
521 

 

Sigma J Eng & Nat Sci 37 (2), 2019, 521-528 
 

                                                                                                                                 

 

 

 

 

Research Article 

MULTIPLICATIVELY HARMONICALLY 𝑷-FUNCTIONS AND SOME 

RELATED INEQUALITIES 

 

 

İmdat İŞCAN*
1
, Volkan OLUCAK

2
 

 
1Department of Mathematics, Giresun University, GIRESUN; ORCID: 0000-0001-6749-0591  
2Instutite of Sciences, Giresun University, GIRESUN; ORCID: 0000-0002-2890-7179  
 

Received: 24.01.2019   Revised: 02.05.2019   Accepted: 07.05.2019 

 

  

ABSTRACT 

 

In this study, we introduce a new class of functions called as multiplicatively harmonically 𝑃-function. Some 
new Hermite-Hadamard type inequalities are obtained for this class of functions. 

Keywords: Multiplicatively 𝑃-function, multiplicatively harmonically 𝑃-function, Hölder and power-mean 
integral inequalities, Hermite-Hadamard type inequality. 

AMS classification: 26A51, 26D10, 26D15 

 
 

1. PRELIMINARIES 

 

The following double inequality is well known as the Hadamard inequality in the literature. 
 

Theorem 1 [1] 𝑓: [𝑎, 𝑏] → ℝ be a convex function, then the inequality 
 

𝑓 (
𝑎 + 𝑏

2
) ≤

1

𝑏 − 𝑎
∫ ‍

𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≤
𝑓(𝑎) + 𝑓(𝑏)

2
 

 

is known as the Hermite-Hadamard inequality.  
 

Definition 1 [2] We say that a function 𝑓: 𝐼 ⊆ ℝ → ℝ belongs to the class 𝑃(𝐼) (or called 𝑃-

function) if it is nonnegative and for all 𝑥, 𝑦 ∈ 𝐼 and 𝜆 ∈ [0,1] satisfies the following inequality  
 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) 
 

holds.  

Note that 𝑃(𝐼) contain all nonnegative monotone convex and quasi-convex functions. 

In [2], Dragomir et al. proved the following inequality of Hadamard type for class of 𝑃-

functions. 
 

Theorem 2 Let 𝑓 ∈ 𝑃(𝐼), 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏 and 𝑓 ∈ 𝐿[𝑎, 𝑏]. Then  
 

𝑓 (
𝑎 + 𝑏

2
) ≤

2

𝑏 − 𝑎
∫ ‍

𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≤ 2[𝑓(𝑎) + 𝑓(𝑏)]. 

 

Both inequalities are the best possible.  
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In [4], İşcan gave the definition of harmonically convexity as follows: 
 

Definition 2 Let 𝐼 ⊂ ℝ\{0} be a real interval. A function 𝑓: 𝐼 → ℝ is said to be harmonically 

convex, if    
 

𝑓 (
𝑥𝑦

𝑡𝑥+(1−𝑡)𝑦
) ≤ 𝑡𝑓(𝑦) + (1 − 𝑡)𝑓(𝑥)‍                                                                                        (1.1) 

 

for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ 0,1]. If the inequality in (1.1) is reversed, then 𝑓 is said to be 

harmonically concave.  
 

Example 1 Let 𝑓: (0,∞) → ℝ, 𝑓(𝑥) = 𝑥, and 𝑔: (−∞, 0) → ℝ, 𝑔(𝑥) = 𝑥, then 𝑓 is a 

harmonically convex function and 𝑔 is a harmonically concave function.  

The following proposition is obvious from this example: 
 

Proposition 1 Let 𝐼 ⊂ ℝ\{0} be a real interval and 𝑓: 𝐼 → ℝ is a function, then ; 
 

• if 𝐼 ⊂ (0,∞) and f is convex and nondecreasing function then f is harmonically convex. 

• if 𝐼 ⊂ (0,∞) and f is harmonically convex and nonincreasing function then f is convex. 

• if 𝐼 ⊂ (−∞, 0) and f is harmonically convex and nondecreasing function then f is convex. 

