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ABSTRACT 

 

The objective of this study is to discuss the main constraints in classifying the severity of road accidents using 
Artificial Neural Networks (ANN). To achieve this, ANN modelling with Multiple Layers Perceptron (MPL) 

was used. This method is recommended for treating non-linear problems, whose distributions are not normal, 

which is the case for road accidents. Variables associated with the characteristics of accidents, road 
infrastructure and environmental conditions were used, with the objective of identifying the influence of these 

factors in the accident severity. The results indicated that ANN modelling with MPL presents a potential 

association among the parameters related to road accidents. However, the results are limited, since the 
classification process provides a low rate of accuracy for accidents with victims. Such accidents correspond to 

less frequent observations in the database, meaning that the data is less represented, and the database becomes 

unbalanced. Thus, for further research studies, the use of ANN with MPL associated with data balancing 
methods is suggested, in order to obtain the best data fit to the model and more consistent and realistic results. 

Keywords: Unbalanced data, road accidents, severity, classification, artificial neural networks. 

 
 

1. INTRODUCTION     
 

In order to carry out measures of prevention and reduction of road accident severity, it is 

necessary to perform an analysis of the occurrence of road accidents. Such analysis would include 

associating the record of each accident occurrence with the characteristics of the road, the 

environment, the vehicular conditions and the driver. These characteristics, when related to 

accident records, can be used in the prediction and classification of road accident severity [1]. 

Several methods about road accident analysis can be found in the literature. The principal 

methods are based on deterministic models and regression analysis, such as logistic regression, 

negative binominal regression and Poisson regression, which investigate the individual 

contribution of a specific factor in the variation of road accident severity [2, 3]. Al-Ghamdi [4] 
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applied the logistic regression to analyze the injury severity in 560 accident occurrences involving 

severe (fatal and non-fatal) victims, in Riyadh, the capital of Saudi Arabia. Farmer et al. [5] used 

logistic regression to analyze the injury severity in shock type accidents involving passenger 

vehicles and light trucks in the United States for a period of 4 years (1988 to 1992). Lui et al. [6] 

quantified through logistic regression the relationships between the use of safety belts, the 

direction of impacts in crash accidents, and the weight of vehicles, and the effects of these factors 

on accidents involving fatalities. Singleton, Qin & Luan [7] used logistic regression to identify 

driver, vehicle and pathway/environment factors associated with the increased risk of serious 

injury in Kentucky from 2000 to 2001. Negative binominal regression was used by Pirdavani, 

Brijs & Bellemans [8] to assess the impact of traffic safety on the basis of fuel price increases for 

the period 2004-2007 in Flanders (Belgium) in 2,200 traffic zones. Poisson regression was used 

by Ye et al. [9] in the generation of accident severity frequency rate models for highway sections 

using five years of data for 275 multilane road segments in Washington State. Debrabant et al. 

[10] used the same regression model for the identification of critical areas of road accidents in 

Funen, Denmark, for the period from 2002 to 2007. 

Regression models provide analytical results, based on a predetermined mathematical 

function. If the function requirements are violated, erroneous probabilities are obtained for 

accident severity. However, traffic accidents are multicausal events of random nature and cannot 

be described by simple deterministic models [2]. Therefore, probability models that describe the 

random behavior of the entities present in the accident database should be used, in order to 

convey a greater number of parameters associated to the road accident phenomena [2]. 

In this perspective, stochastic and non-parametric approaches, derived from artificial 

intelligence, have been employed in the treatment of heterogeneous and multidimensional 

databases [2, 3, 11, 12, 13, 14]. Among them are those based on data mining, in which there is no 

need to establish a priori restrictions on the relationships of the database variables. 

Data mining techniques used in investigating accident severity fundamentally use tree 

structures and networks. The techniques based on tree structures, known as decision trees, restrict 

the results obtained due to the hierarchical and binary structure of the tree. This feature limits the 

application of tree structure techniques to the analysis of specific categories of a target variable 

(dependent) belonging to the database, being ineffective for the modelling of multiple problems 

[11, 15,16]. 

