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ABSTRACT 

 

Natural processes have been taken highly attention for many years and various methods have been used to 

find a proper solution to the processes. Striking physical systems are adequately modelled by the Duffing 

equation, which describes an oscillator with various nonlinearities. Since many difficulties are encountered in 
numerically solving the problems governed by the Duffing equation with damping effect, a new stochastic 

approach based on Monte Carlo technique has been proposed to handle it. To properly realize the simulated 

behavior of the processes, detailed discussion has been carried out in the present work. 
Keywords: Duffing oscillator, Monte Carlo simulation, stochastic method, nonlinear process, initial value 

problem. 

 

 

1. INTRODUCTION 

 

A differential equation becomes an oscillator equation when it is included a damping term or 

an external forcing term which allows to exhibit a vast range of different dynamical behaviors in 

the solution [1]. It is involved extra nonlinear stiffness term to make a linear second order 

differential equation nonlinear. The equation is commonly considered in modelling of nonlinear 

dynamics. The Duffing equation is used for any oscillatory motion which represented by a 

differential equation having quadratic or cubic stiffness terms for damping or excitation [2-3]. It is 

a fundamental model for nonlinear phenomena since it preserves the meaning of nonlinear 

behavior inside. It has taken remarkable attention in recent decades due to its various appropriate 

applications in many different fields of science, especially for mechanical systems in vibration 

theory. The name is coming from the non-academic person Georg Duffing whose original work 

depends on the free and forced harmonic vibration of an oscillator. Although he had only few 

publications in this subject, their densities makes his studies remarkable. 

After the discovery of the effective potential of the equation for representation of nature, 

issues of finding a solution to the equation are deeply taken into consideration. Without a 

damping effect, the equation represents conservative cases and it can be relatively handled by 

conventional developed methods. A variety of solution methods have been developed to solve 

conservative nonlinear Duffing equation. The homotopy analysis method [4-5], harmonic balance 
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method [6] or homotopy perturbation method [7] are examples of these methods which are 

properly applied to the equation [8-10]. However, involving both damping and nonlinearity terms 

increase the complexity of the equation and the system becomes non-conservative. Despite the 

fact that some methods have ability to find a solution such as Laplace decomposition method 

[11], homotopy perturbation method [12], modified differential transformation [13-14] method 

and so on [15-16], most analytical methods are inadequate in terms of handling the non-

conservative cases. 

Although conventional methods has been applied to wide range of area, they are known to 

suffer for intricate problems. At this point, new approaches such that simulation techniques can be 

considered by eliminating suffered aspects of these methods. Simulation techniques, such as 

Monte Carlo simulation technique, can overcome the corresponding drawbacks [17-23]. It has 

been generally defined as a random sampling method for solving any model. The method is 

classified as a stochastic approach since it represents physical processes by using random 

variables. Moreover, it can be easily used to explain random behavior. Even if the method has 

been introduced few decades ago, a significant progress in the method has taken place until this 

time and the method has begun to be used in various fields of science; including statistics, 

engineering, computer science and so on. In this sense, application of the simulation technique to 

problems of interest can be considered an important milestone for application point of view.  

This study aims to present the Monte Carlo based stochastic algorithm to solve Duffing 

equation considering different damping effects and stiffness with different initial conditions. The 

predicted results are qualitatively and quantitatively compared with the results of numerical 

methods by using MATLAB functions. 

 

2. AN IMPLEMENTATION OF A STOCHASTIC APPROACH 

 

One of the most practical way for solving a differential equation is the usage of integration. 

Even if applying the integration to the system of equations may not be as easy as expected, the 

present algorithm is proposed to solve first order nonlinear ordinary differential equations (ODE) 

through the Monte Carlo approach. To be able to apply the algorithm, the system of differential 

equations is modified.  

Let us rewrite the first order nonlinear differential equations in implicit forms  
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦, 𝑡) 

and 
𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦, 𝑡) where 𝐹 and 𝐺 represent arbitrary functions including rest of the terms of the 

equations. Then the closed interval [𝑥0, 𝑥𝑓] should be divided uniformly to 𝑚 points for 

determining the step size in the algorithm.  

Before the random stage, a reference number is determined. This reference number is a 

decision element in the algorithm for randomly generated numbers and it is renewed for each 

iteration. First one is created by using initial conditions. Let us name this reference number as 

Classification Number (CN) defined by 𝐶𝑁 ≔
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥𝑛, 𝑦𝑛 , 𝑡) where 𝑛 = 0,1, … , 𝑚. 

After this arrangements, the random stage begins. 𝑁 random number is generated for each 

iteration in the algorithm. Each random number is compared with the 𝐶𝑁, then evaluated the 

number of ones greater or less than 𝐶𝑁. These random numbers are created in an interval which 

has upper and lower bounds. These estimated bounds are used calculating the value of current 

iteration. 

