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ABSTRACT

In this paper, we consider a class of nonlinear higher-order wave equation with variable exponents u,, +
(=A)™u + |u [P® 2, = [u|7™~2y in a bounded domain £ c R™. We prove a finite time blow up result for
the solutions with negative initial energy. This improves earlier results in the literature [18].
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1. INTRODUCTION

In this paper, we consider the initial-boundary value problem for a class of nonlinear higher-
order wave equation

Uge + (=O)™u + [u PO 20, = [u|19 2y, (x,6) €2 % (0,T), 1
with the inital-boundary conditions
u(x,0) = up(x), u(x,0) =u;(x), x€Q, )
and
D%u(x,t)=0, |la|<m-—1, x € 0N, (3)
where A = (—A)™, m>1 is a natural number, 2 is a bounded domain with smooth
boundary 82 in R (n > 1) and a = (aty, ty, ..., ), lal = ¥Pyla;], D% = ?:1%.
The variable exponents p(.) and q(.) are given as measurable functions on 0 satisfying
2<p <p()<pT<q <qx)<q*<q @)
where
— _ essinfp(x) + _ esssupp(x)
p = xenq P = xenQ ’
— __ essinfq(x) + _ esssupq(x)
9 = xea » 1 = xeQ
and
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{00, ifn=1.2,
=)z
oy ifn>=3.
When m = 1 and p(x), g(x) are constants, (1) become the following famous wave equation
Upe = Au+ |ue P72, = |u]97%u. ®)

Firstly, Levine [8, 9] considered the interaction between the linear damping (p = 2), and
source term by using the Concavity method. He showed that solutions blow up in finite time with
negative initial energy. Later, Georgiev and Todorova in [6] extended the result to the nonlinear
damping case (p > 2). See also [11, 16] for the related works of the blow up of the solution (5).

When m = 2 and p(x), q(x) are constants, (1) become the following Petrovsky equation

Upe + A%+ |u P72, = |7 %, (6)

Messaoudi [12] studied the local existence and blow up of the solution to the equation (6).
Wu and Tsai [17] obtained global existence and blow up of the solution of the problem (6). Later,
Chen and Zhou [3] studied blow up of the solution of the problem (6) for positive initial energy.

When m = 1, Messaoudi et al. [13] considered the equation

Upe — A+ |up [PO 2y, = |u|90D-2y, @

They studied local existence and blow up of the solutions for the wave equation (7). For more
results about the variable exponent spaces we refer the readers to [1, 2, 10, 14].

Motivated by the above results, in this paper, we prove the blow up result of the solution (1)
under some conditions. Thus, we try to extend the previous results from constant-exponent
nonlinearities to higher-order wave equation with variable-exponent nonlinearities.

The outline of this paper is as follows. In section 2, we state some results about the variable
exponent Lebesgue and Sobolev spaces LP™)(2) and WLP@ (). In section 3, the blow up
results will be proved.

2. PRELIMINARIES

In this section, we state some results about the variable exponent Lebesgue and Sobolev
spaces LPO) () and WP () (see [4, 5, 7, 15]).

Let p: 2 — [1, 0] be a measurable function, where 2 is a domain of R™. We define the variable
exponent Lebesgue space by

PO () = {u:.() - R,uis measurable and [, [ulP®dx < 00},
endowed with the Luxemburg norm
lullo = inf 12> 0: 1, 4"
LP™) () is a Banach space.
The variable exponent Sobolev space W1?@® () is defined by
wir® () = {u € LP® (Q): Vu exists and |Vu| € Lp(")(ﬂ)}.
Variable exponent Sobolev space is a Banach space with respect to the norm

dx < 1},

lullipey = Nlullpey + 1IVullpe)-

The space VI/OI"’(")(!Z) is defined as the closure of C°(2) in WP () with respect to the
norm [|ullypex). Foru € Wol'p(x)(!)), we can define an equivalent norm

”ulll,p(x) = ”Vu”p(x)-
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Let the variable exponent p(.) satisfy th e log-Holder continuity condition:

[p(x) —p)| < log&, forallx,y € 2 with|x —y| <6, (8)

Ix=yl
where A > 0 and 0 < §<1.

