be a fuzzy cone b-metric onaset X . 1If M (X, X,,bt) >1— p for
all X,%X, € X, t>>60 and 0< p <1, then there exists a 5, 6 <<S <<t such that
M (%, X,,8) >1— p.
() If p,> p,, thena p, such that P, * P, = P, can be found. Also, a P such that
Ps* Ps = P, forany p, canbe found (01, 05, 03, Py P5 € (02)).
Definition 2.7 Let (X M ,*) be a fuzzy cone b-metric space and X, € X. Then, for any
O<p<landt>>0,theset
B(x, p,bt) ={x, € X : M(x,X,,bt)>1-p}
is defined as an open ball.
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Definition 2.8 A subset G of a fuzzy cone b-metric space (X M ,*) is called open if given
any point X, in G, there exist a 1>p>0 and a t>>6 such that
M (Xl,X2 ,bt) >1— p.There X, alsobelongsto G.

Lemma29Forany X, € X,0<p<land t>>0, B(xl,r,bt) is an open set in fuzzy
cone b — metric space.
Proof Let B(Xi,p, bt) be an open ball. Then,

X, € B(x, p,bt) = M (x, x,,bt) >1— p.

If we consider Remark 2.6 (1), since M (X, X,,bt) >1—p,a S for 6 <<s<<t
which satisfies M (X, X,,S) >1—p can be found. Assume that p, =M (X, X,,S).
Since p, >1—p, a t, for 0<t, <1 suchthat py >1—1t; >1— p can be found. If we
consider Remark 2.6(2), for p, and t; such that p, >1—t;, a p, such that

Po * P, 211, can be found. Take into consideration the ball B(X,,1— pl,b(t - S))
We claim that

B(x,,1— p,,b(t—s)) = B(x, p,bt).
Take X, € B(X,,1— p,,b(t—5)). Then, M (Xz,xs,b(t —S)) >1-(1-p,) = p, for
b >1. For this reason,
M (X, X;,bt) > M (X, X,,S) * M (X,, X;,t —S)

> Po* Py

>1-t,

>1-p.
Then, X; € B(Xl,p, bt) . So, the proof is completed.

Proposition 2.10
T, = {G c X : x eG iff there exist t >> 0 and p (0,1) such that B(x,, p,bt) = G}

is a topology in fuzzy cone b-metric space.
Proof i) If X, €@, so ¢ =B(X,r,bt) = @. Therefore, ¢ € 7. Since
B(x, o,bt) = X forany X, € X, p € (0,1) and t >> 6, X €71,,.
i) Let U,V €7, and X, €U NV. Inthatcase, X, €U and X, €V. since X, €U
and Uer,, there exist a L eE >0 ad p e (0,1) such that
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B(x,, p.,bt)) cU. Similarly, since X, €V and V €17, thereexista t, e E, t, >> 60
and p, 6(0,1) such that B(X;, 0,,bt,) V. From Lemma 14, for t, >>6 and
t,>>0, there exists a teE, t>>60 such that t<<t and t<<t,. Take
p=min{p, p,}. Intnatcase, B(X,, p,bt) = B(x, p,,bt;) cU and

B(x,, p,bt) = B(x;, p,,bt,) V.

so, B(x, p,bt) = B(X, oy, bt)) M B(x, p,,bt,) U AV.

Consequently, U NV e,
iii) Forall i€l let U, €7 and X, € JU,. Then, for Elio el, x €U, . since
iel 0
U, €7, thereexista t e E, t >>6 and p €(0,1) such that B(x, p,bt) =U; . In

this case,

B(x, p,bt) cU; cL}Ji €T,.

iel
Hence, (X,Z‘b) is a topological space.

Theorem 2.11 Let M be a fuzzy cone b-metric on a set X . In that case, (X ,Tb) is a
Hausdorff space.

Proof Suppose that X, #X, for X, X, € X. It is obvious that 1> M (X, X,,b%) > 0.
Consider M (X, X,,bt) = p for some p, 1> p > 0. From Remark 2.6 (2) , for each P,
such that 1> py > p, there exists a o, €(0,1) such that p, * p, > p,. Take into
consideration the open sets B(X;,1— pl,%) and B(X,,1— pl,%). We claim that

bt bt
B(x,1- pl’?) N B(x,,1- pl’?) = .

Suppose that B(Xl,l—pl,%) N B(Xz,l—pl,b—zt) # @. Then, we can find a X, such
that

bt bt
X3 € B(Xl’l_pl’E) M B(Xz’l_plii)-
So, X; € B(Xl,l—pl,%) and X, € B(Xz,l—pl,%). Therefore,
bt
M (X, Xs'E) >1-(1-p)=p

and
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bt
M (Xz’xs’E) >1-(1-p)=p.

For b>1,
p= M (X11X2|b2t)

bt bt

>M (Xi,xgy_)* M (X3,X2,—)
2 2

> pPLEp

Z P,

> p.

Thus, we obtain a contradiction. As a result, the proof is completed.

Theorem 2.12 Let (X M ,*) be a fuzzy cone b-metric space, then X is a first countable
space.

Proof Let X, € X and t >> @. Also, take

f (xS ) e}

1 bt ) _ _
where B X;,—,— | denotes the open ball of X1 in X It suffices to show that ﬂxl isa
nn

local basis at X;. Then, let Ge 7, and X, € G. By the definition of an open set, there exist
O<p<landteE,t>>6 whichsatisfies B(X, p,bt) = G. Take N € N such that
L<p. since <1, % <<bt. Now, we must show B(x,,2)c B(Xl p,bt). Let

n
1 bt : bt .