The algorithm works according to below strategy: 
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Figure 1. The general strategy of the algoortihm 

 

3. AN APPLICATION TO THE NONLINEAR MODEL EQUATION 

 

The Duffing oscillator equation considering the damping effect with initial conditions is:  
 

𝑥′′ + 𝑥′ + 𝑥 + 𝑥3 = 0,         𝑥(0) = 𝑥0,      𝑥′(0) = 𝑥1                                                            (1) 
 

for 0 ≤ 𝑡 ≤ 𝑡∗ where ,   and  are constant coefficients and 𝑡∗ is a final time. Even though 

𝑥(𝑡) and 𝑥′(𝑡) are initial conditions for the differential equation, in terms of the represented 

system point of view, 𝑥(𝑡) represents the initial position and 𝑥′(𝑡) is the initial velocity. 𝛼𝑥 is 

included to allow damping in the system to eliminate conservation and 𝛽𝑥 is a classical restoring 

force whereas 𝛾𝑥3 represents a cubic nonlinearity of the system. If the system has an external 

force, the equation becomes nonhomogeneous. 

Converting this nonlinear differential equation to a system of first order nonlinear differential 

equations is useful way for approaching the equation. Let us introduce the variable transformation 

to consider converting a system. If the unknown function is chosen 𝑦(𝑡) =   𝑥′(𝑡) and substituted 

into the equation, the system of equations becomes: 
 

𝑥′(𝑡) = 𝑦(𝑡)           

𝑦′(𝑡) = 𝑥′′(𝑡) = −𝑦 − 𝑥 − 𝑥3                                                                                                (2)  
 

with initial conditions 𝑥(0) = 𝑥0 and 𝑦(0) = 𝑥1. Now, the presented algorithm can be 

applied these two nonlinear differential equations to analyze the behavior of the processes 

represented by the Duffing equation. 

 

4. ILLUSTRATIVE EXAMPLES 

 

In this section, Duffing equation is converted to nonlinear first order nonlinear differential 

equation systems and the system is solved by using the Monte Carlo based stochastic algorithm. 

The method is applied with 100000 random samples for each example. For comparison purpose, 

the systems are solved by the ode45 function of MATLAB2018b which is based on the Runge-

Kutta method to solve nonlinear ordinary differential equations numerically. After the application 

of the algorithm to the problems, predicted results have been compared with the numerical ode45 

results, the qualitative and quantitative behaviors have been shown in detail. The formula |p-y| 

where p is the predicted solution and y is the ode45 solution of the given problem is used for this 
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difference comparison. In addition to the following simulated results, effects of the parameters in 

terms of physical aspects are also discussed in this section. 

 

4.1. Example 1 

 

In the present case, Equation (1) is considered with the following parameters:  
 

 = 0.5,  =  = 25,         𝑥(0) = 0.1,      𝑥′(0) = 0                                                                    (3) 
 

The algorithm is applied to the system by dividing the time interval uniformly with the 

increment 0.001. The qualitative behavior of the predicted solutions is compared with the 

numerical solutions obtained by the ode45 shown in Figures 1 and 2. Quantitative results have 

been given detailed in Table 1. 

 

  
 

     Figure 2. Comparison of the predicted and       Figure 3. Comparison of the predicted and 

                 ode45 solutions for Equation (3)            ode45 solutions for Equation (3) in terms of 

                                                                                                 the absolute differences  

 

It can be easily seen the effects of the damping term, when the qualitative behavior of the 

solution analyzed. The solution appears to change periodically damping with time. This case 

includes low damping effect and strong nonlinearity because of the magnitudes of the parameters 

𝛼 and 𝛾.  

The predicted results have reasonable agreement with the results of ode45 according to the 

figures and the differences between the predicted and ode45 solutions. Even after a while they 

shows little deviations and delays, it can be claimed that the obtained results shows good 

agreement in a small range of the solution domain. 

Computational time of the algorithm is 2.6126 s while the ode45 is of 0.0364 s for this 

example. Even if the cost of the present method is slightly higher than the ode45, the accuracy 

level is in rather good agreement with the ode45 solution. Since simulation techniques, in 

particular the MC algorithm, can overcome successfully general drawbacks of the traditional 

methods, the cost can usually be sacrified in intricate problems. 

 

4.2. Example 2 

 

In Example 1, a system of first order nonlinear differential equations is considered and the 

system is non-conservative. Now the conservative case of the cubic nonlinear Duffing equation 

can be assumed with the following parameter values:  
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Table 1. Comparison of the predicted and ode45 solutions and corresponded differences for 

Example 1 
 

Time 𝑡 ode45 Results Predicted Results Differences 

0.0010 0.1000000 0.0999987 1.26E-06 

0.0050 0.0999765 0.0999685 8.01E-06 

0.0100 0.0998928 0.0998740 1.88E-05 

0.0500 0.0969239 0.0968866 3.73E-05 

0.1000 0.0878869 0.0878457 4.12E-05 

0.2000 0.0556366 0.0551449 4.92E-04 

0.3000 0.0117701 0.0108173 9.53E-04 

0.4000 -0.0328253 -0.0339410 1.12E-03 

0.5000 -0.0676017 -0.0683725 7.71E-04 

0.6000 -0.0849977 -0.0847426 2.55E-04 

0.7000 -0.0810532 -0.0799126 1.14E-03 

0.8000 -0.0578610 -0.0561276 1.73E-03 

0.9000 -0.0218242 -0.0200468 1.78E-03 

1.0000 0.0178964 0.0190600 1.16E-03 

 

 = 0,  =  = 25,         𝑥(0) = 0.1,      𝑥′(0) = 0                                                                       (4) 
 

The present algorithm is applied to Equation (1) with the above parameters by considering the 

conditions same as Example 1. Compared qualitative behaviors are shown in Figures 3 and 4 and 

quantitative results have been given in Table 2. 

