
213 

Sigma J Eng & Nat Sci 10 (2), 2019, 213-220 
 

                                                                                                                                 

 

 

 

 

Research Article  

MATHEMATICAL BEHAVIOR OF SOLUTIONS OF P-LAPLACIAN 

EQUATION WITH LOGARITHMIC SOURCE TERM 

 

 

Erhan PİŞKİN*
1
, Nazlı IRKIL

2
 

 
1Dicle University, Department of Mathematics, DIYARBAKIR; ORCID:0000-0001-6587-4479  
2Mardin Said Nursi Anatolian High School, MARDIN; ORCID:0000-0002-9130-2893  
 

Received: 05.08.2019   Revised: 30.09.2019   Accepted: 11.11.2019  

 

 

ABSTRACT 

 

For the p-Laplacian wave equation with logarithmic nonlinearity of initial value problem is analyzed. 

Focusing on the interplay between damped term and logarithmic source, we discuss the local existence of 

solutions. 
Keywords: Existence, logarithmic nonlinearity. 

 

 

1. INTRODUCTION   

 

In this paper, we consider the following the p-Laplacian equation with logarithmic 

nonlinearity 
 

{

𝑢𝑡𝑡 − 𝑑𝑖𝑣(|∇𝑢|
𝑝−2∇𝑢) − ∆𝑢 + 𝑢𝑡 = 𝑘𝑢𝑙𝑛|𝑢|,    𝑥 ∈ 𝛺,   𝑡 > 0

𝑢(𝑥, 0) = 𝑢0(𝑥),     𝑢𝑡(𝑥, 0) = 𝑢1(𝑥),                    𝑥 ∈ 𝛺,              

𝑢(𝑥, 𝑡) =
𝜕

𝜕𝑣
𝑢(𝑥, 𝑡) = 0,                                   𝑥 ∈ 𝜕𝛺,   𝑡 > 0,     

                                          (1) 

  

where 𝛺 ⊂ 𝑅𝑛 (𝑛 ≤ 𝑝) is a bounded domain with smooth boundary 𝜕𝛺, 𝑝 > 2 is a costant 

number and 𝑘 is the smallest positive constant. 

Studies of logarithmic nonlinearity have a long history in physics as it occurs naturally in 

inflation cosmology, quantum mechanics and nuclear physics [2,3,6]. There is a lot of reference 

in the literature which interested in applications of logarithmic nonlinerity. The first well known 

working is introduced by [1] . Later, the motivated of this working a lot mathematicians studied 

different problem with logarithmic source term see [4,8,16,13,14,12]. 

Messaoudi, [11] studied the following problem 
 

𝑢𝑡𝑡 − 𝑑𝑖𝑣(|∇𝑢|
𝑝−2∇𝑢) − ∆𝑢𝑡 + |𝑢𝑡|

𝑞−1𝑢𝑡 = |𝑢|
𝑝−1𝑢.                                                 (2) 

 

He studied decay of solutions of the problem (2) using the techniques combination of the 

perturbed energy and potential well methods. Then the problem (2) was studied by Wu and Xue 

[17] and Pişkin [15]. 

In [9], Nhan and Truong considered 
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𝑢𝑡 − 𝑑𝑖𝑣(|∇𝑢|
𝑝−2∇𝑢) − ∆𝑢𝑡 = |𝑢|

𝑝−2𝑢𝑙𝑛|𝑢|,                                                               (3) 
 

and established the global existence, blow up and deca y of solutions for 𝑝 > 2. The problem 

(3) was studied by Cao and Liu [5], they proved global boundedness and also blowing-up at 

infinity for 1 < 𝑝 < 2. 

The present of our paper is organized as follows: Firstly, we give some notations and lemmas 

which will be used throughout this paper. In the last section, we established the local existence of 

the solutions the problem. 

 

2. PRELIMINARIES 

 

In this section we will give some notations and lemmas which will be used throughout this 

paper. For simplify notations, throughout this paper, we adopt the following abbreviations:  
 

‖𝑢‖𝑝 = ‖𝑢‖𝐿𝑝(Ω), ‖𝑢‖2 = ‖𝑢‖  𝑎𝑛𝑑 ‖𝑢‖1,𝑝 = ‖𝑢‖𝑊0
1,𝑝
Ω) = (‖𝑢‖𝑝 + ‖∇𝑢‖𝑝)

1

𝑝,  
 

for 2 < 𝑝. We denote by 𝐶 and 𝐶𝑖 = (𝑖 = 1,2, . . . ) various positive constants. 