• if 𝐼 ⊂ (−∞, 0) and f is convex and nonincreasing function then f is a harmonically convex.  
 

The following result of the Hermite-Hadamard type holds. 
 

Theorem 3 Let 𝑓: 𝐼 ⊂ ℝ\{0} → ℝ be a harmonically convex function and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 
𝑓 ∈ 𝐿[𝑎, 𝑏] then the following inequalities hold  
 

𝑓 (
2𝑎𝑏

𝑎+𝑏
) ≤

𝑎𝑏

𝑏−𝑎
∫ ‍
𝑏

𝑎

𝑓(𝑥)

𝑥2
𝑑𝑥 ≤

𝑓(𝑎)+𝑓(𝑏)

2
.‍‍                                                                                       (1.2) 

 

The  above inequalities are sharp.  

In [4], İşcan used the following lemma to prove Theorems. 
 

Lemma 1 Let 𝑓: 𝐼 ⊂ ℝ\{0} → ℝ be a differentiable function on 𝐼∘ and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 

𝑓′ ∈ 𝐿[𝑎, 𝑏] then  
 

𝑓(𝑎) + 𝑓(𝑏)

2
−

𝑎𝑏

𝑏 − 𝑎
∫ ‍

𝑏

𝑎

𝑓(𝑥)

𝑥2
𝑑𝑥 =

𝑎𝑏(𝑏 − 𝑎)

2
∫ ‍

1

0

1 − 2𝑡

(𝑡𝑏 + (1 − 𝑡)𝑎)2
𝑓′ (

𝑎𝑏

𝑡𝑏 + (1 − 𝑡)𝑎
)𝑑𝑡. 

 

Definition 3 [3] A function 𝑓: 𝐼 ⊆ (0,∞) → ℝ is said to be harmonically P-function on 𝐼 or 

belong to the class 𝐻𝑃(𝐼) if it is nonnegative and,  
 

𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) ≤ 𝑓(𝑥) + 𝑓(𝑦),  

 

for any 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0,1].  
 

Proposition 2 [3] Let 𝑓: 𝐼 ⊆ (0,∞) → ℝ. If 𝑓 is P-function and nondecreasing, then 𝑓 ∈ 𝐻𝑃(𝐼).  
Proposition 3 [3] Let 𝑓: 𝐼 ⊆ (0,∞) → ℝ. If 𝑓 ∈ 𝐻𝑃(𝐼) and nonincreasing, then 𝑓 is P-function 

on 𝐼.  
 

Hermite-Hadamard’s inequalities can be represented for harmonically 𝑃-function as follows. 
 

Theorem 4 [3] Let 𝑓: 𝐼 ⊆ (0,∞) → ℝ be a function such that 𝑓 ∈ 𝐿[𝑎, 𝑏], where 𝑎, 𝑏 ∈ 𝐼 with 

𝑎 < 𝑏. If 𝑓 is a harmonically P-function on [𝑎, 𝑏], then the following inequalities hold: 
 

𝑓 (
2𝑎𝑏

𝑎+𝑏
) ≤

2𝑎𝑏

𝑏−𝑎
∫ ‍
𝑏

𝑎

𝑓(𝑢)

𝑢2
𝑑𝑢 ≤ 2[𝑓(𝑎) + 𝑓(𝑏)].                                                                             (1.3) 

 

Recently, Kadakal gave a new definition called as multiplicatively 𝑃-function as follows. 
 

Definition 4 Let 𝐼 ≠ ∅ be an interval in ℝ\{0}. The function 𝑓: 𝐼 → 0,∞) is said to be 

multiplicatively 𝑃-function, if the inequality 
 

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑓(𝑥)𝑓(𝑦)  
 

holds for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0,1].  
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In [5], Kadakal also gave the following Hermite Hadamard type inequalities for this class of 

functions. 
 