Data mining techniques based on network structures allow a greater extraction of knowledge 

from the database. Since a larger number of connections can be made between different types of 

data, the modelling process can be more flexible [2, 17]. Other studies in this area highlight the 

use of Artificial Neural Networks (ANN) [3, 12, 18, 19, 20,  21] and Bayesian networks [22, 23, 

24, 25] when dealing with non-linear problems in which data do not present a normal distribution 

[26].The results obtained in the previous studies depict the effectiveness of network modelling in 

the treatment of large and heterogeneous databases, with emphasis on the prediction and 

classification process [2].  

Considering that ANN have been successfully employed in non-linear problems with a non-

normal distribution, the use of ANN in the evaluation of accident database, which has such 

characteristics, is a feasible hypothesis. However, some limitations emerge regarding the severity 

classification in unbalanced databases, where fatal and severe accidents are underrepresented in 

the total number of accident occurrences. 

Based on this problem, the scope of this research is to present a discussion about the 

restriction of ANN for road accident severity classification, using unbalanced traffic accidents 

database. The most significant variables were selected, in order to correlate the degree of injury 

with the main risk factors in the road environment. 

This paper is organized as follows. Section 2 presents the materials and method adopted in the 

research, with a brief description of variable selection and learning based classification on ANN 

with multiple layers. Section 3 presents the experiments and discusses the results obtained. 
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Section 4 presen ts the conclusions about the approach employed, as well as the recommendations 

for future work. 

 

2. MATERIALS AND METHOD 

 

2.1. Road accident database 

 

The traffic accident database used in this research consists of accidents that occurred between 

2009 and 2012 from the km 125 to km 145.5 of Dom Pedro I Highway (SP-065), located in the 

city of Campinas (Brazil). During the period considered, 2,824 accidents occurred, excluding 

missing observations, incomplete data and the period of road construction (97.04% of the original 

data was used). Figure 1 presents a framework with the main characteristics of the study area. 

 

 
 

Figure 1. Framework with the main characteristics of the study area. 

 

The database contains the following types of information: Accident Type (ACT), Weather 

Condition (WTC), Visibility (SGC), Road Profile (PFR), Road Geometry (GER), Pavement 

Condition (PAV), Period of the Day (PER), Accident Cause (ACC), Horizontal Signal (HS), 

Vertical Signal (VS) and Milestone (km). These eleven variables were selected to classify the 

accident severity with (non-fatal and fatal) and without victims and are broken down into 

categories as shown in Figure 2. 
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Figure 2. Variables selected for accident severity classification. 

 

Of the 2,824 accidents analyzed, 23.87% represent accidents with victims (fatal and non-fatal) 

and 76.13% correspond to accidents without victims. Thus, the database is unbalanced, i.e., the 

number of accidents involving victims will always correspond to minority class of data. 

 

2.2. Artificial neural networks learning 

 

The method used to construct the model is based on Artificial Neural Networks (ANN). This 

technique is widely used in linear and non-linear problems since it does not require a priori 

assumptions to be established between the variables. ANN are indicated in the treatment of 

phenomena that are not well known or that are derived from multiple factors, in which the 

traditional analytic approach would demand a high computational cost [13]. 

In practice, ANN basically consists of three layers: the input layer, the hidden layer, and the 

output layer. Initially, the random extraction of two subsets of data was performed. The principle 

of ANNs is minimize the Mean Squares Error (MSE) provided by equation: 
 

2

,
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( ) ,

N K

i j

i j
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N K  

 


                                                                                                  (1) 

 

where t  and a  are the observed and estimated parameters, respectively; K  is the number of 

neurons of the output layer and N  the number of test set data (Chang, 2005).  

In this work, the SPSS software was used to construct ANN with Multiple Layers Perceptron 

(MLP), based on the "back propagation” algorithm, which corrects the weights in all layers, 

starting from the output layer to the input layer, using the mean square root error, in the two 

phases: the phase forward and the phase for backward. In the phase forward, each variable of 

database is stored in a neuron of the network. Na fase forward, cada variável da base de dados é 

armazenada em um neurônio da rede. A ponderação inicial se dá pelas conexões ou relações 

existentes entre as variáveis da camada de entrada. Cada neurônio nessa camada aplica a função 

de ativação a sua entrada total e produz um valor de saída, que é utilizado como valor de entrada 

pelos neurônios da camada seguinte. Esse processo se dá iterativamente até que os neurônios da 

camada de saída produzam cada um seu valor de saída, que é então comparado ao valor desejado 

para a saída desse neurônio. A diferença entre os valores produzidos e desejados para cada 
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neurônio da camada de saída expressa o erro do processo de modelagem dos dados (Facelli et al. 