(A) The constant 𝑘 in (1) satisfies 0 < 𝑘 < 𝑘1where 𝑘 is the positive real number satisfying 

𝑒−
3

2 = √
2𝜋

𝑘1
.  

 

Remark 1 The function 𝑓(𝑠) = √
2𝜋

𝑠
 – 𝑒−

3

2  is a continuous and decreasing function on (0,∞), 

with 
 

lim𝑠→0+ 𝑓(𝑠) = ∞,   lim𝑠→∞ 𝑓(𝑠) = −𝑒
−
3

2.      
 

Then there exist a unique 𝑘1 > 0 such that 𝑓(𝑘₁) = 0.  

Therefore; 
 

𝑒−
3

2 < √
2𝜋

𝑠
, ∀𝑠 ∈ (0, 𝑘1).  

 

We define energy function as follows 
 

𝐸(𝑡) =
1

2
‖𝑢𝑡‖

2 +
1

𝑝
‖∇𝑢‖𝑝

𝑝
+
1

2
‖∇𝑢‖2 −

𝑘

2
∫Ω𝑙𝑛|𝑢|𝑢

2𝑑𝑥 +
𝑘

4
‖𝑢‖2.                                   (4) 

 

Lemma 2 𝐸(𝑡) is a nonincreasing function of 𝑡 ≥ 0 
 

𝐸′(𝑡) = −‖𝑢𝑡‖
2 ≤ 0.                                                                                                                     (5) 

 

Proof.  We show that 𝐸′(𝑡) = −‖𝑢𝑡‖
2 ≤ 0. Multiplying the equation (1) by 𝑢𝑡 and integrating on 

Ω we have 
 

∫Ω𝑢𝑡𝑡𝑢𝑡𝑑𝑥 − ∫Ω𝑑𝑖𝑣(|∇𝑢|
𝑝−2∇𝑢)𝑢𝑡𝑑𝑥𝑐   

+∫Ω∇𝑢∇𝑢𝑡𝑑𝑥 + ∫Ω𝑢𝑡𝑢𝑡𝑑𝑥  

= ∫
Ω
𝑘𝑢𝑙𝑛|𝑢|𝑢𝑡𝑑𝑥,  

 

𝑑

𝑑𝑡
(
1

2
∫Ω|𝑢𝑡|

2𝑑𝑥) +
𝑑

𝑑𝑡
(
1

𝑝
∫
Ω
|∇𝑢|𝑝𝑑𝑥) +

𝑑

𝑑𝑡
(
1

2
∫
Ω
|∇𝑢|2𝑑𝑥)  

+
𝑑

𝑑𝑡
(−

𝑘

2
∫Ω𝑙𝑛|𝑢|𝑢

2𝑑𝑥 +
𝑘

4
‖𝑢‖2)  

= −‖𝑢𝑡‖
2,  

 

𝑑

𝑑𝑡
[
1

2
‖𝑢𝑡‖

2 +
1

𝑝
‖∇𝑢‖𝑝

𝑝
+
1

2
‖∇𝑢‖2 −

𝑘

2
∫
Ω
𝑙𝑛|𝑢|𝑢2𝑑𝑥 +

𝑘

4
‖𝑢‖2] = −‖𝑢𝑡‖

2,  
 

𝐸′(𝑡) = −‖𝑢𝑡‖
2.  

 

E. Pişkin, N. Irkıl  / Sigma J Eng & Nat Sci 10 (2), 213-220, 2019 



215 

Lemma 3 [7] (Logarithmic Sob olev Inequality). Let u be any function 𝑢 ∈ 𝐻₀¹(𝛺) and 𝛼 > 0 be 

any number 
 

∫Ω𝑙𝑛|𝑢|𝑢
2𝑑𝑥 <

1

2
‖𝑢‖2𝑙𝑛‖𝑢‖2 +

𝛼2

2𝜋
‖∇𝑢‖2 − (1 + 𝑙𝑛𝛼)‖𝑢‖2.   

