Sigma J Eng & Nat Sci 10 (2), 2019, 213-220

Publications Prepared for the Sigma Journal of Engineering and Natural Sciences Publications Prepared for the ICOMAA 2019 - International Conference on Mathematical Advances and Applications Special Issue was published by reviewing extended papers

Research Article MATHEMATICAL BEHAVIOR OF SOLUTIONS OF P-LAPLACIAN EQUATION WITH LOGARITHMIC SOURCE TERM

Erhan PİŞKİN*¹, Nazlı IRKIL²

¹Dicle University, Department of Mathematics, DIYARBAKIR; ORCID:0000-0001-6587-4479 ²Mardin Said Nursi Anatolian High School, MARDIN; ORCID:0000-0002-9130-2893

Received: 05.08.2019 Revised: 30.09.2019 Accepted: 11.11.2019

ABSTRACT

For the p-Laplacian wave equation with logarithmic nonlinearity of initial value problem is analyzed. Focusing on the interplay between damped term and logarithmic source, we discuss the local existence of solutions.

Keywords: Existence, logarithmic nonlinearity.

1. INTRODUCTION

In this paper, we consider the following the p-Laplacian equation with logarithmic nonlinearity

$$\begin{cases} u_{tt} - div(|\nabla u|^{p-2}\nabla u) - \Delta u + u_t = kuln|u|, & x \in \Omega, \quad t > 0\\ u(x,0) = u_0(x), & u_t(x,0) = u_1(x), & x \in \Omega, \\ u(x,t) = \frac{\partial}{\partial u}u(x,t) = 0, & x \in \partial\Omega, \quad t > 0, \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^n$ $(n \leq p)$ is a bounded domain with smooth boundary $\partial \Omega$, p > 2 is a costant number and k is the smallest positive constant.

Studies of logarithmic nonlinearity have a long history in physics as it occurs naturally in inflation cosmology, quantum mechanics and nuclear physics [2,3,6]. There is a lot of reference in the literature which interested in applications of logarithmic nonlinerity. The first well known working is introduced by [1]. Later, the motivated of this working a lot mathematicians studied different problem with logarithmic source term see [4,8,16,13,14,12].

Messaoudi, [11] studied the following problem

$$u_{tt} - div(|\nabla u|^{p-2}\nabla u) - \Delta u_t + |u_t|^{q-1}u_t = |u|^{p-1}u.$$
(2)

He studied decay of solutions of the problem (2) using the techniques combination of the perturbed energy and potential well methods. Then the problem (2) was studied by Wu and Xue [17] and Pişkin [15].

In [9], Nhan and Truong considered

^{*} Corresponding Author: e-mail: episkin@dicle.edu.tr, tel: (412) 241 10 00 / 8902

 $u_t - div(|\nabla u|^{p-2}\nabla u) - \Delta u_t = |u|^{p-2}uln|u|,$

and established the global existence, blow up and deca y of solutions for p > 2. The problem (3) was studied by Cao and Liu [5], they proved global boundedness and also blowing-up at infinity for 1 .

(3)

(5)

The present of our paper is organized as follows: Firstly, we give some notations and lemmas which will be used throughout this paper. In the last section, we established the local existence of the solutions the problem.

2. PRELIMINARIES

In this section we will give some notations and lemmas which will be used throughout this paper. For simplify notations, throughout this paper, we adopt the following abbreviations:

$$||u||_p = ||u||_{L^p(\Omega)}, ||u||_2 = ||u|| \text{ and } ||u||_{1,p} = ||u||_{W_0^{1,p}(\Omega)} = (||u||_p + ||\nabla u||_p)^{\overline{p}},$$

for 2 < p. We denote by *C* and $C_i = (i = 1, 2, ...)$ various positive constants.

(A) The constant k in (1) satisfies $0 < k < k_1$ where k is the positive real number satisfying $-\frac{3}{2} - \sqrt{2\pi}$

$$e^{-\frac{3}{2}} = \sqrt{\frac{2\pi}{k_1}}.$$

Remark 1 The function $f(s) = \sqrt{\frac{2\pi}{s}} - e^{-\frac{3}{2}}$ is a continuous and decreasing function on $(0, \infty)$, with

$$\lim_{s \to 0^+} f(s) = \infty$$
, $\lim_{s \to \infty} f(s) = -e^{-\frac{3}{2}}$.