2011). 

O valor do erro de cada neurônio da camada de saída é então utilizado na fase backward, no 

ajuste dos pesos de entrada. O ajuste ocorre da camada de saída até a camada intermediária. O 

ajuste dos pesos de uma MLP pelo algoritmo back-propagation pode ser obtido pela seguinte 

equação (Facelli et al. 2011): 
 

, ,( 1) ( ) j

j l j l lw t w t x    ,                                                                                                        (2)  
 

onde, 
,j lw  representa o peso entre um neurônio l  e o j ésimo  atributo de entrada ou saída 

do j ésimo  neurônio da camada anterior; 
l  o erro associado ao l ésimo  neurônio; 

jx  

corresponde a entrada recebida por esse neurônio, ou seja, o j ésimo  atributo de entrada ou a 

saída j ésimo  neurônio da camada anterior; e   a taxa de aprendizado da modelagem. 

Nesta modelagem apenas os valores dos erros dos neurônios de saída são conhecidos. Desta 

forma, deve-se estimar o erro para as camadas intermediárias. No algoritmo back-propagation, o 

erro de um neurônio de uma camada intermediária é estimado como a soma dos erros dos 

neurônios da camada seguinte, cujos terminais de entrada estão conectados a ele. A ponderação 

ocorre pelo peso atribuído a estas conexões. 

Deste modo, o cálculo do erro dependerá da camada em que se encontra o neurônio, como 

mostra a equação (3) e a equação (4), (Facelli et al. 2011): 
 

' ,l a lf e   se ln  saídacamada ,                                                                                                 (3) 
 

'
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onde, ln  representa o l ésimo  neurônio; 
'

af  a derivada parcial da função de ativação do 

neurônio; e le  o erro quadrático cometido pelo neurônio de saída quando sua resposta ( )qy  é 

comparada a desejada ( )qf , definido por: 
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O ajuste dos pesos é definido pela 
'

af , utilizando o gradiente descente da função de ativação. 

Essa derivada mede a contribuição de cada peso no erro da rede para cada variável utilizada na 

análise. Quando o valor da 
'

af  é positivo para um dado peso, isto indica que o peso atribuído a 

uma determinada variável está provocando um aumento da diferença entre os valores obtidos e 

desejados na modelagem. Neste caso, a magnitude do peso deve ser reduzida para minimizar o 

erro obtido. E, caso contrário, quando o valor da 
'

af  for negativo, o peso deve ser aumentado, 

para que os valores obtidos se aproximem dos valores esperados (Facelli et al. 2011). 

Figure 3 shows the structure of the ANN with MLP used in the modelling of the database. 
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Figure 3. Illustration of ANN model with MLP. 

 

The first subset uses 70% of the data for ANN training and the second subset uses 30% of the 

data for the ANN test. These subsets are used iteratively for learning, validation and cross-

validation without repetition. At the end of the processing, the whole set of data was verified. 

These subsets should not be too large, because they may hinder the ANN learning process. 

In addition, training and test subsets should be as homogeneous as possible for each class of 

variables, since ANN learning is based on as many combinations as possible. When many 

variables are used, or the data are not homogeneously distributed, the quality of ANN learning 

also tends to decline. Therefore, in the input layer of ANN a small number of variables must be 

selected, in order to obtain best results both in data extraction and in class distribution for the test 

and training subsets. In addition, the values of the input variables (predictors) must be normalized. 

In this study, the input layer presents 39 neurons. The variable type of accident is represented 

by 10 neurons; the variable weather condition by 5 neurons; the variable accident cause by 4 

neurons and the variable mileage by 1 neuron. The other variables, such as visibility, road profile, 

road geometry, pavement condition, and period are represented with 3 neurons each. Horizontal 

signal and vertical signal are represented with 2 neurons each. 