 

Lemma 4 [4] (Logarithmic Gronwall Inequality) Let 𝑐 > 0, 𝛾 ∈ 𝐿¹(0, 𝑇, 𝑅⁺) and assume that the 

function 𝑤: [0, 𝑇] → [1,∞] satisfies  
 

𝑤(𝑡) ≤ 𝑐 (1 + ∫ 𝛾(𝑠)𝑤(𝑠) ln𝑤(𝑠) 𝑑𝑠
𝑡

0
) , 0 ≤ 𝑡 ≤ 𝑇,  

 

where 
 

𝑤(𝑡) ≤ 𝑐𝑒∫ 𝑐𝛾(𝑠)𝑑𝑠
𝑡

0 , 0 ≤ 𝑡 ≤ 𝑇.  
 

3. LOCAL EXISTENCE 

 

In this section we state and prove the local existence result for the problem (1). The proof is 

based Faedo-Galerkin method. 
 

Definition 5 A function 𝑢 defined on [0, 𝑇] is called a weak solution of (1) if 
 

𝑢 ∈ 𝐶 ([0, 𝑇):𝑊0
1,𝑝(𝛺)),    𝑢𝑡 ∈ 𝐶([0, 𝑇): 𝐿

2(𝛺))  
 

and 𝑢 satisfies 
 

{

∫
Ω
𝑢𝑡𝑡(𝑥, 𝑡)𝑤(𝑥)𝑑𝑥 + ∫Ω∇𝑢(𝑥, 𝑡)∇𝑤(𝑥)𝑑𝑥                   

+∫Ω|∇𝑢|
𝑝−2∇𝑢(𝑥, 𝑡)∇𝑤(𝑥)𝑑𝑥 + ∫Ω𝑢𝑡(𝑥, 𝑡)𝑤(𝑥)𝑑𝑥   

= 𝑘∫Ω𝑢(𝑥, 𝑡)𝑙𝑛|𝑢(𝑥, 𝑡)|𝑤(𝑥)𝑑𝑥,                                    

  

 

for w ∈ H0
1(Ω). 

 

Theorem 6 Let ( u₀, u₁) ∈ W0
1,𝑝
(Ω) × L²(Ω). Then the problem (1) has a global weak solution on 

[0, 𝑇]. 
 

Proof. We will use the Faedo-Galerkin method to construct approximate solutions. Let {𝑤𝑗}𝑗=1
∞

 

be an orthogonal basis of the "separable" space W0
1,𝑝
(Ω) which is orthonormal in 𝐿²(𝛺).  Let 

 

𝑉𝑚 = 𝑠𝑝𝑎𝑛{𝑤₁, 𝑤₂, . . . , 𝑤𝑚}  
 

and let the projections of the initial data on the finite dimensional subspace 𝑉𝑚 be given by 
 

𝑢0
𝑚(𝑥) = ∑ 𝑎𝑗𝑤𝑗

𝑚
𝑗=1 → 𝑢₀ 𝑖𝑛 W0

1,𝑝
(Ω)  

𝑢1
𝑚(𝑥) = ∑ 𝑏𝑗𝑤𝑗

𝑚
𝑗=1 → 𝑢1 𝑖𝑛  L

2(Ω)  
 

for 𝑗 = 1,2, . . . , 𝑚.  
 

We look for the approximate solutions 
 

𝑢𝑚(𝑥, 𝑡) = ∑ ℎ𝑗
𝑚(𝑡)𝑤𝑗(𝑥)

𝑚
𝑗=1 ,  

 

of the approximate problem in 𝑉𝑚 
 

{

∫Ω(𝑢𝑡𝑡
𝑚𝑤 + |∇𝑢𝑚|𝑝−2∇𝑢𝑚∇𝑤 + ∇𝑢𝑚∇𝑤+𝑢𝑡

𝑚𝑤)𝑑𝑥 = 𝑘∫Ω𝑢
𝑚𝑙𝑛|𝑢𝑚|𝑤𝑑𝑥,

𝑢𝑚(0) = 𝑢0
𝑚 = ∑ (𝑢0, 𝑤𝑗)

𝑚
𝑗=1 𝑤𝑗 ,                                                                               

𝑢𝑡
𝑚(0) = 𝑢1

𝑚 = ∑ (𝑢1, 𝑤𝑗)
𝑚
𝑗=1 𝑤𝑗 .                                                                               

                           (6) 

  