Then there exist a unique $k_1 > 0$ such that $f(k_1) = 0$. Therefore;

$$e^{-\frac{3}{2}} < \sqrt{\frac{2\pi}{s}}, \forall s \in (0, k_1).$$

We define energy function as follows

$$E(t) = \frac{1}{2} \|u_t\|^2 + \frac{1}{p} \|\nabla u\|_p^p + \frac{1}{2} \|\nabla u\|^2 - \frac{k}{2} \int_{\Omega} \ln |u| u^2 dx + \frac{k}{4} \|u\|^2.$$
(4)

Lemma 2 E(t) is a nonincreasing function of $t \ge 0$

$$E'(t) = -\|u_t\|^2 \le 0.$$

Proof. We show that $E'(t) = -||u_t||^2 \le 0$. Multiplying the equation (1) by u_t and integrating on Ω we have

$$\begin{split} \int_{\Omega} u_{tt} u_t dx &- \int_{\Omega} div (|\nabla u|^{p-2} \nabla u) u_t dxc \\ &+ \int_{\Omega} \nabla u \nabla u_t dx + \int_{\Omega} u_t u_t dx \\ &= \int_{\Omega} kuln |u| u_t dx, \\ \frac{d}{dt} \left(\frac{1}{2} \int_{\Omega} |u_t|^2 dx\right) + \frac{d}{dt} \left(\frac{1}{p} \int_{\Omega} |\nabla u|^p dx\right) + \frac{d}{dt} \left(\frac{1}{2} \int_{\Omega} |\nabla u|^2 dx\right) \\ &+ \frac{d}{dt} \left(-\frac{k}{2} \int_{\Omega} ln |u| u^2 dx + \frac{k}{4} ||u||^2\right) \\ &= -||u_t||^2, \\ \frac{d}{dt} \left[\frac{1}{2} ||u_t||^2 + \frac{1}{p} ||\nabla u||_p^p + \frac{1}{2} ||\nabla u||^2 - \frac{k}{2} \int_{\Omega} ln |u| u^2 dx + \frac{k}{4} ||u||^2\right] = -||u_t||^2, \\ E'(t) &= -||u_t||^2. \end{split}$$

Lemma 3 [7] (Logarithmic Sob olev Inequality). Let u be any function $u \in H_0^{-1}(\Omega)$ and $\alpha > 0$ be any number

$$\int_{\Omega} \ln |u| u^2 dx < \frac{1}{2} ||u||^2 \ln ||u||^2 + \frac{\alpha^2}{2\pi} ||\nabla u||^2 - (1 + \ln\alpha) ||u||^2.$$

Lemma 4 [4] (Logarithmic Gronwall Inequality) Let $c > 0, \gamma \in L^1(0, T, R^+)$ and assume that the function $w: [0, T] \rightarrow [1, \infty]$ satisfies

$$w(t) \le c \left(1 + \int_0^t \gamma(s) w(s) \ln w(s) \, ds \right), 0 \le t \le T,$$

where

$$w(t) \le c e^{\int_0^t c \gamma(s) ds}, 0 \le t \le T.$$

3. LOCAL EXISTENCE

In this section we state and prove the local existence result for the problem (1). The proof is based Faedo-Galerkin method.

Definition 5 A function u defined on [0, T] is called a weak solution of (1) if

$$u \in C\left([0,T]: W_0^{1,p}(\Omega)\right), \quad u_t \in C\left([0,T]: L^2(\Omega)\right)$$

and u satisfies

$$\begin{cases} \int_{\Omega} u_{tt}(x,t)w(x)dx + \int_{\Omega} \nabla u(x,t)\nabla w(x)dx \\ + \int_{\Omega} |\nabla u|^{p-2} \nabla u(x,t)\nabla w(x)dx + \int_{\Omega} u_{t}(x,t)w(x)dx \\ = k \int_{\Omega} u(x,t) ln |u(x,t)|w(x)dx, \end{cases}$$

for $w \in H_0^1(\Omega)$.

Theorem 6 Let $(u_0, u_1) \in W_0^{1,p}(\Omega) \times L^2(\Omega)$. Then the problem (1) has a global weak solution on [0, T].