The hidden layer contains the nodes or unobserved units and, in this study, has 9 neurons. The 

output layer contains two response neurons (accidents without victims and accidents with fatal 

and non-fatal victims). Therefore, each neuron belonging to the output layer represents a 

predicted variable, whereas the hidden layer neurons are directly connected to the values of the 

independent variables. 

For the transfer of information between the input-layer neurons and the hidden layer, the 

hyperbolic tangent activation function was used, when the selection of the network architecture 

was performed automatically. In addition, for the transfer of information between the hidden layer 

and the output layer, the Softmax activation function was used, when all the independent 

variables are categorical.  

The exact relationships between input and output data are not known, which implies that the 

optimal number of cases is not known for learning and for setting up the best ANN model.  

The number of cases used in the network learning process was 2,824 accidents, of which 1,964 

(69.5%) were used as a training subset and 860 (30.5%) as a test subset. 
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3. RESULTS AND DISCUSSION 

 

Table 1 shows the amount of data classified following the ANN model with MPL for each 

category of injury accidents being accidents with no injury (NI) and accidents with injury (WI). 

 

Table 1. Classification of accidents in relation to victims. 
 

Sub-sets Injury level*   Predict    

    NI WI (%) Correct 

Training 

 
NI 1,452 34 97.7% 

  WI 460 18 3.8% 

  (%) Total 100.00% 0.00% 74.8% 

Test NI 646 8 98.8% 

  WI 182 14 7.1% 

  (%) Total 97.4% 2.6% 77.9% 

*no injury (NI) and with injury (WI). 

 

As shown in Table 1 and in Figure 4, a two-class model (NI and WI) resulted in a general 

prediction of 77.9%. The results obtained in the classification process – using the ANN and the 

eleven predictor variables and the variables NI and WI. 

 

 
 

Figure 4. Quality of the model fit for the dependent variable “accident severity”. 

 

However, ANN ranked fatalities (WI) with an accuracy of only 2.6%, while non-fatal 

accidents (NI) were classified with high accuracy (97.4%). This is a typical particularity of 

multiple variable problems, in which the database is naturally unbalanced, in relation to the 

number of observations and the number of variable categories under analysis [19]. Figure 5 shows 

the Receiver Operating Characteristic (ROC) curve and Figure 6 shows the gain for each 

dependent variable (NI and WI) as a function of the ROC curve. 
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Figure 5. ROC curve obtained for the dependent variable “accident severity”.  

 

 
 

Figure 6. Gain graph for the dependent variable “accident severity”. 

 

The ROC curve corresponds to the graphical representation of sensitivity (true positives) 

versus specificity (false positives), ranging from zero to one, and provides a measure of the 

discrimination of the model. When analyzing the ROC curve (Figure 5), the values predicted for 

the classes of the severity variable NI and WI should be very close to the diagonal, that is, close to 

one. However, the classification presented mean values of 0.618 for both NI predicted accidents 

and WI predicted accidents. Figure 6 shows the graph of cumulative gains for categorical 

variables NI and WI accidents, as a function of the ROC curve. Note that the gain balance 

between the two variables occurs when there is the best model fit (precision equal to 77.9%). 

For this method, the variable accident type was the most important in the prediction process, 

followed by the variables accident cause, vertical signal, visibility and mileage. The other 

variables used in the modelling presented importance below 40%, as can be seen in Table 2. The 
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percentage of uncorrected predictions for the training subset was 25.2% and for the test subset 

was 22.1%. 

 

Table 2. Importance of independent variables. 
 

Variables Standardized Importance 

ACT 100.0% 

ACC 65.6% 

PER 12.6% 

SGC 44.0% 

WTC 35.8% 

PAV 33.1% 

GER 23.5% 

PFR 28.9% 

HS 16.3% 

VS 46.6% 

km 42.7% 

 

The Figure 7 shows that the four most important variables accident type, period, visibility, 

weather condition, road geometry, road profile, pavement condition, milestone, horizontal signal 

and vertical signal have a nonhomogeneous data distribution.  