Lemma 1 [4] (Poincare inequality) Let 2 be a bounded domain of R™ and p(.) satisfies log-
Holder condition, then
ellpey < cliVullygy, for allu € Wy ™Y (),
where ¢ = c(p~,pt, 22]) > 0.
Lemma 2 [4] Let p(.) € C(2) and q: 2 - [1, ) be a measurable function and satisfy

essinf(p*(x)—q(x))>0.
X€EN

Then the Sobolev embedding W,"?“ (2) & L10(2) is continuous and compact. Where

np- . -
oo = [ 0 <
o, if p” =2 n.

Next, we state the local existence theorem of problem (1), that can be obtained by combining
arguments in [6, 12, 13].

Theorem 3 (Local existence). Assume that (4) and (8) and (ug, u4) € H*(2) x L2(2) hold, then
there exists a unique solution u of (1) satisfying

u e C([0,T):HMD), u, € C([0,T):L2(2)) n LPO(2 x (0,T)).

3. BLOW UP OF SOLUTIONS

In this section, we are going to consider the blow up of the solution for problem (1). Firstly,
we give following lemma.

Lemma 4 [13] If q: 2 — [1, o) is a measurable function and

25q‘£q(x)§q+<%;n23 9)
holds. Then, we have following inequalities:

(i) Pl < c(IVull? + pgey ), (10)

(i) Nully- < c(Ivull® + ||u||Z:), (11)

(ii)pZ ) () < ¢ (IHO+luel2 + pooy W), (12)

(i) llulls- < c(IH@+lull? + ||u||3:), (13)

W) cllulll- < pgy (14)

forany u € H(2) and 2 < s < q~. Where ¢ > 1 a positive constant and H(t) = —E (t) will

be specified later. Also where pg()(w) = [, lu|?Odx.
Now, we state and prove our blow up result.
Theorem 5 Under the assumptions of Theorem 3, and the initial energy E(0) < 0. Then the
solution (1) blows up in finite time T*, and
T* < 1-o
 fowia(0)
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where ¥ (t) and o are given in (18) and (19) respectively.
Proof. Multiplying u; on two sides of the problem (1) and integrate over the domain €, we have

el + S a2 - f, s uli®dx] = - [, =l P@dx,
E'(D) = - [, [, [P®dx, (15)
where
E(£) = lluell? +3]|4Y2u]|* - [, == |u|"®dx. (16)
q(x)
Set
H() =-E®)

then E(0) < 0 and (15) gives H(t) = H(0) > 0. Also, by the definition H(t), we have
1 1 2 1
H(t) = —EllutIIZ—E”Al/zu” +fﬂ Mlulqo‘)dx

Loy a@®
< fn prom |u]9*) dx

< =P W. ¢))
Define
Y(t) =H"(t) + ¢ [, uudx, (18)
where & small to be chosen later and
. q -pt q -2
0 <o <min {(p+—1)q‘ ,F} (29)

Our goal is to show that ¥ (t) satisfies a differential inequality of the form
Y(t) = EP3(t), a1>1.

This, of course, will lead to a blow up in finite time.
By taking a derivative of (18) and using Eq. (1), we obtain

Y'(t) =1 —-a)H(OH'(t) + ¢ [, Wi +uuy)dx
= (1= )H O (OH'(t) + ellul|? + ||AV/2u]|®
+e fﬂ [u|90dx — ¢ I, e |u, PO~ 2dx. (20)
By using the definition of the H(t), it follows that
—eq(1 = OH(E) = LDy |2 + LD | g1/
~q~(1=§) [ 75 lulVdx, (21)

where 0 < ¢ < 1.
Adding and subtracting (21) into (20), we obtain
PO 2A-0)H7(OH )+ eq (1 -HH®)
e (T 4 1) fluell? + 6 (T2 - 1) a2
+e& [ ul®Odx — e [ uu|u, PO 2dx. (22)

Then, for & small enough, we get

152



Blow Up Solutions for a Class of Nonlinear Higher- ... / SigmaJEng & Nat Sci 10 (2), 149-156, 2019

W) = o [H(O) + Ilucll? + [|4Y2u])” + pgy ()]
+(1—=a)H P (OH'(t) — ¢ |, uu|u PO 2dx (23)

where

B =min {q_(l -$), €, q_(;_f) -1, q_(;_f) + 1} >0

and

PayW) = [, [u|0dx.
In order to estimate the last terms in (23), we make use the following Young inequality
xy <P 00
where X,Y >0, § >0, k,Il € R* such that %+ % = 1. Consequently, applying the previous
we have

