
1293 

 

 

Sigma J Eng & Nat Sci 37 (4), 2019, 1293-1300 
 

                                                                                                                                 

 

 

 

 

Research Article 

EULER-LAGRANGIAN DYNAMICAL SYSTEMS WITH RESPECT TO 

HORIZONTAL AND VERTICAL LIFTS ON TANGENT BUNDLE 

 

 

Haşim ÇAYIR*
1
 
 

 
1Department of Mathematics, Giresun University, GİRESUN; ORCID: 0000-0003-0348-8665 

 

Received: 16.08.2019   Accepted: 19.09.2019 

 

  

ABSTRACT 

 

The differential geometry and mahthematical physics has lots of applications. The Euler-Lagrangian 
mechanics are very important tools for differential geometry, classical and analytical machanics. There are 

many studies about Euler-Lagrangian dynamics, mechanics, formalisms, systems and equations. The classic 

mechanics firstly introduced by J. L. Lagrange in 1788. Because of the investigation of tensorial structures on 
manifolds and extension by using the lifts to the tangent or cotangent bundle, it is possible to generalize to 

differentiable structures on any space (resp. manifold) to extended spaces (resp. extended manifolds) [5, 6, 9]. 

In this study, the Euler-Lagrangian theories, which are mathematical models of mechanical systems are 

structured on the horizontal and the vertical lifts of an almost complex structure in tangent bundle .TM  In 

the end, the geometrical and physical results related to Euler-Lagrangian dynamical systems are concluded.  

Keywords: Euler-Lagrangian equations, dynamical systems, horizontal lift, vertical lift, tangent bundle. 

 

 

1. INTRODUCTION 

 

The differential geometry and mahthematical physics has lots of applications. The Euler-

Lagrangian mechanics are very important tools for differential geometry, classical and analytical 

machanics.There are many studies about Euler-Lagrangian dynamics, mechanics, formalisms, 

systems and equations. The classic mechanics firstly introduced by J. L. Lagrange in 1788. In 

1962, Klein submitted the dynamic equations for mechanical systems [4]. In 1989, M. De Leon, 

P.R. Rodrigues studyed   the methods of differential geometry in analytical mechanics [2]. Later, 

Tekkoyun obtained paracomplex structure of Euler-Lagrange and Hamilton equations [7] and 

Kasap submitted thet the Weyl-Euler-Lagrange and Weyl-Hamilton equations on 
n

nR2
 [3]. 

Because of the investigation of tensorial structures on manifolds and extension by using the lifts 

to the tangent or cotangent bundle, it is possible to generalize to differentiable structures on any 

space (resp. manifold) to extended spaces (resp. extended manifolds) [5, 6, 9]. In this study, the 

Euler-Lagrangian theories, which are mathematical models of mechanical systems are structured 

on the horizontal and the vertical lifts of an almost complex structure in tangent bundle. In the 

end, the geometrical and physical results related to Euler-Lagrangian dynamical systems are 

concluded. 
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In this context this paper consists of two main sections. In the first section, we give some 

properties about the horizontal and vertical lifts of a vector field on the tangent bundle, the Euler-

Lagrange (Euler’s or Lagr ange’s) equations and mechanical systems. In the final section, the 

results of the Euler-Lagrange equations with respect to horizontal and vertical lifts of an almost 

complex structure and the mechanical systems will be investigated on tangent bundle .TM  

 

1.1. The Verical and Horizontal Lifts on Tangent Bundle 

 

Let M  be an n dimensional Riemannian manifold with a Riemannian metric g  and 

denote by MTM :  its tangent bundle with fiber the tangent spaces to M . TM  is 

then a n2 dimensional smooth manifold and some local charts induced naturally from local 

charts on M  may be used. Namely, a system of local coordinates ),( ixU  in M  induces on 

TM  a system of local coordinates 
ii xxU ,),(( 1 )= iy , where )( ix , ni 1,...,=  is a 

local coordinate system defined in the neighborhood U  and )( iy  is the Cartesian coordinates 

in each tangent space MTP  at an arbitrary point P  in U  with respect to the natural basis 












P

xi
. Summation over repeated indices in always implied. 