Theorem 5 Let the function 𝑓: 𝐼 ⊆ ℝ → 1,∞),be a multiplicatively 𝑃-function and 𝑎, 𝑏 ∈ 𝐼 with 

𝑎 < 𝑏. If ‍‍𝑓 ∈ 𝐿[𝑎, 𝑏], then the following inequalities hold: 
 

i)‍‍‍‍𝑓 (
𝑎+𝑏

2
) ≤

1

𝑏−𝑎
∫ ‍
𝑏

𝑎
𝑓(𝑥)𝑓(𝑎 + 𝑏 − 𝑥)𝑑𝑥 ≤ [𝑓(𝑎)𝑓(𝑏)]2  

ii)‍‍‍‍𝑓 (
𝑎+𝑏

2
) ≤ 𝑓(𝑎)𝑓(𝑏)

1

𝑏−𝑎
∫ ‍
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≤ [𝑓(𝑎)𝑓(𝑏)]2.  

 

The main purpose of this paper is to give a new concept called as multiplicatively 

harmonically 𝑃-function, compare other function classes with this class of functions, establish 

Hermite-Hadamard type inequalities for functions multiplicatively harmonically 𝑃-function. Ideas 

of this paper may stimulate further research.  

 

2. MULTIPLICATIVELY HARMONICALLY 𝑷-FUNCTIONS 

 

In this section, we begin by setting the definition of multiplicatively harmonically 𝑃-function 

and some algebraic properties for this class of functions. 
 

Definition 5 Let 𝐼 ≠ ∅ be an interval in ℝ\{0}. The function 𝑓: 𝐼 → [0,∞) is said to be 

multiplicatively harmonically 𝑃-function, if the inequality 
 

𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) ≤ 𝑓(𝑥)𝑓(𝑦)                                                                                                          (2.1) 

 

holds for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0,1].  
We will denote by 𝑀𝐻𝑃(𝐼) the class of all multiplicatively harmonically 𝑃-functions on 

interval 𝐼. 
 

Remark 1 If 𝑓 ∈ 𝑀𝐻𝑃(𝐼), the range of 𝑓 is greater than or equal to 1.  

Proof. In the inequality (2.1), for 𝑡 = 1; 
 

𝑓(𝑥) ≤ 𝑓(𝑥)𝑓(𝑦) ⟹ 𝑓(𝑥)[1 − 𝑓(𝑦)] ≤ 0. 
 

Since 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼, we obtain 𝑓(𝑦) ≥ 1, for all 𝑦 ∈ 𝐼. Also, since for 𝑡 = 0,  
 

𝑓(𝑦) ≤ 𝑓(𝑥)𝑓(𝑦) ⟹ 𝑓(𝑦)[1 − 𝑓(𝑥)] ≤ 0,  
 

and 𝑓(𝑦) ≥ 0 for all 𝑥 ∈ 𝐼, we get 𝑓(𝑥) ≥ 1, for all 𝑥 ∈ 𝐼.  
 

Remark 2 i.) Let 𝑓: 𝐼 ⊆ (0,∞) → [1,∞) be a function. Then, 𝑓 is multiplicatively harmonically 

𝑃-function if and only if 𝑙𝑛𝑓 is harmonically 𝑃-function. So, a multiplicatively harmonically 𝑃-

function 𝑓: 𝐼 ⊆ (0,∞) → [1,∞) can be called as log-harmonically P-function. 

ii.) If 𝑓: 𝐼 ⊆ (0,∞) → [1,∞) is a harmonically 𝑃-function, then 𝑓 is also a multiplicatively 

harmonically 𝑃-function. Since we have 
 

𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) ≤ 𝑓(𝑥) + 𝑓(𝑦) ≤ 𝑓(𝑥)𝑓(𝑦).  

 

Example 2 The function 𝑓: [1,∞) → [1,∞), 𝑓(𝑥) = 𝑥 is a multiplicatively harmonically 𝑃-

function. Really, for any 𝑥, 𝑦 ∈ 1,∞) with 𝑥 < 𝑦, we have  
 

𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) =

𝑥𝑦

𝑡𝑥+(1−𝑡)𝑦
≤ 𝑦 ≤ 𝑥𝑦 = 𝑓(𝑥)𝑓(𝑦).  

