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ABSTRACT 

 

In this study, application of the improved Bernoulli sub-equation function method to Ablowitz-Kaup-Newell-

Segur water wave equation is presented. Some new solutions have been successfully created. All the obtained 

solutions in this study satisfy the Ablowitz-Kaup-Newell-Segur Equation. In this paper, we have done all the 
calculations and graphs by Wolfram Mathematica 9. 
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1. INTRODUCTION 

 

Nonlinear evolution equations (NLEEs) are widely used to model various nonlinear complex 

phenomena that arise in different  field of nonlinear sciences. Since NLEEs define various aspects 

of our real life situations, it is important to look for exact and solitary wave solutions. Some 

methods used in the solution of these equations can be listed as follows. Such as the improved 

Bernoulli sub-equation function method [1-4], the extended sinh-Gordon equation expansion 

method[5-8] the exponential function method[9-10], the modified exp (−ϕ(η))-expansion 

function[11] the implicit finite difference scheme and the Dufort–Frankel finite difference scheme 

methods[12] and the difference schemes method[13]. 

The Ablowitz-Kaup-Newell-Segur water wave equation[14-15] is used as a reduction for 

some nonlinear evolution equations. In this study, Ablowitz-Kaup-Newell-Segur water wave 

equation will be discussed and new solutions will be examined. 

The AKNS equation  is given by 
 

4𝑢𝑥𝑡 + 𝑢𝑥𝑥𝑥𝑡 + 8𝑢𝑥𝑢𝑥𝑦 + 4𝑢𝑥𝑥𝑢𝑦 − 𝛼𝑢𝑥𝑥 = 0,                                                                           (1) 
 

where 𝛼 is real constant non-zero value. 
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2. The IBSEFM  

 

Improved Bernoulli sub-equation function method (IBSEFM) formed by modifying the 

Bernoulli sub-equation function method will be given in this part.  
 

Step 1. Let’s consider the following fractional differential equation; 

 , , , , 0,x t xtP u u u u                                                                    (2)  

and take the wave transformation, 
 

𝑢(𝑥, 𝑡) = 𝑈(𝛾), 𝛾 = 𝑥 − 𝑘𝑡                                                                                                          (3)  
 

where 𝑘 are constants and will be determined later. Substituting Eq.(3) into Eq.(2), we obtain 

the following  nonlinear ordinary differential equation; 

 , , , , 0.N U U U U                                                                                              (4) 

Step 2. Considering trial equation of solution in Eq.(4), it can be written as follows, 
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According to the Bernoulli theory, we can consider the general form of Bernoulli differential 

equation for F   as follows, 
 

𝐹′ = 𝑤𝐹 + 𝑑𝐹𝑀, 𝑤 ≠ 0, 𝑑 ≠ 0,𝑀 ∈ 𝑅 − {0,1,2},
 
                                                                       (6)  

 

where  F F   is Bernoulli differential polynomial. Substituting above relations in Eq.(4), 

it yields an equations of polynomial  F of F  as follows, 

  0.
1 0

s
F F Fs                                                                            (7) 

 

According to the balance principle, we can determine the relationship between ,n m  and M .  
 

Step 3. The coefficients of  F  all be zero will yield us an algebraic system of equations, 

0, 0, , .i si  
   

                                                                                                 (8) 

Solving this system, we will specify the values of
0, , na a and 0, , mb b . 

 

Step 4. When we solve nonlinear Bernoulli differential equation Eq.(6), we obtain the following 

two situations according to 𝑤 and d , 
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3. APPLICATION 

 

In this section, application of improved Bernoulli sub-equation function method to the AKNS 

is presented. Using the wave transformation on Eq. (1) 
 

∅(𝑥, 𝑦, 𝑡) = 𝑈(𝛾), 𝛾 = 𝑥 + 𝑦 + 𝑐𝑡 .                                                                                            (11) 
 

Substituting Eq. (11) into Eq. (1), yields the following NODE, 
 

(4𝑐 − 𝑑)𝑈′ + 𝑐𝑈′′′ + 6(𝑈′)2 = 0.                                                                                               (12) 
 

If we consider V = 𝑈′, we can obtain the following NODE, 
 

(4𝑐 − 𝑑)𝑉 + 𝑐𝑉′′ + 6𝑉2 = 0.                                                                                                      (13) 
 

Balancing Eq. (13) by considering the highest derivative 𝑉′′ and the highest power 𝑉2, we 

obtain 
 

𝑛 + 2 = 2𝑀 +𝑚.  
 

Choosing 𝑀 = 3, 𝑚 = 1, gives 𝑛 = 5.  Thus, the trial solution to Eq. (1) takes the following 

form, 
 

𝑈(𝛾) =
𝑎0+𝑎1𝐹(𝛾)+𝑎2𝐹

2(𝛾)+𝑎3𝐹
3(𝛾)+𝑎4𝐹

4(𝛾)+𝑎5𝐹
5(𝛾)

𝑏0+𝑏1𝐹(𝛾)
,                                                                      (14) 

 

where  𝐹′ = 𝑤𝐹 + 𝑑𝐹3, 𝑤 ≠ 0, 𝑑 ≠ 0. Substituting Eq. (14), its second derivative along with 

𝐹′ = 𝑤𝐹 + 𝑑𝐹3, 𝑤 ≠ 0, 𝑑 ≠ 0 into Eq. (13), yields a polynomial in 𝐹. Solving the system of the 

algebraic equations, yields the values of the parameter involved. Substituting the obtained values 

of the parameters into Eq. (13), yields the solutions to Eq. (1). 