This leads to a system of ordinary differantial equations for unknown functions  ℎ𝑗
𝑚(𝑡). Based 

on standard existence theory for ordinary differantial equation, one can obtain functions 
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ℎ𝑗: [0, 𝑡𝑚] → 𝑅, 𝑗 = 1,2, . . .,m                                                                                  (7) 
  

which satisfy (6) in a maximal interval [0, 𝑡𝑚), 0 < 𝑡𝑚 ≤ 𝑇. Next, we show that 𝑡𝑚 = 𝑇  and 

that the local solution is uniformly bounded independent of 𝑚 and 𝑡. For this purpose, let us 

replace 𝑤 by 𝑢𝑡
𝑚  in (6) and integrate by parts we obtain 

 

𝑑

𝑑𝑡
𝐸𝑚(𝑡) = −‖𝑢𝑡

𝑚‖2 ≤ 0,                                                                                                              (8) 
 

where 
 

𝐸𝑚(𝑡) =
1

2
‖𝑢𝑡

𝑚‖2 +
1

𝑝
‖∇𝑢𝑚‖𝑝

𝑝
+
1

2
‖∇𝑢𝑚‖2  

            −
𝑘

2
∫Ω|𝑢

𝑚|2𝑙𝑛|𝑢𝑚|𝑑𝑥 +
𝑘

4
‖𝑢𝑚‖2.                                                                     (9) 

 

Integrating (8) with respect to 𝑡 from 0 to 𝑡, we obtain 
 

𝐸𝑚(𝑡) ≤ 𝐸𝑚(0).                                                                                                                           (10) 
 

By the Logarithmic Sobolev inequality leads to 
 

𝐸𝑚(𝑡) =
1

2
‖𝑢𝑡

𝑚‖2 +
1

𝑝
‖∇𝑢𝑚‖𝑝

𝑝
+
1

2
‖∇𝑢𝑚‖2  

−
𝑘

2
∫Ω|𝑢

𝑚|2𝑙𝑛|𝑢𝑚|𝑑𝑥 +
𝑘

4
‖𝑢𝑚‖2,  

 

≥
1

2
‖𝑢𝑡

𝑚‖2 +
1

𝑝
‖∇𝑢𝑚‖𝑝

𝑝
+
1

2
‖∇𝑢𝑚‖2 +

𝑘

4
‖𝑢𝑚‖2  

−
𝑘

2 
[
1

2
‖𝑢𝑚‖2𝑙𝑛‖𝑢𝑚‖2 +

𝛼2

2𝜋
‖∇𝑢𝑚‖2 − (1 + 𝑙𝑛𝛼)‖𝑢𝑚‖2],  

 

=
1

2
‖𝑢𝑡

𝑚‖2 +
1

𝑝
‖∇𝑢𝑚‖𝑝

𝑝
+ (1 −

𝑘𝛼2

2𝜋
) ‖∇𝑢𝑚‖2  

+
1

2
[
𝑘

2
(1 − 𝑙𝑛‖𝑢𝑚‖2) + 𝑘(1 + 𝑙𝑛𝛼)] ‖𝑢𝑚‖2                                                             (11) 

 

Then, using of  (10)  and taking 𝐶 = 2𝐸𝑚(0) we get 
 

‖𝑢𝑡
𝑚‖2 + (1 −

𝑘𝛼2

2𝜋
) ‖∇𝑢𝑚‖2  

2

𝑝
‖∇𝑢𝑚‖𝑝

𝑝
+ +(

3𝑘

2
+ 𝑘𝑙𝑛𝛼) ‖𝑢𝑚‖2  

≤ 𝐶 +
𝑘

2
‖𝑢𝑚‖2𝑙𝑛‖𝑢𝑚‖2.                                                                                   (12) 

 

Now, choosing 
 

𝑒−
3

2 < 𝛼 < √
2𝜋

𝑘
                                                                                                                             (13) 

 

will make 
 

3𝑘

2
+ 𝑘𝑙𝑛𝛼 > 0  𝑎𝑛𝑑 1 −

𝑘𝛼2

2𝜋
> 0  

 

This selection is possible thanks to (A). So, we have 
 

‖𝑢𝑡
𝑚‖2 + ‖∇𝑢𝑚‖𝑝

𝑝
+ ‖∇𝑢𝑚‖2 + ‖𝑢𝑚‖2 < 𝑐(1 + ‖𝑢𝑚‖2𝑙𝑛‖𝑢𝑚‖2).                                 (14) 

 

We know that 
 

𝑢𝑚(. , 𝑡) = 𝑢𝑚(. ,0) + ∫
𝜕𝑢𝑚

𝜕𝜏

𝑡

0
(. , 𝜏)𝑑𝜏.  