 

 
 

Figure 7. Nonhomogeneous data distribution of the main variables. 
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Figures 8 and 9 present, respectively, the scores obtained for the predictions of NI and WI 

accidents. 

 

 
 

Figure 8. Scores obtained in the prediction of accidents with no injury (NI). 

 

 
 

Figure 9. Scores obtained in the prediction of accidents with injury (WI). 

 

The classification for NI accidents resulted in an average score of 0.76, with minimum value 

of 0.32 and maximum value of 0.89. While the classification for WI accidents resulted in an 

average score of 0.24, with minimum value of 0.11 and maximum value of 0.68. Therefore, in 

general terms, the prediction and classification of NI accidents presented the highest scores and, 

consequently, the highest probabilities of accuracy. 

According to Hosmer and Lemeshow [27], values of 0.5 0.7AUC   provide non-

discriminatory modeling. Values in the range of 0.7 0.8AUC   provide a model with 

acceptable discrimination, whereas values between 0.8 0.9AUC   indicate excellent modeling 

and 0.9AUC   a model with extraordinary discrimination potential. 

Thus, considering the limitations of ANN for unbalanced data [13, 19] and the predictions 

that demonstrated larger evidence or probability of occurrence, it was adopted an 0.6AUC  , 

aiming only at the exploitation of the results obtained. Table 3 shows the means and standard 
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deviations for the predictive variables, considering the severity dependent variable of NI and WI 

accidents. 

 

Table 3. Performance of the accident severity classification. 
 

 

                                                 NI   WI 

Variable Category Mean (%) S. D. (%) Mean (%) S. D. (%) 

ACT 1.Rear-end collision 29.98 5.58 0.00 0.00 

 
2. Head-on collision 0.37 0.54 0.00 0.00 

 

3. Transverse collision 1.53 1.11 0.00 0.00 

 
4. Lateral collision 15.09 5.93 0.00 0.00 

 

5. Pile-up 13.57 6.01 0.00 0.00 

 

6. Rollover 0.36 0.42 25.00 7.50 

 

7. Pedestrian collision 0.08 0.15 25.00 7.50 

 

8. Overturning 1.88 1.51 16.67 5.00 

 

9. Crash with fixed or mobile 
object 36.24 6.20 0.00 0.00 

 

10. Fall of motorbikes and 

motorcycles 0.89 0.86 33.33 8.67 

ACC 1. Driver 71.38 3.72 15.63 3.44 

 

2. Vehicle 3.06 1.49 0.00 0.00 

 

3. Road and environment 3.87 3.20 59.38 4.53 

 

4. Other factors 21.69 2.84 25.00 7.50 

PER 1. Morning 38.02 8.96 15.63 3.44 

 
2. Afternoon 43.28 7.76 59.38 4.53 

 

3. Night 18.70 5.74 25.00 7.50 

SGC 1. Normal 62.93 8.83 46.88 6.88 

 

2. Partial 36.09 8.23 53.13 6.88 

 

3. Adverse 0.98 1.00 0.00 0.00 

WTC 1.Good 80.86 6.31 93.75 10.94 

 

2. Rain 15.40 6.49 3.13 5.47 

 

3. Cloudy 2.03 1.34 3.13 5.47 

 

4. Haze 0.16 0.24 0.00 0.00 

 

5. Drizzle 1.55 1.32 0.00 0 

 

 

                                                 NI   WI 

Variable Category Mean (%) S. D. (%) Mean (%) S. D. (%) 

PAV 1. Dry 81.43 6.75 71.88 5.94 

 

2. Wet 18.57 6.75 0.00 0.00 

 

3. Oily 0.00 0.00 28.13 5.94 

GER 1. Straight 90.12 8.38 50.00 5.00 

 

2. Smooth Curve  5.41 5.14 0.00 0.00 

 

3. Sharp Curve 4.48 4.55 50.00 5.00 

PFR 1. Descending 27.36 9.26 30.21 7.76 

 

2. Level 45.39 7.93 0.00 0.00 

 
3. Ascending 27.24 3.68 69.79 7.76 

HS 1. Present 99.19 0.65 100.00 0.00 

 