Proof. We will use the Faedo-Galerkin method to construct approximate solutions. Let $\{w_j\}_{j=1}^{\omega}$ be an orthogonal basis of the "separable" space $W_0^{1,p}(\Omega)$ which is orthonormal in $L^2(\Omega)$. Let

$$V_m = span\{w_1, w_2, \ldots, w_m\}$$

and let the projections of the initial data on the finite dimensional subspace V_m be given by

$$u_0^m(x) = \sum_{j=1}^m a_j w_j \to u_0 \text{ in } W_0^{1,p}(\Omega)$$

$$u_1^m(x) = \sum_{j=1}^m b_j w_j \to u_1 \text{ in } L^2(\Omega)$$

for $j = 1, 2, ..., m$.

We look for the approximate solutions

$$u^m(x,t) = \sum_{j=1}^m h_j^m(t) w_j(x),$$

of the approximate problem in V_m

$$\begin{cases} \int_{\Omega} (u_{tt}^{m} w + |\nabla u^{m}|^{p-2} \nabla u^{m} \nabla w + \nabla u^{m} \nabla w + u_{t}^{m} w) dx = k \int_{\Omega} u^{m} ln |u^{m}| w dx, \\ u^{m}(0) = u_{0}^{m} = \sum_{j=1}^{m} (u_{0}, w_{j}) w_{j}, \\ u_{t}^{m}(0) = u_{1}^{m} = \sum_{j=1}^{m} (u_{1}, w_{j}) w_{j}. \end{cases}$$
(6)

This leads to a system of ordinary differential equations for unknown functions $h_j^m(t)$. Based on standard existence theory for ordinary differential equation, one can obtain functions

$$h_j: [0, t_m] \to R, \ j = 1, 2, \dots, m$$
 (7)

which satisfy (6) in a maximal interval $[0, t_m)$, $0 < t_m \le T$. Next, we show that $t_m = T$ and that the local solution is uniformly bounded independent of m and t. For this purpose, let us replace w by u_t^m in (6) and integrate by parts we obtain

$$\frac{d}{dt}E^{m}(t) = -\|u_{t}^{m}\|^{2} \le 0,$$
(8)

where

$$E^{m}(t) = \frac{1}{2} ||u_{t}^{m}||^{2} + \frac{1}{p} ||\nabla u^{m}||_{p}^{p} + \frac{1}{2} ||\nabla u^{m}||^{2} - \frac{k}{2} \int_{\Omega} |u^{m}|^{2} ln |u^{m}| dx + \frac{k}{4} ||u^{m}||^{2}.$$
(9)

(10)

Integrating (8) with respect to t from 0 to t, we obtain $E^{m}(t) \leq E^{m}(0)$.

By the Logarithmic Sobolev inequality leads to

$$E^{m}(t) = \frac{1}{2} \|u_{t}^{m}\|^{2} + \frac{1}{p} \|\nabla u^{m}\|_{p}^{p} + \frac{1}{2} \|\nabla u^{m}\|^{2} - \frac{k}{2} \int_{\Omega} |u^{m}|^{2} ln|u^{m}|dx + \frac{k}{4} \|u^{m}\|^{2}, \geq \frac{1}{2} \|u_{t}^{m}\|^{2} + \frac{1}{p} \|\nabla u^{m}\|_{p}^{p} + \frac{1}{2} \|\nabla u^{m}\|^{2} + \frac{k}{4} \|u^{m}\|^{2} - \frac{k}{2} \left[\frac{1}{2} \|u^{m}\|^{2} ln\|u^{m}\|^{2} + \frac{\alpha^{2}}{2\pi} \|\nabla u^{m}\|^{2} - (1 + ln\alpha)\|u^{m}\|^{2}\right], = \frac{1}{2} \|u_{t}^{m}\|^{2} + \frac{1}{p} \|\nabla u^{m}\|_{p}^{p} + \left(1 - \frac{k\alpha^{2}}{2\pi}\right) \|\nabla u^{m}\|^{2} + \frac{1}{2} \left[\frac{k}{2} (1 - ln\|u^{m}\|^{2}) + k(1 + ln\alpha)\right] \|u^{m}\|^{2}$$
(11)

