
237

Sigma J Eng & Nat Sci 10 (2), 2019, 237-243

Research Article

INTRODUCTION TO HOL4 THEOREM PROVER

Kübra AKSOY*
1
, Sofiène TAHAR

2
, Yusuf ZEREN

3

1Yıldız Technical University, Department of Mathematics, ISTANBUL; ORCID:0000-0002-4369-3834

2Concordia University, Department of Electrical and Computer Engineering, Montreal-CANADA;

ORCID:0000-0002-5537-104X
3Yıldız Technical University, Department of Mathematics, ISTANBUL; ORCID:0000-0001-8346-2208

Received: 21.09.2019 Revised: 21.10.2019 Accepted: 11.11.2019

ABSTRACT

The HOL4 interactive theorem prover is a proof assistant based on Higher-Order Logic. It is an ML language

based programming environment in which mathematical functions and predicates can be defined and theorems

can be proven. The core of the HOL4 theorem prover is composed of a small set of axioms and inference

rules, making proofs in HOL4 sound and trustable. The HOL4 prover includes several theories (libraries) that
cover most subjects of classical mathematics. The tool also provides a set of built-in decision procedures that

can help automatically prove many simple theorems of arithmetic and Boolean algebra. In this paper we

provide an introduction to the HOL theorem prover and show how this tool can be used in the formal analysis
of advanced mathematics problems.

Keywords: Formal methods, theorem proving, higher-order logic, HOL theorem prover, HOL4.

1. INTRODUCTION

Formal methods construct a computer based mathematical model of a system and its

specification [1], which are then used for mathematical reasoning to check functional properties

of interest. That is, formal methods are used as a computer-based tool to mathematically analyze

the properties of a system. Similarly, simulation is used traditionally for the analysis of systems. It

has, however, some limitations like the exponential explosion of the test cases or the usage of

numerical approximation, hence, simulation provides less accurate results. On the other hand,

using formal methods, we obtain accurate results because we consider all cases implicitly.

Nevertheless, sometimes it is limited and time consuming.

Most widely used formal methods are Model Checking and Theorem Proving [1]. The former

is a state-based technique. It is used to verify temporal properties exhaustively over the entire

state-space. Model Checking is automated because it is based on propositional logic. Theorem

Proving is a proof system which includes types, axioms and inference rules. It allows using

logical reasoning to verify relationships interactively based on propositional, first or higher-order

logic.

* Corresponding Author: e-mail: kubraaksoy22@gmail.com, tel: (212) 383 43 11

Publications Prepared for the Sigma Journal of Engineering and Natural Sciences

Publications Prepared for the ICOMAA 2019 - International Conference on
Mathematical Advances and Applications

 Special Issue was published by reviewing extended papers

238

Higher-order logic [2] gives simple formalisms with precise semantics. It allows the use of

many familiar mathematical notations and suffices for the development of much of classical

mathematics. That is, we can formalize notions and develop mathematical structures using higher

order logic for verifying properties and proving theorems.

The HOL theorem prover [3] is an interactive proof environment that supports mathematical

reasoning on different theories and their applications. It has been developed by Mike Gordon at

the University of Cambridge for conducting proofs in higher-order logic. His works show both

hardware verification or traditional logical formalizations and how a simple programming

language could be semantically embedded in higher-order logic [4]. Over the years, the range of

applications of the HOL theorem prover has significantly expanded. The most recent version of

the HOL proof assistant, HOL4 [5], is now used for mechanized theorem proving in many areas,

including formalization of pure mathematics, design and verification of critical and real-time

systems, program refinement, program correctness, compiler verification and concurrency. In this

paper, we use this proof tool for illustration purposes.

In this paper, we provide a brief introduction to HOL theorem proving and illustrate how this

tool can be utilized in the formal analysis of advanced mathematics issues. The rest of the paper is

organized as follows: Section 2 presents some preliminaries about the theorem proving and logics

that will facilitate the understanding of the rest of the work. Section 3 describes the HOL4

theorem prover. The proofs in HOL4 and an application are given in Section 4. Finally, we

conclude the paper in Section 6.