Let 
i

i

x
XX




=  be the local expressions in U  of a vector field X  on M . The vertical 

lift 
VX  and the horizontal lift 

HX  of X   are then given respectively by [9] 
 

,
=

i

iV XX                                                                                                                         (1.1) 
 

i

ki

jk

j

i

iH XyXX =                                                                                               (1.2) 
 

with respect to the induced coordinates, where 
ii

x


 = , 

ii
y


 =  and 

i

jk  are the 

coefficients of the Levi-Civita connection   of ,g and 
VX , )(1

0 TMX H   of 

)(1

0 MX  . 
 

Definition 1.1.1 Let M  be a manifold with an affine connection   and a tensor field F
~

 of 

type (1,1)  in TM  by [9]  
 

HVVH XXFXXF =
~

and=
~

                                                                                 (1.3) 
 

for any ).(1

0 MX   Then we obtain 
 

IF =
~2

 
 

So, F
~

 is an almost complex structure in tangent bundle. In fact, we have by virtue of (1.3) 
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VHVVHVHH XXFXFFXFXXFXFFXF  =)(
~

=)
~

(
~

=
~

and=
~

=)
~

(
~

=
~ 22

 

for any ).(1

0 MX   

The projection MTM : , xu =)( , a po int TMu  will be denoted by 

),( yx , its local coordinates being ),( ii yx . There are the natural basis ),(
ii yx 






 and 

dual basis ),( ii dydx  of the tangent space TM  and the cotangent space )(MT 
 at the point 

TMu , respectively. In addition, any vector field )(TMX   can be uniquely written as 

follows (see [2] p. 197) 
 

,= VH XXX                                                                                                                  (1.4) 
 

where ),(
ii yx 






 is a local basis adapted to the horizontal distribution and the vertical 

disribution. Then ),( ii ydx   is dual basis of ),(
ii yx 






 basis. Moreover, from the sources 

(see [8]  p. 76) and (see [9]  p. 88), we can write 
 

,),(=and),(= ji

j

ii

i

i

jii
dxyxdyy

y
yx

xx















                                     (1.5) 

 

where 
i

j  are local coefficients of nonlinear connectin   on ,TM F
~

 is an almost 

complex structure on TM . 

Thus, from Definition 1 and (1.5) we get 
 

.=)(
~

;=)(
~

iiii xy
F

yx
F

















                                                                                 (1.6) 

 

1.2. Euler-Lagrangian Dynam cs System and Equations on Tangent Bundle 

 

The Langrangian mechanics is a reformulation of classical mechanics. Lagrangian mechanics 

is widely used to solve mechanical problems in physics and engineering when Newton’s 

formulation of classical mechanics is not convenient. Lagrangian mechanics applies to the 

dynamics of particles, fields are described using a Lagrangian density. Lagrange’s equations are 

also used in optimization problems of dynamic systems. A Euler-Lagrange and Hamilton space 

has been certified as an excellent model for some important problems in relativity, gauge theory 

and electromagnetism. Euler-Lagrangian  gives a model for both the gravitational and 

electromagnetic field in a very natural blending of the geometrical structures of the space with the 

characteristic properties of these physical fields. Klein (1962) submitted the dynamic equations 

for mechanical systems that his description is as follows [4]. 

Let M  be an n dimensional manifold and TM  its tangent bundle with canonical 

projection MTMM : . TM  is called the phase space of velocities of the base manifold 

M . Let RTML :  be a differentiable function on TM  and is called the Langrangian 
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function. We consider closed 2 form on TM  and )(= Ldd JL   and Xi  is 2 form 

reduction function that reduces the 1 form. Consider the equation 
 

,= LLX dEi                                                                                                                         (1.7) 
 

where the semispray X  is a vector field. A vector field arises in a situation where, for some 

reason, there is a direction and magnitude assigned to each point of the space or of a surface, 

typically examples are fluid dynamics, wheather prediction,... A classical example would be to 

represent the velocity of the wind with a vector that it does not depend on the time. 