Then, using of (10) and taking $C = 2E^m(0)$ we get

$$\begin{aligned} \|u_t^m\|^2 + \left(1 - \frac{ka^2}{2\pi}\right) \|\nabla u^m\|^2 \\ \frac{2}{p} \|\nabla u^m\|_p^p + \left(\frac{3k}{2} + kln\alpha\right) \|u^m\|^2 \\ \le C + \frac{k}{2} \|u^m\|^2 ln \|u^m\|^2. \end{aligned}$$
(12)

Now, choosing

$$e^{-\frac{3}{2}} < \alpha < \sqrt{\frac{2\pi}{k}} \tag{13}$$

will make

 $\frac{3k}{2} + k \ln \alpha > 0 \text{ and } 1 - \frac{k\alpha^2}{2\pi} > 0$

This selection is possible thanks to (A). So, we have

 $\|u_t^m\|^2 + \|\nabla u^m\|_p^p + \|\nabla u^m\|^2 + \|u^m\|^2 < c(1 + \|u^m\|^2 \ln \|u^m\|^2).$ (14)

We know that

$$u^{m}(.,t) = u^{m}(.,0) + \int_{0}^{t} \frac{\partial u^{m}}{\partial \tau}(.,\tau) d\tau.$$

Then, using Cauchy-Schwarz inequality $(a + b)^2 \le 2(a^2 + b^2)$, we obtain

$$\|u^{m}(t)\|^{2} = \left\|u^{m}(.,0) + \int_{0}^{t} \frac{\partial u^{m}}{\partial \tau}(.,\tau)d\tau\right\|^{2}$$

$$\leq 2\|u^{m}(0)\|^{2} + 2\left\|\int_{0}^{t} \frac{\partial u^{m}}{\partial \tau}(.,\tau)d\tau\right\|^{2}$$

$$\leq 2\|u^{m}(0)\|^{2} + 2T\int_{0}^{t}\|u^{m}_{t}(\tau)\|^{2}d\tau.$$
(15)

So, using of inequality (14) and (15) we get

$$\|u^{m}(t)\|^{2} \leq 2\|u^{m}(0)\|^{2} + 2Tc(1 + \|u^{m}\|^{2}\ln\|u^{m}\|^{2}).$$
(16)

If we put $C_1 = max\{2||u^m(0)||^2, 2Tc\}$, (16) leads to

$$||u^m||^2 \le 2C_1 \left(1 + \int_0^t ||u^m||^2 ln ||u^m||^2 d\tau\right).$$

Without loss of generality, we take $C_1 \ge 1$, we have

$$\|u^{m}\|^{2} \leq 2C_{1}\left(1 + \int_{0}^{t} (C_{1} + \|u^{m}\|^{2}) ln((C_{1} + \|u^{m}\|^{2})) d\tau\right).$$

Thanks to Logarithmic Gronwall inequality, we obtain

$$\|u^m\|^2 \le 2C_1 e^{2C_1 t} = C_2$$

Therefore, from inequality (14), it follows that

$$||u_t^m||^2 + ||\nabla u^m||_p^p + ||\nabla u^m||^2 + ||u^m||^2 \le C_3 = C(1 + C_2 \ln C_2),$$

where C_3 is a positive constant independent of m and t. If these operations (14) are applied to each term of inequality, this implies

$$\max_{t \in (0,t_m)} \|u_t^m\|^2 + \max_{t \in (0,t_m)} \|\nabla u^m\|_p^p + \max_{t \in (0,t_m)} \|\nabla u^m\|^2 + \max_{t \in (0,t_m)} \|u^m\|^2 \le 4C_3$$
(17)

So, the approximate solution is uniformly bounded independent of m and t. Therefore, we can extend t_m to T. Moreover, we obtain

$$\begin{cases} u^m, \text{ is uniformly bounded in } L^{\infty}\left(0, T; W_0^{(1,p)}(\Omega)\right), \\ u^m_t, \text{ is uniformly bounded in } L^{\infty}(0, T; L^2(\Omega)). \end{cases}$$
(18)