2. Not present 0.81 0.60 0.00 0.00 

VS 1 Present 99.44 0.63 100.00 0.00 

 

2. Not present 0.56 0.55 0.00 0.00 
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Considering that the AUC is numerically equal to the probability [28], it is seen that the 

accidents most likely not to cause victims (NI) are the rear-end collision (29.98%), lateral 

collision (15.09%), pile-up (13.57%) and crash with fixed or mobile object (36.24%). Most of 

these accidents have as probable cause driver behaviour (71.38%); happen most likely in the 

morning (38.02%) and in the afternoon (43.28%); with good visibility (62.93%) or partial 

visibility (36.09%); in good weather condition (80.86%); dry pavement condition (81.43%); in 

straight segments (90.12%); in level profile (45.39%); and in segments where there is horizontal 

(99.19%) and vertical (99.44%) signals. 

The accidents most likely to cause fatalities (WI) are rollover type (25%), pedestrian collision 

(25%) and fall of cyclists and motorcyclist (33.33%). Most of these accidents have as probable 

cause road and environment factor (59.38%); happen most likely in the afternoon (59.38%); with 

a normal (46.88%) or partial (53.13%) visibility condition; good weather condition (93.75%); dry 

pavement condition (71.88%); in straight segments (50%) or sharp curve (50%); with descending 

(30.21%) or ascending (69.79%) road profile; and in segments where there is horizontal (100%) 

and vertical (100%) signals. 

 

4. CONCLUSIONS  

 

This article presented a discussion of the main limitations encountered when using the ANN 

approach for road accident severity classification based on unbalanced databases, considering 

eleven variables that encompass road infrastructure, environment and type of accidents. 

The results obtained with the ANN had accuracy of 77.9% and with mean AUC values of 

0.618, compatible with the values found in the literature [13,19]. However, an accident rate 

accuracy of only 2.6% for WI and a high accident rate accuracy for NI (97.4%) were obtained, as 

observations associated with accidents with victims were more unusual in the data set of traffic 

accident records (unbalanced dataset). 

Because of this limitation, some authors have been exploring data balancing techniques and 

used series of binary classifiers in ANN modelling, aiming to reduce the training time of the 

model and increase the accuracy of the general prediction. In this way, it is possible to use 

resources such as weights of connections in networks, in order to simplify the structure of the 

model for a better generalization of the results obtained [13, 29]. 

The ANN architecture allows reconstructing any continuous function independent of the input 

data sequence, when the iterative learning process uses the entire data set and the actual 

associations between the categories of the selected variables and the target variable. Thus, the 

lower the number of predictor variables used, the greater the effectiveness of results 

generalization obtained in ANN modelling. 

Nevertheless, although the ANN is a robust tool for solving complex, multiple-class 

problems, in cases where data are naturally unbalanced, such as in road accidents, the 

classification algorithms tend to ignore the less represented categories, in order to optimize the 

overall precision of the model. 

In neglecting these distortions, the ANN algorithm fails to predict and classify the most 

relevant classes, which are generally less frequent in the database, such as accidents involving 

victims (fatal and non-fatal).  In addition, the size of the database may also influence the results 

obtained, since the database must be large enough to ensure that the subsets of training and test 

data are as homogeneous as possible. Conversely, accident databases have a reduced number of 

observations when compared to databases in the area of transportation for planning and analysis 

of demand, among others. 

Recommendations for future work include the study of database balancing methods, as well 

as testing different information transfer functions between ANN layers. In addition, it is 

recommended to explore, where possible, databases of different dimensions, since a larger 

M.L. Chuerubim, A. Valejo, B.S. Bezerra, I.D. Silva     / Sigma J Eng & Nat Sci 37 (3), 927-940, 2019 



939 

 

number of data can increase the generalization power and hence the data adjustment to the ANN 

model. 

Thus, regardless of the structural flexibility of the ANN in the selection of variables and the 

construction of stochastic models, it is suggested investigating other approaches that are based on 

network structures, such as complex networks that are suitable for studying random phenomena 

of complex nature, derived from multiple causes. 
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