 

Example 3 i.) The function 𝑓: (0,∞) → (1,∞), 𝑓(𝑥) = 𝑒𝑥 is a multiplicatively harmonically 𝑃-

function. Since, for any 𝑥, 𝑦 ∈ (0,∞) with 𝑥 < 𝑦, we have  
 

𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) = 𝑒

𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥 ≤ 𝑒𝑦 ≤ 𝑒𝑥𝑒𝑦 = 𝑓(𝑥)𝑓(𝑦).  
 

ii.) The function 𝑓: (−∞, 0) → (1,∞), 𝑓(𝑥) = 𝑒−𝑥 is a multiplicatively harmonically 𝑃-

function.   
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Example 4 The function 𝑓: [𝑒,∞) → [1,∞), 𝑓(𝑥) = 𝑙𝑛𝑥 is a multiplicatively harmonically 𝑃-

function. Since, for any 𝑥, 𝑦 ∈ 0,∞) with 𝑥 < 𝑦, we have  
  

𝑓 (
𝑥𝑦

𝑡𝑦 + (1 − 𝑡)𝑥
) = 𝑙𝑛 (

𝑥𝑦

𝑡𝑦 + (1 − 𝑡)𝑥
) = 𝑙𝑛𝑦 + 𝑙𝑛 (

𝑥

𝑡𝑦 + (1 − 𝑡)𝑥
) 

≤ 𝑙𝑛𝑦 ≤ 𝑙𝑛𝑦. 𝑙𝑛𝑥 = 𝑓(𝑥)𝑓(𝑦).  
 

Proposition 4 Let 𝑓: 𝐼 ⊂ ℝ\{0} → [1,∞) be a function and 𝑔: {
1

𝑥
, 𝑥 ∈ 𝐼} → 𝐼, 𝑔(𝑥) = 1/𝑥. 𝑓 is 

multiplicatively harmonically 𝑃-function on the interval 𝐼 if and only if 𝑓 ∘ 𝑔 is multiplicatively 𝑃-

function on the interval 𝑔−1(𝐼) = {
1

𝑥
, 𝑥 ∈ 𝐼}.  

 

Proof. Let 𝑓 be a multiplicatively harmonically 𝑃-function on the interval 𝐼. If we take arbitrary 

𝑥, 𝑦 ∈ 𝑔−1(𝐼), then there exist 𝑢, 𝑣 ∈ 𝐼 such that 𝑥 = 1/𝑢 and 𝑦 = 1/𝑣  
 

(𝑓 ∘ 𝑔)(𝑡𝑥 + (1 − 𝑡)𝑦) = 𝑓 (
𝑢𝑣

𝑡𝑣+(1−𝑡)𝑢
) ≤ 𝑓(𝑢)𝑓(𝑣) = (𝑓 ∘ 𝑔)(𝑥)(𝑓 ∘ 𝑔)(𝑦)  
 

Conversely, if 𝑓 ∘ 𝑔 is multiplicatively 𝑃-function on the interval 𝑔−1(𝐼) then it is easily seen 

that 𝑓 is multiplicatively harmonically 𝑃-function on the interval 𝐼 by a similar procedure. The 

details are omitted.  
 

Proposition 5 Let 𝐼 ⊆ ℝ\{0} be a real interval and 𝑓: 𝐼 → [1,∞) is a function, then ; 
 

• if 𝑓 is harmonically convex, then 𝑓 is also harmonically multiplicatively 𝑃-function. 

• if 𝐼 ⊆ (0,∞) and 𝑓 is multiplicatively 𝑃-function and nondecreasing function then f is 

harmonically multiplicatively 𝑃-function. 

• if 𝐼 ⊆ (0,∞) and f is harmonically multiplicatively 𝑃-function and nonincreasing function 

then f ismultiplicatively 𝑃-function. 

• if 𝐼 ⊆ (−∞, 0) and f is harmonically multiplicatively 𝑃-function and nondecreasing function 

then f is multiplicatively 𝑃-function. 

• if 𝐼 ⊆ (−∞, 0) and f is multiplicatively 𝑃-function and nonincreasing function then f is a 

harmonicallymultiplicatively 𝑃-function.  
 