Hence we can infer from (17) and (18) that there exists a subsequence of (u^m) (still denoted by (u^m) , such that

$$\begin{cases} u^{m} \rightarrow u, \ weakly^{*} \ in \ L^{\infty}\left(0, T; W_{0}^{(1,p)}(\Omega)\right), \\ u_{t}^{m} \rightarrow u_{t}, \ weakly^{*} \ in \ L^{\infty}\left(0, T; L^{2}(\Omega)\right), \\ u^{m} \rightarrow u, \ weakly \ in \ L^{2}\left(0, T; H_{0}^{1}(\Omega)\right), \\ u_{t}^{m} \rightarrow u_{t}, \ weakly \ in \ L^{2}\left(0, T; L^{2}(\Omega)\right). \end{cases}$$

$$(19)$$

Then using (19) and Aubin-Lions lemma, we have

$$u^m \rightarrow u$$
, strongly in $L^2(0,T; L^2(\Omega))$

which implies

$$u^m \to u, \ \Omega \times (0,T).$$

Since the map $s \to sln|s|^k$ is continuous, we have the convergence $u^m ln |u^m|^k \to uln |u|^k$, $\Omega \times (0,T)$.

(20)

By the Sobolev embedding theorem $(H_0^1(\Omega) \hookrightarrow L^{\infty}(\Omega))$, it is clear that $|u^m ln|u^m|^k - uln|u|^k|$ is bounded in $L^{\infty}(\Omega \times (0,T))$. Next, taking into account the Lebesgue bounded convergence theorem, we have

 $u^{m}ln|u^{m}|^{k} \rightarrow uln|u|^{k}$ strongly in $L^{2}(0,T;L^{2}(\Omega))$

We integrate (6) over (0, t) to obtain, $\forall w \in V_m$

$$\begin{split} k \int_0^t \int u^m ln |u^m| w dx ds &= \int_\Omega u_t^m w dx - \int_\Omega u_1^m w dx \\ &+ \int_0^t \int_\Omega |\nabla u^m|^{p-2} \nabla u^m \nabla w dx ds \\ &+ \int_0^t \int_\Omega \nabla u^m \nabla w dx ds + \int_0^t \int_\Omega u_t^m w dx ds. \end{split}$$

(21)

Convergences (19), (21) are sufficient to pass to the limit in (22)

$$\int_{\Omega} u_t w dx = \int_{\Omega} u_1 w dx - \int_0^t \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla w dx ds$$

$$- \int_0^t \int_{\Omega} \nabla u \nabla w dx ds - \int_0^t \int_{\Omega} u_t w dx ds \int +k \int_0^t \int_{\Omega} u ln |u| w dx ds.$$
(22)

which implies that (22) is valid $\forall w \in H_0^1(\Omega)$. Using the fact that the terms in the right-hand side of (23) are absolutely continuous since they are functions of *t* defined by integrals over (0, t), hence it is differentiable for a.e. $t \in R^+$. Thus, differentiating (23), we obtain, for a.e. $t \in (0, T)$ and any $\forall w \in H_0^1(\Omega)$,

$$\begin{split} \int_{\Omega} u(x,t) ln |u(x,t)|^{k} w(x,t) dx &= \int_{\Omega} u_{tt}(x,t) w(x) dx \\ &+ \int_{\Omega} |\nabla u|^{p-2} \nabla u(x,t) \nabla w(x) \\ &+ \int_{\Omega} \nabla u(x,t) \nabla w(x) dx \\ &+ \int_{\Omega} u_{t}(x,t) w(x) dx, \end{split}$$
(23)

If we take initial data, we note that

$$\begin{split} &u^m \to u, weakly \ in \ L^2\left(0,T; W^{(1,p)}_0(\Omega)\right), \\ &u^m_t \to u_t, weakly \ in \ L^2\bigl(0,T; L^2(\Omega)\bigr). \end{split}$$