2. PRELIMINARIES

2.1. Theorem Proving

Theorem proving is a field of computer science and mathematical logic that allows to conduct

computer-assisted formal proofs of the correctness of systems using mathematical reasoning. It is

one of the most used formal methods to verify a system and its desired properties in appropriate

logic. While a system is modeled as a function, its properties are modeled as theorems in the same

logic. This logic can be propositional logic, first-order logic or higher-order logic. Theorems are

interactively verified based on mathematical reasoning in a proof system in order to describe the

system. For doing this, the implementation and specification of a system are both expressed in

terms of logical formulas and the proof of correctness is derived from a very small set of axioms

and inference rules. In brief, theorem proving allows us to establish a mathematical proof that the

properties are basically satisfied.

There are some advantages and disadvantages of theorem proving. One of the most powerful

advantage is being high expressiveness because it is based on higher-order logic which provides

expressive notation and high abstraction. We can formalize and verify properties including the

underlying theory and assumptions, rather than isolated properties. Morever, the theorem prover

guaranteed soundness so that it has less risks of mistakes because each theorem is derived from

either previous theorems or the basic axioms. However, because of the use of higher-order logic,

only some parts of the proofs can be automated, while the details and proof strategies need

explicit human guidance. It also has limited mathematical libraries.

The most widely used theorem provers are HOL4 [5], HOL Light [6], Coq [7], Isabelle/HOL

[8], ACL2 [9], PVS [10]. For example, ACL2 is based on first order logic and developed at

University of Texas in Austin. PVS and HOL are based on higher-order logic. The former is

developed at Stanford Research Institute, and the latter is developed at University of Cambridge.

K. Aksoy, S. Tahar, Y. Zeren / Sigma J Eng & Nat Sci 10 (2), 237-243, 2019

239

2.2. Logics

Logic is the science of formal principles of reasoning or correct inference [2]. In a theorem

prover, logic is defined by a formal system called proof system. There are many logics such as

propositional, predicate and higher-order logic. Propositional logic is reasoning about complete

sentence. That is, it is a statement that is either true (T) or false (F). For instance, statements or

propositions can be ‘Elephants fly’, ‘Milk is white’ and ‘5 < 8’, and according to our present

knowledge, the first is false and the last two are true. This logic has Boolean operators such as

and (∧), or (∨), if. . . then (⇒), if and only if (⇔), not (¬). Combinational logic and finite-state

transition systems can be modelled using Boolean formulas and variables. However, for

modelling of complex systems this logic cannot be enough.

First-order logic, known as predicate logic, is used to express individual objects and

relationship between them. It consists of constants, variables and predicates. In a universe of

discourse, constants are represented as specific objects, variables range over objects, and

predicates use properties of objects or relationship between objects. Moreover, predicates are

often associated with sets. We can quantify over variables using the universal quantifier (∀) which

refers to all object and the existential quantifier (∃) which refers to for some object.

Quantification over relations greatly enhances the expressive power of first order formulas. For

example,

∀x∃y ((P(x) ∨ ¬Q(y)) → (Q(x) → P(y)))

Higher-order logic is a form of predicate logic in which quantification is used over arbitrary

predicates and functions. Variables can be functions and predicates. Functions and predicates can

take functions as arguments and return functions as values. Besides, predicates in higher-order

logic may be interpreted as sets of sets. Higher-order logic is different from first-order logic by

means of the addition of variables for subsets, relations and functions of the universe. So, it is

highly expressive and can be used to describe any mathematical relationship. For instance,

∀xy. ∃P. P xy

Figure 1 provides a comparison between logics based on certain characteristics which are

expressiveness, decidability and completeness. The meanings of these as follows [4]:

 Expressiveness is the capability to describe complex mathematical models.

 Decidability means there is an algorithm for deciding the (sementical) truth of any

formula (theorem).

 Completeness means all valid formulas that are semantically true are provable

Figure 1. Comparison between Logics

Propositional logic with truth tables is decidable and complete; however, because of the logic

itself it is not so expressive. On the other hand, higher-order logic is very expressive because it

allows quantifications, and reasoning about all kinds of mathematics such as real numbers,

integral, set theory, etc. It is neither complete nor decidable.