Proof. i.) Since  
 

𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦) ≤ 𝑓(𝑥)𝑓(𝑦),  

 

𝑓 is also multiplicatively 𝑃-function. 
 

ii.) Since for any 𝑥, 𝑦 ∈ 𝐼 ⊆ (0,∞) and 𝑡 ∈ [0,1]  
 

𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
≤ 𝑡𝑥 + (1 − 𝑡)𝑦,                                                                                                          (2.2) 

 

and 𝑓 is nondecreasing and multiplicatively 𝑃-function we have 
 

𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) ≤ 𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑓(𝑥)𝑓(𝑦).  

 

iii.) By the inequality (2.2) and since 𝑓 is nonincreasing and harmonically multiplicatively 𝑃-

function we have 
 

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) ≤ 𝑓(𝑥)𝑓(𝑦).  

 

for any 𝑥, 𝑦 ∈ 𝐼 ⊆ (0,∞) and 𝑡 ∈ [0,1] 
 

iv.) Since for any 𝑥, 𝑦 ∈ 𝐼 ⊆ (−∞, 0) and 𝑡 ∈ [0,1]  
 

𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
≥ 𝑡𝑥 + (1 − 𝑡)𝑦,‍                                                                                                         (2.3) 

 

and 𝑓 is nondecreasing and harmonically multiplicatively 𝑃-function we have 
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𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) ≤ 𝑓(𝑥)𝑓(𝑦).  

 

v.) By the inequality (2.3) and since 𝑓 is nonincreasing and multiplicatively 𝑃-function we 

have 
 

𝑓 (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) ≤ 𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑓(𝑥)𝑓(𝑦).  

 

Theorem 6 Let 𝑓, 𝑔: 𝐼 ⊆ ℝ\{0} → [1,∞). If 𝑓 and 𝑔 are multiplicatively harmonically 𝑃-

function, then 𝑓𝑔 are multiplicatively harmonically 𝑃-function.  

Proof. For 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0,1], we have 
 

(𝑓𝑔) (
𝑥𝑦

𝑡𝑦 + (1 − 𝑡)𝑥
) = 𝑓 (

𝑥𝑦

𝑡𝑦 + (1 − 𝑡)𝑥
)𝑔 (

𝑥𝑦

𝑡𝑦 + (1 − 𝑡)𝑥
)‍‍ 

≤ [𝑓(𝑥)𝑓(𝑦)][𝑔(𝑥)𝑦(𝑦)]  
= [𝑓(𝑥)𝑔(𝑥)][𝑓(𝑦)𝑔(𝑦)]  
= [(𝑓𝑔)(𝑥)][(𝑓𝑔)(𝑦)]‍‍‍‍‍‍ 

 

This completes the proof of theorem.  
 

Theorem 7 Let 𝑓, 𝑔: 𝐼 ⊆ ℝ\{0} → [1,∞). If 𝑓 is multiplicatively 𝑃-function and nonincreasing 

and 𝑔 is harmonically convex function, then 𝑓𝑜𝑔 is multiplicatively harmonically 𝑃-function.  

Proof. For 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0,1], we obtain 
 

(𝑓𝑜𝑔) (
𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
) = 𝑓 (𝑔 (

𝑥𝑦

𝑡𝑦+(1−𝑡)𝑥
))  

‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍≤ 𝑓(𝑡𝑔(𝑥) + (1 − 𝑡)𝑔(𝑦))  
‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍≤ 𝑓(𝑔(𝑥))𝑓(𝑔(𝑦))  

‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍= (𝑓𝑜𝑔)(𝑥)(𝑓𝑜𝑔)(𝑦).  
 

This completes the proof of theorem.  

 

3. HERMITE-HADAMARD TYPE INEQUALITIES 

 

The goal of this paper is to develop concepts of the multiplicatively harmonically 𝑃-functions 

and to establish some inequalities of Hermite-Hadamard type for these classes of functions. 
 