 

Then, using Cauchy-Schwarz inequality (𝑎 + 𝑏)² ≤ 2(𝑎² + 𝑏²), we obtain 
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‖𝑢𝑚(𝑡)‖2 = ‖𝑢𝑚(. ,0) + ∫
𝜕𝑢𝑚

𝜕𝜏

𝑡

0
(. , 𝜏)𝑑𝜏‖

2

  

≤ 2‖𝑢𝑚(0)‖2 + 2‖∫
𝜕𝑢𝑚

𝜕𝜏

𝑡

0
(. , 𝜏)𝑑𝜏‖

2

  

≤ 2‖𝑢𝑚(0)‖2 + 2𝑇 ∫ ‖𝑢𝑡
𝑚(𝜏)‖2

𝑡

0
𝑑𝜏.                                                                    (15) 

 

So, using of inequality (14) and (15) we get 
 

‖𝑢𝑚(𝑡)‖2 ≤ 2‖𝑢𝑚(0)‖2 + 2𝑇𝑐(1 + ‖𝑢𝑚‖2𝑙𝑛‖𝑢𝑚‖2).                                               (16) 
 

If we put 𝐶1 = 𝑚𝑎𝑥{2‖𝑢
𝑚(0)‖2, 2𝑇𝑐}, (16) leads to 

 

‖𝑢𝑚‖2 ≤ 2𝐶1 (1 + ∫ ‖𝑢
𝑚‖2𝑙𝑛‖𝑢𝑚‖2

𝑡

0
𝑑𝜏).  

 

Without loss of generality, we take 𝐶1 ≥ 1, we have 
 

‖𝑢𝑚‖2 ≤ 2𝐶1 (1 + ∫ (𝐶1 + ‖𝑢
𝑚‖2)𝑙𝑛((𝐶1 + ‖𝑢

𝑚‖2))
𝑡

0
𝑑𝜏).  

 

Thanks to Logarithmic Gronwall inequality, we obtain  
 

‖𝑢𝑚‖2 ≤ 2𝐶1𝑒
2𝐶1𝑡 = 𝐶2.  

 

Therefore, from inequality (14), it follows that 
 

‖𝑢𝑡
𝑚‖2 + ‖∇𝑢𝑚‖𝑝

𝑝
+ ‖∇𝑢𝑚‖2 + ‖𝑢𝑚‖2 ≤ 𝐶3 = 𝐶(1 + 𝐶2 ln 𝐶2),  

 

where 𝐶₃ is a positive constant independent of 𝑚 and 𝑡. If these operations (14) are applied to 

each term of inequality, this implies 
 

max𝑡∈(0,𝑡𝑚)‖𝑢𝑡
𝑚‖2 +max𝑡∈(0,𝑡𝑚)‖∇𝑢

𝑚‖𝑝
𝑝
+max𝑡∈(0,𝑡𝑚)‖∇𝑢

𝑚‖2 + max
𝑡∈(0,𝑡𝑚)

‖𝑢𝑚‖2 ≤ 4𝐶3      (17) 
   

So, the approximate solution is uniformly bounded independent of m and 𝑡. Therefore, we can 

extend 𝑡𝑚  to 𝑇. Moreover, we obtain 
 

{
𝑢𝑚, 𝑖𝑠 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑛  𝐿∞ (0, 𝑇;𝑊0

(1,𝑝)(𝛺)) ,

𝑢𝑡
𝑚, 𝑖𝑠 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑛  𝐿∞(0, 𝑇; 𝐿2(𝛺)).         

                                               (18) 

          

Hence we can infer from (17) and (18) that there exists a subsequence of (𝑢𝑚) (still denoted 

by (𝑢𝑚), such that 
 

{
 
 

 
 𝑢

𝑚 → 𝑢,  𝑤𝑒𝑎𝑘𝑙𝑦∗ 𝑖𝑛 𝐿∞ (0, 𝑇;𝑊0
(1,𝑝)(𝛺)) ,

𝑢𝑡
𝑚 → 𝑢𝑡,  𝑤𝑒𝑎𝑘𝑙𝑦

∗ 𝑖𝑛 𝐿∞(0, 𝑇; 𝐿2(𝛺)),       

𝑢𝑚 → 𝑢,𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛 𝐿2(0,𝑇;𝐻0
1(𝛺)),           

𝑢𝑡
𝑚 → 𝑢𝑡, 𝑤𝑒𝑎𝑘𝑙𝑦  𝑖𝑛 𝐿

2(0, 𝑇; 𝐿2(𝛺)).         