[ uluPO-tdx < [ P @up@dx + [ DL 575005y, [p@
a Tt =0 p@) 2 P& t
L s up@dx + B[ 5700 [, [P
< p—_fn POy [P dx +p—+f!2 & p-1|u, [PX) dx (24)

where § is constant depending on the time t and specified later. Inserting estimate (24) into

(23), we get
2

W(t) > ef [H(t) + lluell? + [|AY 2" + qu(u)]

+(1 = )7 (OH'(t) ~ &= [, PO ulP@dx

+_1 _ p(x)
—e”p+ J, 8Pt |u [P® . (25)

_p®
Therefore, by taking & so that § »-1 = kH~9(t), where k > 0 is specified later, we obtain

2
() = e [HO) + lluel? + [[ 412" + pg(y )]
+(1 = H OH' () = e [, KPOHPOD () ulP@dx

—e 2, KHO (Ol P dx
2
> ef [H() + lluel? + |47 2u]|” + poy ()]
+(1— OH T (OH'(t) — s":_" HO@ =D (6) [ |ulp@dx
+_
—¢ (”pf) KH (1) [, lu,[P®dx
2
2 ef [H() + luell? + |47 2u]|* + poey ()]
+_
+(a-o—e(Br) k) Ho @1 ©
L Ho® D () [, ulP@dx. (26)

P
By using (14) and (17), we get

—&
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HO®*=D(0) [, [ulP@dx < HOE D) [, lul?”da + [, Jul?” dz ]
- vt
< Ha(p+—1)(t)c [(fn_|u|q_dx)q + (fﬂ+|u|q_dx)q ]
< HO® D ()¢ [||u||f;: + ||u||§ﬁ]
LA

o(p*-1) L2
<c(n0) " [(ru0)+ (o)

e, [(pq(‘)(u))z—:w(phl) N (pq(,)(u))z__w(w_l)] 27)

where 2_ = {x € 2:|u| < 1}and 2, = {x € 2: |u| = 1}.
We then use Lemma 4 and (19), for

s=p +oq (p*-1)<q"

—_—

and
s=pt+oq -1 <q,
to deduce, from (27),
2

Ho@ =D (¢) J, lulP@dx < ¢ [||A1/2u|| + pq(.)(u)]. (28)

Thus, inserting estimate (28) into (26), we have

1-p~ 2

W) > e (,8 _k2 61) [H(t) + lluell? + || AY 2" + pq(.)(u)]

' +la-o)- g(”;f) k| H=o (OH' (©). (29)

kP

Let us choose k large enough so that y = 8 — >

that (1 — o) —e(%)k > 0and
Y(t) 2 ¥(0) =H"9(0) + ¢ [, upusdx >0, vt=0. (30)
Consequently, (29) yields
W(t) > ey [H(t) + N2 + |AV2u))” + pqo(u)]
>e¢y [H(t) + |lugll? + ||A1/2u||2 + |u|Z:], (31)
due to (14). Therefore we get

Y(t)=%(0) >0, forallt=0.
On the other hand, applying Holder inequality, we obtain

1

- 1 N
< fJullr=o|lug |+

2 1
=C <||u||;1”||ut||1-°>-

¢; > 0, and picking & small enough such

|fﬂ uuydx

Young inequality gives

= - 0
[fy a7 < € (Il + lhuell=z), 32)
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1 1 . 2 -
for ;+§ = 1. We take 6 = 2(1 — o), to obtain ﬁ =15.541 by (19). Therefore, (32)

becomes

1
1-o
< C(luell® + Null§-),

f uu.dx
Q

where ﬁ < gq~. By using (13), we get

1
1-0

< C (Ihuelt? + lelld= + H (),

f uudx
Q

Thus,
Wﬁ(t) < [Hl"’(t) +elf, uutdx]ﬁ
< € (lhuell? + )i~ + HD)

< C(H@) + lheell? + a2u]* + ul?-) (33)

where

= <H(t) +eio

Jo, uuedx

(a+ b)P < 2P~1(aP + bP)
is used. By combining of (31) and (33), we arrive

1
() = §¥i-e (D), (34)
where £ is a positive constant.
A simple integration (34) over (0,t) yields ¥i-s(t) > ———

:
q/—m(o)_f_%

which implies that the

solution blows up in a finite time 7, with
T* < 1-o0
T 0)

This completes the proof of the theorem.
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