We shall see that for motion in a potential, LLVEL )(=  is an energy function and 

)(= XJV  a Liouville vector field. Here LdE  denotes the differential of E . We shall see 

that (1.7) under a certain condition on X  is the intrinsical expression of the Euler-Lagrange 

equations of motion. This equation is named as Euler-Lagrange dynamic equation. The triple 

),,( XTM L  is known as Euler-Langrangian system on the tangent bundle .TM  The 

operations run on (1.7) for any coordinate system ))(),(( tptq i

i
. Infinite dimension Euler-

Lagrangian’s equation is obtained the form below [1, 2]: 
 

.1,...,=,=0,=)( niq
dt

dq

qqdt

d i
i

ii


 







                                                                    (1.8) 

 

In this paper all geometrical object fields and all mappings are considered of the class 
C , 

expressed by the words ” differentiate” or ” smooth” . The indices ji, ...run over set }{1,..., n  

and Einstein convention of summarizing is adopted over all this paper. R , )(TMô , )(TM

, MT ( )  denote the set of real numbers, the set of real functions on TM , the set of vector 

fields on TM  and the set of 1 forms on MT 
 . 

 

2. EULER-LAGRANGİAN DYNAMİCAL SYSTEMS ON TANGENT BUNDLE 

 

In this section, the Euler-Lagrange equations for classical mechanics structured by means of 

almost complex structure F
~

 defined by (1.3) under the consideration of the basis ),(
ii yx 






 

on distributions horizontal and vertical of the tangent bundle TM  of manifold .M  Let 

),( ii yx  be its local coordinates. For the vector field )(TMX   given by (1.4), we have  
 

,=
i

i

i

i

y
X

x
XX









                                                                                                    (2.1) 

 

where the dot indicates the derivative with respect to time t . The Liouville vector field on the 

bundle denoted by )(
~

= XFV  and expressed by 
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)(
~

= XFV )(
~

=
i

i

i

i

y
X

x
XF









                                                                           (2.2) 

                 
i

i

i

i

x
X

y
X









=  

 

The maps given by T , RTMP :  such that 
2)(

2

1 i

i xmT = , ghmP i=  are 

called the kinetic energy and potential energy of the mechanical systems, respectively. Here im , 

g  and h  stand for mass of a mechanical systems having m  particles, the gravity acceleration 

and distance to the origin of a mechanical system on the tangent bundle TM , respectively. Then 

TML : R  is a map that satisfies the conditions; 
 

)i PTL =  is a Lagrangian function, 

)ii  the function given by LLVEL )(=  is a Lagrangian energy. 
 

The operator 
F

i ~  induced by F
~

 and shown by  
 

)),...,(
~

,...,(=),...,,( 1
1=

21~ ri
i

r

rF
XXFXXXXi                                                    (2.3) 

 

is said to be vertical derivation, where TMr , )(TMX i  . The vertical 

differentiation 
F

d ~  is defined by  
 

FFFF
dididid ~~~~ =],[=                                                                                                      (2.4) 

 

where d  is the usual exterior derivation. For an almost complex structure F
~

, the closed 

fundemental form is the closed 2 form by Ldd
FL ~=   such that  

 

MTTMd
F

)(:~ ô                                                                                                           (2.5) 
 

In addition, for 
j

j

j

j
y

y
dx

x
d 








=  (see [8]  p. 77), we obtain 

 

i

i

i

iF
y

x
dx

y
dFd 









=)(

~
=~                                                                                  (2.6) 

 

and  
 

,=)(
~

=~
i

i

i

iF
y

x

L
dx

y

L
dFLd 









                                                                           (2.7) 

 

where L  is a Lagrangian function. 
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We consider closed 2 form on TM  and )(= Ldd JL   and Xi  is 2 form 

reduction function that reduces the 1 form, we obtain 
 

))((= i

i

i

i

j

j

j

jL y
x

L
dx

y

L
y

y
dx

x



















                                                  (2.8) 

      
ij

ij

ij

ij
ydx

xx

L
dxdx

yx

L
















2)(
=  

         
ij

ij

ij

ij
yy

xy

L
dxy

yy

L





 