 Propositional Logic First-Order Logic Higher-Order Logic

 Less expressive (-) Very expressive (+)

 Decidable (+) Undecidable (-)

 Complete (+) Incomplete (-)

Introduction to Hol4 Theorem Prover / Sigma J Eng & Nat Sci 10 (2), 237-243, 2019

240

3. HOL4 THEOREM PROVER

The HOL4 interactive theorem prover is a proof assistant for higher-order logic providing a

programming environment in which theorems can be proved and proof tools implemented [11].

HOL4 consists of a notation (syntax), a small set of five fundamental axioms (facts) and a small

set of eight inference (deduction) rules. Using higher-order logic in it, we can translate input from

concrete syntax to abstract syntax, and translate output back from abstract to concrete syntax.

HOL4 has its own notation. Table 1 provides the mathematical interpretations of some frequently

used HOL notation.

Table 1. HOL Notation

Standard Symbol HOL Symbol Description

¬ ~ Logical negation

∨ \/ Logical or

∧ /\ Logical and

⇒ => Implication

⇔ <=> Equivalence

≠ < > Disequiation

∀x. t !x. t For all x: t

∃x. t ?x. t For some x: t

𝜆𝑥. 𝑓 𝜆𝑥. 𝑓 Function that maps x to f(x)

εx. t(x) εx. t(x) Some x such that t(x) is true

A HOL theory is collection of types, lemmas, functions and tactics. HOL theories are

databases of already proved theorems. The HOL theorem prover has a very rich collection of

libraries such as Boolean, numbers, integers, real, rational, probability, integration, etc. For

example, in the arithmetic theory, the main type is num and the function SUC n means n+1. It

contains relational operators (<, >, ≤ , = , etc.) as well as arithmetic operators (+, -, ×, ÷, etc.).

This theory also has many other useful functions such as max, min, odd, even.

Soundness is assured because every new theorem must be created from either the basic

axioms and primitive inference rules or any other already proved theorems. HOL4 is open source

and supports propositional, predicate and higher-order logic. It provides formal verification

frameworks for both software and hardware. It is also a platform for the formalization of pure

mathematics. All theorems in HOL ultimately proved using only the basic axioms and primitive

inference rules. Some axioms are in Figure 2 and some inference rules are given in Figure 3:

 BOOL_CASES : ETA: SELECT :

 ˫ (∀𝑡. 𝑡 ˅ ¬ 𝑡) ˫ (𝜆𝑥. 𝑀 𝑥) = 𝑀 ˫ ∀ 𝑃 𝑥. 𝑃 𝑥 ⟹ 𝑃 (𝜀 𝑦. 𝑃 𝑦)

Figure 2. Some HOL Axioms

K. Aksoy, S. Tahar, Y. Zeren / Sigma J Eng & Nat Sci 10 (2), 237-243, 2019

241

 ASSUME : REFL : BETA CONVERSION :

 {t} ˫ t ˫ 𝑡 = 𝑡 ˫ (𝜆𝑥. 𝑡)𝑣 = 𝑡[𝑣/𝑥]

 TRANS : ABSTRACTION : COMB:

 𝛤 ˫ 𝑠 = 𝑡 𝛤 ˫ 𝑠 = 𝑡 𝛤 ˫ 𝑠 = 𝑡

 𝛥 ˫ 𝑡 = 𝑢 x not free in 𝛤 𝛥 ˫ 𝑠 = 𝑡 𝑡𝑦𝑝𝑒𝑠 𝑓𝑖𝑡

 𝛤 ∪ 𝛥 ˫ 𝑠 = 𝑢 𝛤 ˫ 𝜆𝑥. 𝑠 = 𝜆𝑥. 𝑡 𝛤 ∪ 𝛥 ˫ 𝑠(𝑢) = 𝑡(𝑣)

Figure 3. Some HOL Inference Rules

In Figures 2 and 3, ˫ is an infix data-type constructor for the type. The constructor maps a list

of terms. Generally, given Γ ˫ Δ, Γ is the assumption and Δ represents the conclusion. For

example, in the Abstraction inference rule, Γ is the assumption and the right-hand side s = t

represents the conclusion. The lambda abstraction (λx. fx) represents any function definition and ε

is used for Hilbert choice operator.