                                                             (19) 

 

Then using (19) and Aubin-Lions lemma, we have  
 

𝑢𝑚 → 𝑢, 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿2(0, 𝑇; 𝐿2(𝛺))  
 

which implies 
 

𝑢𝑚 → 𝑢, 𝛺 × (0, 𝑇).  
 

Since the map 𝑠 → 𝑠𝑙𝑛|𝑠|𝑘 is continuous, we have the convergence 
 

𝑢𝑚𝑙𝑛|𝑢𝑚|𝑘 → 𝑢𝑙𝑛|𝑢|𝑘  , 𝛺 × (0, 𝑇).                                                                    (20) 
 

By the Sobolev embedding theorem (𝐻0
1(𝛺) ↪ 𝐿∞(𝛺)), it is clear that |𝑢𝑚𝑙𝑛|𝑢𝑚|𝑘 −

𝑢𝑙𝑛|𝑢|𝑘| is bounded in 𝐿∞(𝛺 × (0, 𝑇)). Next, taking into account the Lebesgue bounded 

convergence theorem, we have  
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𝑢𝑚𝑙𝑛|𝑢𝑚|𝑘 → 𝑢𝑙𝑛|𝑢|𝑘  𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑖𝑛 𝐿2(0, 𝑇; 𝐿2(𝛺))                                                     (21) 
  

We integrate (6) over (0, 𝑡) to obtain, ∀𝑤 ∈ 𝑉𝑚 
 

𝑘 ∫ ∫𝑢𝑚𝑙𝑛|𝑢𝑚|𝑤𝑑𝑥𝑑𝑠 = ∫Ω𝑢𝑡
𝑚𝑤𝑑𝑥 − ∫

Ω
𝑢1
𝑚𝑤𝑑𝑥

𝑡

0
  

+∫ ∫Ω|∇𝑢
𝑚|𝑝−2∇𝑢𝑚∇𝑤𝑑𝑥𝑑𝑠

𝑡

0
  

+∫ ∫Ω∇𝑢
𝑚∇𝑤𝑑𝑥𝑑𝑠

𝑡

0
+ ∫ ∫Ω𝑢𝑡

𝑚𝑤𝑑𝑥𝑑𝑠
𝑡

0
.  

 

Convergences (19), (21) are sufficient to pass to the limit in (22) 
 

∫
Ω
𝑢𝑡𝑤𝑑𝑥 = ∫Ω𝑢1𝑤𝑑𝑥 − ∫ ∫

Ω
|∇𝑢|𝑝−2∇𝑢∇𝑤𝑑𝑥𝑑𝑠

𝑡

0
.

   

   −∫ ∫Ω∇𝑢∇𝑤𝑑𝑥𝑑𝑠
𝑡

0
− ∫ ∫Ω𝑢𝑡𝑤𝑑𝑥𝑑𝑠 ∫+𝑘 ∫ ∫Ω𝑢𝑙𝑛|𝑢|𝑤𝑑𝑥𝑑𝑠

𝑡

0

𝑡

0
.                                             (22) 

 

which implies that (22) is valid ∀𝑤 ∈ 𝐻0
1(𝛺).Using the fact that the terms in the right-hand 

side of (23) are absolutely continuous since they are functions of 𝑡 defined by integrals over 

(0, 𝑡), hence it is differentiable for a.e. 𝑡 ∈ 𝑅⁺. Thus, differentiating (23), we obtain, for a.e. 

𝑡 ∈ (0, 𝑇) and any ∀𝑤 ∈ 𝐻0
1(𝛺), 

 

∫Ω𝑢(𝑥, 𝑡)𝑙𝑛|𝑢(𝑥, 𝑡)|
𝑘𝑤(𝑥, 𝑡)𝑑𝑥 = ∫Ω𝑢𝑡𝑡(𝑥, 𝑡)𝑤(𝑥)𝑑𝑥  

                       +∫
Ω
|∇𝑢|𝑝−2∇𝑢(𝑥, 𝑡)∇𝑤(𝑥)  

                           +∫Ω∇𝑢(𝑥, 𝑡)∇𝑤(𝑥)𝑑𝑥  

                       +∫
Ω
𝑢𝑡(𝑥, 𝑡)𝑤(𝑥)𝑑𝑥,                                                                                   (23) 

 

If we take initial data, we note that 
 

𝑢𝑚 → 𝑢,𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛 𝐿2 (0, 𝑇;𝑊0
(1,𝑝)(𝛺)) ,

𝑢𝑡
𝑚 → 𝑢𝑡 , 𝑤𝑒𝑎𝑘𝑙𝑦 𝑖𝑛  𝐿

2(0, 𝑇; 𝐿2(𝛺)).         
  