Theorem 8 Let the function 𝑓: 𝐼 ⊆ ℝ\{0} → [1,∞),be a multiplicatively harmonically 𝑃-function 

and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If 𝑓 ∈ 𝐿[𝑎, 𝑏], then the following inequalities hold: 
 

i)‍‍‍‍𝑓 (
2𝑎𝑏

𝑎+𝑏
) ≤

𝑎𝑏

𝑏−𝑎
∫ ‍
𝑏

𝑎

𝑓(𝑥)𝑓([𝑎−1+𝑏−1−𝑥−1]−1)

𝑥2
𝑑𝑥 ≤ [𝑓(𝑎)𝑓(𝑏)]2‍‍  

 ii)‍‍‍‍𝑓 (
2𝑎𝑏

𝑎+𝑏
) ≤ 𝑓(𝑎)𝑓(𝑏)

𝑎𝑏

𝑏−𝑎
∫ ‍
𝑏

𝑎

𝑓(𝑥)

𝑥2
𝑑𝑥 ≤ [𝑓(𝑎)𝑓(𝑏)]2.‍ 

 

Proof. i) Since the function 𝑓 is a multiplicatively harmonically 𝑃-function, we write the 

following inequality:  
 

𝑓 (
2𝑎𝑏

𝑎 + 𝑏
) = 𝑓(

2 [
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
] [

𝑎𝑏
𝑡𝑏 + (1 − 𝑡)𝑎

]

[
𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
] + [

𝑎𝑏
𝑡𝑏 + (1 − 𝑡)𝑎

]
) ≤ 𝑓 (

𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
) 𝑓 (

𝑎𝑏

𝑡𝑏 + (1 − 𝑡)𝑎
) 

 

By integrating this inequality on [0,1] and changing the variable as 𝑥 =
𝑎𝑏

𝑡𝑎+(1−𝑡)𝑏
, then 

 

𝑓 (
2𝑎𝑏

𝑎+𝑏
) ≤

𝑎𝑏

𝑏−𝑎
∫ ‍
𝑏

𝑎

𝑓(𝑥)𝑓([𝑎−1+𝑏−1−𝑥−1]−1)

𝑥2
𝑑𝑥.  

 

Moreover, a simple calculation give us that 
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∫ ‍
1

0
𝑓 (

𝑎𝑏

𝑡𝑎+(1−𝑡)𝑏
) 𝑓 (

𝑎𝑏

𝑡𝑏+(1−𝑡)𝑎
) 𝑑𝑡 ≤ [𝑓(𝑎)𝑓(𝑏)]2. 

 

So, we get 
 

𝑓 (
2𝑎𝑏

𝑎 + 𝑏
) ≤

𝑎𝑏

𝑏 − 𝑎
∫ ‍

𝑏

𝑎

𝑓(𝑥)𝑓([𝑎−1 + 𝑏−1 − 𝑥−1]−1)

𝑥2
𝑑𝑥 ≤ [𝑓(𝑎)𝑓(𝑏)]2. 

 

ii) Similarly, as 𝑓 is a multiplicatively harmonically 𝑃-function, we write the following:  
 

𝑓 (
2𝑎𝑏

𝑎 + 𝑏
) ≤ 𝑓 (

𝑎𝑏

𝑡𝑎 + (1 − 𝑡)𝑏
) 𝑓 (

𝑎𝑏

𝑡𝑏 + (1 − 𝑡)𝑎
) ≤ 𝑓(𝑎)𝑓(𝑏)𝑓 (

𝑎𝑏

𝑡𝑏 + (1 − 𝑡)𝑎
) 

 

Here, by integrating this inequality on [0,1] and changing the variable as 𝑥 =
𝑎𝑏

𝑡𝑏+(1−𝑡)𝑎
, then, 

we have 
 

𝑓 (
2𝑎𝑏

𝑎 + 𝑏
) ≤ 𝑓(𝑎)𝑓(𝑏)

𝑎𝑏

𝑏 − 𝑎
∫ ‍

𝑏

𝑎

𝑓(𝑥)

𝑥2
𝑑𝑥. 

 

Since,  
 

∫ ‍
1

0

𝑓 (
𝑎𝑏

𝑡𝑏 + (1 − 𝑡)𝑎
)𝑑𝑡 ≤ 𝑓(𝑎)𝑓(𝑏), 

 

we obtain 
 

𝑓 (
2𝑎𝑏

𝑎 + 𝑏
) ≤ 𝑓(𝑎)𝑓(𝑏)

𝑎𝑏

𝑏 − 𝑎
∫ ‍

𝑏

𝑎

𝑓(𝑥)

𝑥2
𝑑𝑥 ≤ [𝑓(𝑎)𝑓(𝑏)]2. 