Thus, using Lion's Lemma [10], we have

$$u^m \rightarrow u, in C([0,T]; L^2(\Omega)).$$

Therefore, $u^m(x, 0)$ makes sense and

 $u^m(x,0) \rightarrow u(x,0), in L^2(\Omega)$

We have

$$u^m(x,0) \rightarrow u_0(x,0), in\left(H_0^1(\Omega) \cap L^p(\Omega)\right)$$

Hence

$$u(x) = u_0(x)$$

Now, multiply (6) by $\varphi \in C_0^{\infty}(0,T)$ and integrate over (0,T), we obtain for $\forall w \in V_m$, and because of

$$(u_t^m\}\varphi(t))' = u_{tt}^m\varphi(t) + u^m\varphi'(t)$$

we get

$$\begin{split} &-\int_0^t\int_\Omega u_t^m w\varphi'(t)dx = \int_0^t\int_\Omega |\nabla u^m|^{p-2}\nabla u^m\nabla w\varphi(t)dxdt \\ &-\int_0^t\int_\Omega \nabla u^m\nabla w\varphi(t)dxdt - \int_0^t\int_\Omega u_t^m w\varphi(t)dxdt \\ &+k\int_0^t\int_\Omega u^m ln|u^m|w\varphi(t)dxdt. \end{split}$$

As $\rightarrow \infty$, we have for $\forall w \in H_0^1(\Omega)$ and $\varphi \in C_0^\infty(0,T)$

$$-\int_0^t \int_\Omega u_t w \varphi'(t) dx = \int_0^t \int_\Omega |\nabla u|^{p-2} \nabla u \nabla w \varphi(t) dx dt -\int_0^t \int_\Omega \nabla u \nabla w \varphi(t) dx dt - \int_0^t \int_\Omega u_t w \varphi(t) dx dt +k \int_0^t \int_\Omega u ln |u| w \varphi(t) dx dt.$$

This means

 $u_{tt}\in L^2[0,T), H^{-2}(\Omega),$

on the other hand, because of

 $u_{tt} \in L^2[0,T), L^2(\Omega),$

we obtain

 $u_{tt}\in C[0,T), H^{-2}(\varOmega).$

So that

 $u_t^m(x,0) \rightarrow u_t(x,0), H^{-2}(\Omega),$

but

$$u_t^m(x,0) = u_1^m(x) \to u^1(x), L^2(\Omega).$$

Hence

$$u_t(x,0) = u_1(x).$$

This finished the proof of the theorem.

Conflict of interest The authors declare that they have no conflict of interest.

REFERENCES

- Bialynicki-Birula I, Mycielski J, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 23(4) (1975) 461-466.
- Bialynicki-Birula I, Mycielski J, Nonlinear wave mechanics, Ann. Phys., 100(1--2) (1976) 62-93.
- [3] Buljan H, Siber A, Soljacic M, Schwartz T, Segev M, Christodoulides DN, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev., (2003) E (3) 68.
- [4] Cazenave T, Haraux A, Equations d'evolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse 2(1) (1980) 21--51.
- [5] Cao Y, Liu C, Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinerity, Electron. J. Differential Equations, (116) (2018) 1-19.
- [6] Gorka P, Logarithmic Klein--Gordon equation, Acta Phys. Pol. B 40(1), (2009) 59--66.
- [7] Gross L., Logarithmic Sobolev inequalities. Amer. J. Math. 97(4), 1061--1083 (1975).
- [8] Han XS, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc. 50(1) (2013) 275--283.
- [9] Le CN, Le XT, Global solution and blow up for a class of Pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73(9), (2017) 2076-2091.
- [10] Lions J., Quelques methodes de resolution des problems aux limites non lineaires, Dunod Gauthier-Villars, Paris, (1969)
- [11] Messaoudi SA, On the decay of solutions for a class of quasilinear hyperbolic equations with nonlinear damping and source terms. Math. Methods Appl. Sci. 28, (2005)1819-1828.

- [12] Messaoudi SA, Al-Gharabli MM, Guesmia A, Well posedness and asyptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity, Appl. Anal., 1-18 (in press).
- [13] Payne LE, Sattinger DH, Saddle points and instability of nonlinear hyperbolic equtions, Israel J. Math. 22 (1975) 273-303.
- [14] Peyravi A, General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memory terms. Appl. Math. Optim.,1-17 (in press).
- [15] Pişkin E, On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms, Bound. Value Probl., (2015), 2015:127.
- [16] Zhang HW, Liu GW, Hu QY, Asymptotic Behavior for a Class of Logarithmic Wave Equations with Linear Damping, Appl. Math. Optim., 79 (2019) 131--144.
- [17] Wu Y, Xue X, Uniform decay rate estimates for a class of quasilinear hyperbolic equations with nonlinear damping and source terms, Appl. Anal. 92(6), (2013) 1169-1178.