 

Thus, using Lion's Lemma [10], we have 
 

𝑢𝑚 → 𝑢, 𝑖𝑛 𝐶([0, 𝑇]; 𝐿2(𝛺)).  
 

Therefore, 𝑢𝑚(𝑥, 0) makes sense and 
 

𝑢𝑚(𝑥, 0) → 𝑢(𝑥, 0), 𝑖𝑛 𝐿2(𝛺)  
 

We have 
 

𝑢𝑚(𝑥, 0) → 𝑢0(𝑥, 0), 𝑖𝑛 (𝐻0
1(𝛺) ∩ 𝐿𝑝(𝛺))  

 

Hence 
 

𝑢(𝑥) = 𝑢₀(𝑥)  
 

Now, multiply (6) by 𝜑 ∈ 𝐶0
∞(0, 𝑇) and integrate over (0, 𝑇), we obtain for ∀𝑤 ∈ 𝑉𝑚, and 

because of 
  

(𝑢𝑡
𝑚}𝜑(𝑡))′ = 𝑢𝑡𝑡

𝑚𝜑(𝑡) + 𝑢𝑚𝜑′(𝑡)  
 

we get 
 

−∫ ∫Ω𝑢𝑡
𝑚𝑤𝜑′(𝑡)𝑑𝑥

𝑡

0
= ∫ ∫Ω|∇𝑢

𝑚|𝑝−2∇𝑢𝑚∇𝑤𝜑(𝑡)𝑑𝑥𝑑𝑡
𝑡

0
  

−∫ ∫Ω∇𝑢
𝑚∇𝑤𝜑(𝑡)𝑑𝑥𝑑𝑡

𝑡

0
− ∫ ∫Ω𝑢𝑡

𝑚𝑤𝜑(𝑡)𝑑𝑥𝑑𝑡
𝑡

0
  

+𝑘 ∫ ∫Ω𝑢
𝑚𝑙𝑛|𝑢𝑚|𝑤𝜑(𝑡)𝑑𝑥𝑑𝑡.

𝑡

0
  

 

As → ∞ , we have for ∀𝑤 ∈ 𝐻0
1(𝛺) and 𝜑 ∈ 𝐶0

∞(0, 𝑇) 
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−∫ ∫Ω𝑢𝑡𝑤𝜑′(𝑡)𝑑𝑥
𝑡

0
= ∫ ∫Ω|∇𝑢|

𝑝−2∇𝑢∇𝑤𝜑(𝑡)𝑑𝑥𝑑𝑡
𝑡

0
  

−∫ ∫Ω∇𝑢∇𝑤𝜑(𝑡)𝑑𝑥𝑑𝑡
𝑡

0
− ∫ ∫Ω𝑢𝑡𝑤𝜑(𝑡)𝑑𝑥𝑑𝑡

𝑡

0
  

+𝑘 ∫ ∫
Ω
𝑢𝑙𝑛|𝑢|𝑤𝜑(𝑡)𝑑𝑥𝑑𝑡.

𝑡

0
  

 

This means 
 

𝑢𝑡𝑡 ∈ 𝐿²[0, 𝑇), 𝐻⁻²(𝛺),  
 

on the other hand, because of 
 

𝑢𝑡𝑡 ∈ 𝐿²[0, 𝑇), 𝐿²(𝛺),  
 

we obtain 
 

𝑢𝑡𝑡 ∈ 𝐶[0, 𝑇), 𝐻
−2(𝛺).  

 

So that 
 

𝑢𝑡
𝑚(𝑥, 0) → 𝑢𝑡(𝑥, 0),𝐻⁻²(𝛺),  

 

but 
 

𝑢𝑡
𝑚(𝑥, 0) = 𝑢1

𝑚(𝑥) → 𝑢1(𝑥), 𝐿²(𝛺).  
 

Hence 
 

𝑢𝑡(𝑥, 0) = 𝑢1(𝑥).  
 

This finished the proof of the theorem. 
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