4. PROOFS IN HOL4 THEOREM PROVER

The logic in HOL system is represented in the strongly-typed functional programming

language Meta Language (ML) [12]. ML allows the interaction with the theorem prover to

represent higher-order logic theorems using abstract data types. There are mainly two ways to

prove theorem, either forward and backward proofs. The main porpose of forward proofs is that

axioms and inference rules are used to derive theorems. That is, a forward proof is a way to

rewrite the assumptions to reach the proof goal. On the other hand, backward proof means that we

rewrite the goal to reach the assumptions. Users generally lay emphasis on backward proofs in

HOL4. Backward proofs are implemented by tactics, which are ML functions that break goals

into simple subgoals in HOL such as GEN_TAC, EQ_TAC, STRIP_TAC, REWRITE_TAC, etc.

In addition, the combination of forward and backward proof styles is also allowed. The user

interacts with a proof editor and provides it with the necessary tactics to prove goals while some

of the proof steps are solved automatically by the automatic proof procedures.

4.1. Example of a Goal and Proof

As an example of backward proof, let us prove Equation (1) in the arithmetic theory.

∀ 𝑛. 𝑛 + 1 + 1 = 𝑛 + 2, 𝑛 ∈ ℕ (1)

Using the HOL theorem prover, if we want to verify the above statement is mathematically

correctly interpreted. To start, we should write this statement as a goal via the ML function “g” ,

using HOL notation.

𝑔′! (𝑛 ∶ 𝑛𝑢𝑚). 𝑛 + 1 + 1 = 𝑛 + 2 `;

A goal is verified in HOL based on already existing theorems and definitions. Each

simplification step is applied using the ML function “e”. The first simplification step is usually to

remove the forall-quantifiers because it can be easily added later. This can be done using

GEN_TAC as follows:

e (GEN_TAC);

Introduction to Hol4 Theorem Prover / Sigma J Eng & Nat Sci 10 (2), 237-243, 2019

242

In order to find a theorem in a certain theory we use DB.match["theory"]. Hence, we specify

the expression of the term we are interested in as follows:

𝐷𝐵. 𝑚𝑎𝑡𝑐ℎ [“arithmetic”] (𝑇𝑒𝑟𝑚 `(𝑎 ∶ 𝑛𝑢𝑚) + (𝑏 + 𝑐)`) ;

This returns the Addition Associativity theorem ADD_ASSOC :

├ ∀ 𝑚 𝑛 𝑝. 𝑚 + (𝑛 + 𝑝) = 𝑚 + 𝑛 + 𝑝

Now, we want to simplify our proof goal using the symmetry of the Addition Associativity

via GSYM ADD_ASSOC and then we rewrite the goal using REWRITE_TAC[]. Combined

together we apply :

e (REWRITE_TAC[GSYM ADD_ASSOC]);

and obtain following:

By this, we achieved the first step of our mathematical reasoning in HOL. In the next step, we

want to simplify the left-hand side of the equation. For doing this, we use again DB.match in

order to find a similar theorem in the Arithmetic theory, as follows :

𝐷𝐵. 𝑚𝑎𝑡𝑐ℎ [“arithmetic”] (𝑇𝑒𝑟𝑚 `(𝑛 ∶ 𝑛𝑢𝑚) + 𝑏 = (𝑛 + 𝑎)`) ;

and find the theorem named EQ_ADD_LCANCEL :

├ ∀ 𝑚 𝑛 𝑝. (𝑚 + 𝑛 = 𝑚 + 𝑝) ⇔ (𝑛 = 𝑝)

Upon rewriting, as follows:

 e (REWRITE_TAC[EQ_ ADD_LCANCEL]);

we obtain the following output:

Similarly, we use DB.match to simplify further our proof goal as follows:

𝐷𝐵. 𝑚𝑎𝑡𝑐ℎ [“arithmetic”] (𝑇𝑒𝑟𝑚 `(2: 𝑛𝑢𝑚)`);

and find the theorem named TWO :

├ 2 = 𝑆𝑈𝐶 1

Now, for the last step of our proof goal we need to fing a theorem related to the function SUC

as follows:

𝐷𝐵. 𝑚𝑎𝑡𝑐ℎ [“arithmetic”] (𝑇𝑒𝑟𝑚 `(𝑆𝑈𝐶)`);

This theorem is called ADD1:

├ ∀ 𝑚. 𝑆𝑈𝐶 𝑚 = 𝑚 + 1

In particular, above theorems can be written as follows :

 e (REWRITE_TAC[TWO, ADD1]);

In summary, the goal is proved with the below proof script :

GEN_TAC THEN

REWRITE_TAC[GSYM ADD_ASSOC] THEN

REWRITE_TAC[EQ_ADD_LCANCEL] THEN

REWRITE_TAC[TWO,ADD1];

and obtain following theorem :

∀ 𝑛. 𝑛 + 1 + 1 = 𝑛 + 2, 𝑛 ∈ ℕ

 subgoal : n +(1 + 1) = n + 2

subgoal : 1 + 1 = 2

K. Aksoy, S. Tahar, Y. Zeren / Sigma J Eng & Nat Sci 10 (2), 237-243, 2019

243

We conducted the above proof in order to show how the HOL theorem proving steps look like

in details. However, for such simple arithmetic goal, the HOL4 theorem prover has built-in

automated tactics such as METIS_TAC and PROVE_TAC, which can be used to prove the

above goal automatically in one single step.

5. CONCLUSION

In this paper, we provided a brief introduction to the HOL theorem proving. This is the first

such paper presented to the mathematics community. HOL theorem proving is used for

mathematical reasoning in a certain logic. Unlike model checking, theorem proving based on

higher-order logic has high expressiveness. Thus, we verify generic mathematical expressions.

The core of the HOL4 theorem prover has only 5 axioms and 8 primitive inference rules. Every

new theorem is obtained from the basic axioms and inference rules or from any other already

proven theorems so that its soundness is guaranteed. HOL4 is open source and has wide variety of

applications. There are many positive features of the HOL theorem prover. For instance, HOL

will not allow us to prove anything wrong because it works like a proof checking/assistant.

Furthermore, it provides a record (repository) of proof detailed steps, and thus, users can

remember their proof steps even after many years. Besides, we can reuse intermediate proof steps

(lemmas) in verifying other theorems. HOL4 can be used in all areas of Mathematics and

Sciences, and can even help finding errors in published work. For example, the authors of [13]

were able to find an error in the distributivity law published in [14].

Acknowledgement

This research was partially supported by TUBITAK 2221 program.

REFERENCES

[1] O. Hasan and S. Tahar., (2015) Formal Verification Methods, In Encyclopedia of

Information Science and Technology, IGI Global, 7162 – 7170.

[2] J. Benthem, K. Doets., (2001) Higher-order logic. In: Handbook of Philosophical Logic,

Springer, 1: 189 - 243.

[3] M. Gordon and T. Melham., (1993) Introduction to HOL: A Theorem Proving

Environment for Higher-Order Logic, Cambridge University Press, New York, USA.

[4] J. Harrison., (2009) Handbook of Practical Logic and Automated Reasoning, Cambridge

University Press, New York, USA.

[5] HOL4. https://hol-theorem-prover.org/, 2019.

[6] HOL Light. http://www.cl.cam.ac.uk/ jrh13/hol-light/, 2019.

[7] Coq. http://coq.inria.fr/, 2019.

[8] Isabelle/HOL. https://isabelle.in.tum.de/, 2019.

[9] ACL2. http://www.cs.utexas.edu/users/moore/acl2/, 2019.

[10] PVS. http://pvs.csl.sri.com/, 2019.

[11] K. Slind and M. Norrish., (2008) A Brief Overview of HOL4. In: Theorem Proving in

Higher Order Logics, ser. LNCS, Springer, 5170: 28–32.

[12] L. Paulson., (1996) ML for the Working Programmer, Cambridge University Press, New

York, USA.

[13] Y. Elderhalli, O. Hasan, and S. Tahar., (2019) A Methodology for the Formal Verification

of Dynamic Fault Trees Using HOL Theorem Proving, IEEE Access, 7, 1: 136176-

136192.

[14] J. Ni, W. Tang and Y. Xing., (2013) A Simple Algebra for Fault Tree Analysis of Static

and Dynamic Systems, IEEE Transactions on Reliability, 62, 4: 846–861.

Introduction to Hol4 Theorem Prover / Sigma J Eng & Nat Sci 10 (2), 237-243, 2019