For ,w d  we can find following coefficients: 
 

Case 1.  
 

𝑎1 = −
√𝑎0𝑎3

√6√𝑎4
; 𝑎2 = −√6√𝑎0√𝑎4; 𝑏1 = −

𝑎3𝑏0

√6√𝑎0√𝑎4
; 𝑎5 = −

𝑎3√𝑎4

√6√𝑎0
; 𝑑 = 4𝑐 +

6𝑎0

𝑏0
; 𝑤 =

ⅈ√𝑎4

2√𝑐√𝑏0
; 𝜎 = −

ⅈ√
3

2
√𝑎0

√𝑐√𝑏0
;                                                                                                                   (15)  

 

Case 2.  
 

𝑎3 =
𝑎1𝑎2

𝑎0
; 𝑎4 =

𝑎2
2

6𝑎0
; 𝑏1 =

𝑎1𝑏0

𝑎0
; 𝑎5 =

𝑎1𝑎2
2

6𝑎0
2 ; 𝑑 = 4𝑐 +

6𝑎0

𝑏0
; 𝑤 = −

ⅈ𝑎2

2√6√𝑐√𝑎0√𝑏0
; 𝜎 = −

ⅈ√
3

2
√𝑎0

√𝑐√𝑏0
;   

                                                                                                                                                      (16) 
 

Case 3.  
 

𝑎1 =
𝑎0𝑏1

𝑏0
; 𝑎3 =

𝑎2𝑏1

𝑏0
; 𝑎4 =

𝑎2
2

6𝑎0
; 𝑎5 =

𝑎2
2𝑏1

6𝑎0𝑏0
; 𝑐 = −

3𝑎0

2𝜎2𝑏0
; 𝑑 =

6(−1+𝜎2)𝑎0

𝜎2𝑏0
; 𝑤 =

𝜎𝑎2

6𝑎0
;               (17) 

 

Case 4.  
 

𝑎2 =
6𝑤𝑎0

𝜎
; 𝑎3 =

6𝑤𝑎1

𝜎
; 𝑎4 =

6𝑤2𝑎0

𝜎2
; 𝑏1 =

𝑎1𝑏0

𝑎0
; 𝑎5 =

6𝑤2𝑎1

𝜎2
; 𝑐 = −

3𝑎0

2𝜎2𝑏0
; 𝑑 =

6(−1+𝜎2)𝑎0

𝜎2𝑏0
;      (18) 

 
 

Substituting Eq. (15) into Eq. (13) gives 
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𝑢1(𝑥, 𝑦, 𝑡) =
(

 
 
 
 6√𝑎0(36ⅇ

4ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘4𝑎0
2−12√6ⅇ

3ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘3𝑎0
3 2⁄
√𝑎4−36ⅇ

2ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘2𝑎0𝑎4−2√6ⅇ

ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘√𝑎0𝑎4
3 2⁄
+𝑎4

2)

(6ⅇ

2ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘2𝜂𝑎0
3 2⁄
+√𝑎0(−𝜂𝑎4−6ⅈ√𝑐ⅇ

ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘√𝑎4√𝑏0)+ⅈ√6√𝑐𝑎4√𝑏0)

)

 
 
 
 

((6ⅇ

ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘√𝑎0+√6√𝑎4)
2(6ⅇ

2ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘2𝑎0−𝑎4)(6ⅇ

2ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘2𝑎0−4√6ⅇ

ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘√𝑎0√𝑎4+𝑎4)𝑏0)

                 

                                                                                                                                                      (19) 
 

Substituting Eq. (16) into Eq. (13) gives 
 

𝑢2(𝑥, 𝑦, 𝑡) =

𝑎0(𝜂+
ⅈ√6√𝑐𝑎2√𝑏0

√𝑎0(6ⅇ

ⅈ√6𝜂√𝑎0

√𝑐√𝑏0 𝑘𝑎0−𝑎2)

)

𝑏0

                                                                                           (20) 

 

Substituting Eq. (17) into Eq. (13) gives 
 

𝑢3(𝑥, 𝑦, 𝑡) =
𝑎0(𝑐𝑡+𝑥+𝑦−

18𝑘𝑎0

𝜎(−6𝑘𝑎0+ⅇ
2(𝑐𝑡+𝑥+𝑦)𝜎𝑎2)

)

𝑏0

                                                                                (21) 

 

Substituting Eq. (18) into Eq. (13) gives 
 

𝑢4(𝑥, 𝑦, 𝑡) =
(𝑐𝑡+𝑥+𝑦−

3𝑘

ⅇ2(𝑐𝑡+𝑥+𝑦)𝜎𝑤−𝑘𝜎
)𝑎0

𝑏0
                                                                                         (22)  

 

Choosing the suitable values of parameters, we performed the numerical simulations of the 

obtained solutions for (19-21) equation by plotting their 2D and 3D. 
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Figure 1. The 3D and 2Dsurfaces of the solution Eq.(19) for suitable values 
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Figure 2. The 3D and 2D surfaces of the solution Eq.(21) for suitable values 

 

4. CONCLUSIONS 

 

In this article, new solutions are obtained for the Ablowitz-Kaup-Newell-Segur Equation 

using the IBSEFM method. We have seen that the results we obtained are new solutions when we 

compare them with previous ones. Our results might be useful in explaining the physical meaning 

of various nonlinear models arising in the field of nonlinear sciences. IBSEFM is powerful and 

efficient mathematical tool that can be used to handle various nonlinear mathematical models. 
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