X, € B(Xl’E’F . In this case, M (X, XZ’F) >1_F >1— p. Since 7 << bt, by
Proposition 2.5, we get M (X, X,,bt) > M (X, %,,2) >1— p. so, X, € B(x,, p,bt)
which implies B(Xl, # ) n) - B(X1 yol bt) c G. Asaresult, X; has a countable local basis
as ﬁxl . The proof is completed.

Let (X M ,*) be a fuzzy cone b-metric space and take a sequence {Xk} in this space. In
that case, definitions of convergent sequence and Cauchy sequence are as follows:
Definition 2.13 If for each & € (0,1) and t >> 6, there exists a K, € N which satisfies

M (X, X,bt) >1—¢ foreach K >K,, then {X, } is said to be convergent to X in X.
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Also, X is said to be the limit of {X, } and this is denoted by I!T; X, =X or X, =X as
K — oo,

In other words, {X, } converges to X if and only if M (X ,X,bt) >1 asto k > o0
foreach 1 >> 6.
Definition 2.14 If for each &€ (0,1) and t>>@, there exists a K, € N such that

M (X, ,X,,bt) >1—¢ for each k,m>K,, then {X, } is said to be Cauchy sequence in
this space.

In other words, {Xk} is a Cauchy sequence if and only if M (Xk,Xm,bt) —1 asto

k,m — oo foreach t >> 6.

Also, one can say that a complete fuzzy cone b-metric space is a fuzzy cone b-metric space in
which every Cauchy sequence is convergent.

Lemma 2.15 Let (X M ,*) is a fuzzy cone b-metric space. Then, every convergent sequence

in X has a unique limit.
Proof. Suppose that X, — X;, X, — X, and X, # X,. Since {Xk} converges to X; and
X,, for any t>>6 and & €(0,1), there exist K,k, €N such that
M(X,,X,bt) >1—g foreach K>k, and M(X,,X,,bt) >1—g foreach kK >K,.
If we set Ky = max {k;,k, }, then for each k >k, t >> & and s >> 6,
M (X, X,,bt) > M (%, X, ,S) * M (X, X,,t —S)
>1-g)*(1-g).
From Remark 2.6(2), for 1—&,, we can find 1— & such that
(1-g)*(1-¢g)21-¢.
Thus,
M (%, X,,bt) >1—¢.
Then, M (X, X,,t) =1 <> X, = X,. So, the proof is completed.

Lemma 2.16 Let (X M ,*) be a fuzzy cone b-metric space. Then, every convergent sequence

is a Cauchy sequence.
Proof Since {X, } convergesto X, forany t >> 6 and & €(0,1), there existsa k, € N

which satisfies M (X, X,bt) >1—g, foreach K > K. Then foreach K,m>Kk,, t >> 6
and S>>0,
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M (X, X,,bt) = M (X, X,8) * M (X, X.,,t —5)
>(1-¢g)*(1-¢g).
From Remark 2.6(2), for 1—&;, we can find 1— & such that
(1l-g)*(1-g)21-c.
Hence M (X, X,,,bt) >1— & So, the proof is completed.
3. FUZZY CONE B-METRIC BANACH CONTRACTION THEOREM

The fuzzy Banach contraction theorem was given by Grabiec [2] in 1988. We extend it to the
complete fuzzy cone b — metric space.
Theorem 3.1 Let M be a complete fuzzy cone b-metric on aset X which satisfies

tIim M(x,y,t) =1 (3.1.1)
foreach X,y € X. Let T : X — X be a mapping such that

M(Tx,Ty,qt) = M (x, y,t) (3.12)
foreach X,y € X where 0 < g< 1. In that case, there exists a unique fixed point of T.

Proof Take X € X and Xy =TkX for each K € N. Let us use the method of induction.

Then, we have

t
M (X, %,,1,qt) = M (X, xl,F) (3.1.3)

for each ke N and t >> 0. For any p€Z+,Weget

t t
M (Xk'Xk+p’bt) >M (Xk’xk+1’6) *..xM (Xk+p—l’ Xk+p’5)

t t
> M (X, X, —) * ... % M (X, X, ——)
p.g* p.g P

by (3.1.3). According to (3.1.1), we have
lim M (x,, X, ,,bt) 21#.. *1=1.
k—o

Thus, {Xk} is a Cauchy sequence. Also, since X is complete, {Xk} is a convergent

sequence. Then, assume that {Xk} converges to Y € X. So, we obtain
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t t
M (Ty,y,bt) > M(I'y,Txk,E)* M(Txk,y,E)
=M (I'y,Txk,%)* M (I'k“x,y,%).

From (3.1.2),
t t
M (Ty, y,bt) > M(y, Xk,ﬁ) *M (X, 5, y,E)

>1x1=1.

By FCB2, we obtain Ty =Y, a fixed point. Finally, to verify uniqueness of the fixed point,
suppose that Tz = z forsome Z € X. In this case,

1>M(z,y,t) =M(Tz,Ty,t)

>M (z,y,l) =M (I'z,Ty,l)
q q

t
> M(z,y,—z)
q

> M(z,y,ik)—>1ask—>oo.
q

ByFCB2, z=Yy.
Consequently, T has a unique fixed point.

Example 3.2: We consider Example 2.3 and define T : X — X by TX =% In that case,
(X, M ,*) is a complete fuzzy cone b-metric space which satisfies (3.1.1) and T satisfies

(3.L.2) with g =+ € (0,1). Thus, there exists a unique fixed point of T which is 0.

4. CONCLUSIONS

In this paper, we introduce theory of fuzzy cone b-metric space and examine basic properties
of this space. Also, we extend Banach contraction theorem to the complete fuzzy cone b-metric

spaces.
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