In the following example, it is analyzed that what happens if damping term is excluded in 

equations. In this respect, the behavior of the system changes periodically undamped with time. 

Computational time of the algorithm is 1.7715 s whilst the ode45 is 0.0414 s for the present 

example. Although the number of random variables of the current algorithm imposes a high 

computational cost, it is preferable for a better accuracy level. The predicted results are seen to be 

relatively in good agreement with the ode45 results as realized from the figures and table. 

 

  
 

    Figure 4. Comparison of the predicted and          Figure 5. Comparison of the predicted and 

              ode45 solutions for Equation (4)                ode45 solutions for Equation (4) in terms of 

                                                                                                  the absolute differences 
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Table 2. Comparison of the predicted and ode45 solutions and corresponded differences for 

Example 2 
 

Time 𝑡 ode45 Results Predicted Results Differences 

0.0010 0.1000000 0.0999987 1.26E-06 

0.0050 0.1000000 0.0999684 3.16E-05 

0.0100 0.0998760 0.0998738 2.22E-06 

0.0500 0.0963730 0.0968606 4.88E-04 

0.1000 0.0869567 0.0876443 6.88E-04 

0.2000 0.0567705 0.0536647 3.11E-03 

0.3000 0.0095885 0.0064982 3.09E-03 

0.4000 -0.0404223 -0.0422753 1.85E-03 

0.5000 -0.0767930 -0.0806444 3.85E-03 

0.6000 -0.0966485 -0.0991684 2.52E-03 

0.7000 -0.0932567 -0.0931506 1.06E-04 

0.8000 -0.0658725 -0.0641556 1.72E-03 

0.9000 -0.0209451 -0.0193663 1.58E-03 

1.0000 0.0300327 0.0301573 1.25E-04 

 

4.3. Example 3 

 

In this example, the non-conservative case of the cubic nonlinear Duffing equation can be 

assumed with the following parameter values:  
 

 = 1,  = 20,  = 2,         𝑥(0) = −0.2,      𝑥′(0) = 2                                                               (5) 
 

The presented algorithm is applied with the parameters in (5) by dividing the time interval 

uniformly as same as previous ones. The qualitative behavior  and quantitative results are given 

Figures 5 and 6 and Table 3. 

Since the damping is added to the differential equations, the results change. The damping 

terms is relatively higher from Example 1 and low nonlinearity. The solutions is seen to be a 

periodical decaying oscillation. Though the solution remains close to the referenced solution 

curves in a large scale of vertical axis, the deviations may occurs. Computational cost of the 

algorithm is 2.5941 s here while the ode45 has 0.0597 s. Even though the algorithm has relatively 

higher cost, the decaying behavior is properly captured. 

 

   
 

   Figure 5. Comparison of the predicted and            Figure 6. Comparison of the predicted and 

          ode45 solutions for Equation (5)                     ode45 solutions for Equation (5) in terms of 

                                                                                                 the absolute differences 
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Table 3. Comparison of the predicted and ode45 solutions and corresponded differences for 

Example 3 
 

Time 𝑡 ode45 Results Predicted Results Differences 

0.0010 -0.1980053 -0.1979990 6.33E-06 

0.0050 -0.1900071 -0.1899759 3.13E-05 

0.0100 -0.1799652 -0.1799020 6.32E-05 

0.0500 -0.0986339 -0.0984081 2.26E-04 

0.1000 0.0026438 0.0029678 3.24E-04 

0.2000 0.1856784 0.1861094 4.31E-04 

0.3000 0.3164381 0.3168354 3.97E-04 

0.4000 0.3793008 0.3754788 3.82E-03 

0.5000 0.3724235 0.3574740 1.49E-02 

0.6000 0.2983156 0.2736549 2.47E-02 

0.7000 0.1746570 0.1464018 2.83E-02 

0.8000 0.0295913 0.0036898 2.59E-02 

0.9000 -0.1074768 -0.1262406 1.88E-02 

1.0000 -0.2096244 -0.2201259 1.05E-02 

 

5. CONCLUSIONS AND RECOMMENDATION 

 

The cubic nonlinear Duffing equation representing behavior of oscillators has been solved by 

the Monte Carlo based stochastic algorithm. Since the exact solutions of the corresponding 

equation for all initial guesses are relatively hard to find by conventional methods, the solution for 

specific parameters was found by ode45 function of MATLAB2018b. It has been seen that the 

approach has ability to capture nonlinear behavior of the physical process. It can be concluded 

that the present method is an accurate tool in handling a nonlinear oscillator with a high level of 

accuracy. 
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