)(2

 

 

Let X  be the second order differential equation (semispray) determined by (1.7) and Xi  is 

2 form reduction function that reduces the 1 form 
 

ji

iij

iij

ijj

i

LLX dx
yx

L
Xdx

yx

L
XXi 




















)()(
=)(=                               (2.9) 

 
ij

iij

iji

iij

iij

iij

i dx
yy

L
Xdx

xx

L
Xy

xx

L
X 















222

 

ji

iij

iij

iij

iji

iij

i y
xy

L
Xy

xy

L
Xy

yy

L
X 


























)()(2

 

   ,
)()(

=
22

j

ij

ij

ij

ij

ij

ij

ij

i y
xy

L
Xy

yy

L
Xdx

xx

L
Xdx

yx

L
X 



























 

 

where fvggvfvgf )()(=))((  ,   is the Kronecker delta, 

j

k
x

iji

k
x

k

jij

k

i

k

ji dxdx
x

dxdxdx
x

dx
x

dxdx  












 ==))((  and 

1.=0,= i

i

i

k
x   

Since closed 2 form L  on TM  is in the symplectic structure, it is found 
 

LLVEL )(= LLXF ))((
~

= .= L
x

L
X

y

L
X

i

i

i

i 







                                   (2.10)  

 

Hence, for  
 

j

j

j

j
y

y
dx

x
d 








= , 

 

we get 
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))((= L
x

L
X

y

L
Xy

y
dx

x
dE

i

i

i

ij

j

j

jL 

















                                         (2.11) 

       
j

j

j

ij

ij

ij

i dx
x

L
dx

xx

L
Xdx

yx

L
X
















 2)(
=  

         
j

j

j

ij

ij

ij

i y
y

L
y

xy

L
Xy

yy

L
X 





















)(2

 

 

Using the equation LLX dEi =  defined by (1.7) and considering (2.9) and (2.11), we get  
 

j

ij

ij

ij

ij

ij

ij

ij

i y
xy

L
Xy

yy

L
Xdx

xx

L
Xdx

yx

L
X 


























 )()( 22

         (2.12) 

 

 
j

ij

ij

j

j

ij

ij

ij

i y
yy

L
Xdx

x

L
dx

xx

L
Xdx

yx

L
X 




















 22)(
=  

    .
)( j

j

j

ij

i y
y

L
y

xy

L
X 













  

 

Thus, we obtain the following equation 
 

0.=
)()( 22

j

j

j

ji

ij

ji

ij

j

j

ji

ij

ji

i y
y

L
y

yy

L
Xy

yx

L
Xdx

x

L
dx

xy

L
Xdx

xx

L
X 



































   (2.13) 

 

If a curvature denoted by TMR:  is considered to be an integral curve of 

)(TMX   defined by (2.1), i.e. ,
)(

=))((
dt

td
tX


  then we obtain 

 

0.=)()(
jjjj y

L

y

L

dt

d

x

L

x

L

dt

d


















                                                                  (2.14) 

 

or 
 

0=)(
jj x

L

x

L

dt

d








                                                                                                         (2.15) 

 

0.=)(
jj y

L

y

L

dt

d









                                                                                                        (2.16) 

 

Thus, the equations given by (2.15) and (2.16) are seen to be a Euler-Lagrange equations 

according to the horizontal and vertical distribution on TM . The triple ),,( XTM L  is seen 

to be a mechanical system with taking into account the basis ),(
ii yx 






 with respect to the 

horizontal and vertical distributions, respectively. 
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3. CONCLUSION 

 

In this paper, the Euler-Lagrangian theories, which are mathematical models of mechanical 

systems are structured on the horizontal and the vertical lifts of an almost complex structure in 

tangent bundle .TM  In the end, the geometrical and physical results related to Euler-Lagrangian 

dynamical systems are concluded. 
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