 

This completes the proof of theorem.  
 

Remark 3 Above Theorem (i) and (ii) can be written together as follows: 
 

𝑓 (
2𝑎𝑏

𝑎+𝑏
) ≤

𝑎𝑏

𝑏−𝑎
∫ ‍
𝑏

𝑎

𝑓(𝑥)𝑓([𝑎−1+𝑏−1−𝑥−1]−1)

𝑥2
𝑑𝑥 ≤ 𝑓(𝑎)𝑓(𝑏)

𝑎𝑏

𝑏−𝑎
∫ ‍
𝑏

𝑎

𝑓(𝑥)

𝑥2
𝑑𝑥  

≤ [𝑓(𝑎)𝑓(𝑏)]2.                                                                                                                            (3.1) 
 

Then by (2.2) we get required inequalities.  
 

Remark 4 By helping Theorem 5 and Proposition 4, the proof of Theorem 8 can also be given as 

follows : 

Since 𝑓: 𝐼 ⊆ ℝ\{0} → 1,∞) is a multiplicatively harmonically 𝑃-function, 𝑓 ∘ 𝑔 is 

multiplicatively 𝑃-function on the interval [1/𝑏, 1/𝑎] for 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏 So, by Theorem 5 

we have 
 

i)‍‍‍‍(𝑓 ∘ 𝑔) (
1/𝑎+1/𝑏

2
) ≤

1

1/𝑏−1/𝑎
∫ ‍
1/𝑏

1/𝑎
(𝑓 ∘ 𝑔)(𝑢)(𝑓 ∘ 𝑔)(1/𝑎 + 𝑏 − 𝑢)𝑑𝑢  

‍‍‍‍≤ [(𝑓 ∘ 𝑔)(1/𝑎)(𝑓 ∘ 𝑔)(1/𝑏)]2 

ii)‍‍‍‍(𝑓 ∘ 𝑔) (
1/𝑎+1/𝑏

2
) ≤ (𝑓 ∘ 𝑔)(1/𝑎)(𝑓 ∘ 𝑔)(1/𝑏)

1

1/𝑏−1/𝑎
∫ ‍
1/𝑏

1/𝑎
(𝑓 ∘ 𝑔)(𝑢)𝑑𝑢  

≤ [(𝑓 ∘ 𝑔) (
1

𝑎
) (𝑓 ∘ 𝑔) (

1

𝑏
)]

2
.‍‍‍‍‍‍‍‍  

 

In the last inequalities, if we put 𝑔(𝑥) = 1/𝑥 and change the variable as 𝑢 = 1/𝑥 in the 

integrals, then we obtain the inequalities in Theorem 8.  

By using Theorem 4 and Remark 2, we can give the following integral inequalities for 

multiplicatively harmonically 𝑃-functions. 
 

Theorem 9 Let the function 𝑓: 𝐼 ⊆ (0,∞) → [1,∞),be a multiplicatively harmonically 𝑃-function 

and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If ‍‍𝑓 ∈ 𝐿[𝑎, 𝑏], then the following inequalities hold: 
 

𝑓 (
2𝑎𝑏

𝑎+𝑏
) ≤ 𝑒𝑥𝑝 {

2𝑎𝑏

𝑏−𝑎
∫

𝑙𝑛𝑓(𝑢)

𝑢2
𝑑𝑢

𝑏

𝑎
} ≤ [𝑓(𝑎)𝑓(𝑏)]2.‍                                                                   (3.2) 
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Proof. The proof of inequalities are easily seen that by using Theorem 4 and Remark 2. We 

ommited the detailes.  

For finding some new inequalities of Hermite-Hadamard type for functions whose derivatives 

are multiplicatively harmonically 𝑃-function, we need Lemma 1. 
 

Theorem 10 Let 𝑓: 𝐼 ⊂ (0,∞) → ℝ be a differentiable function on 𝐼∘, 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏, and 

𝑓′ ∈ 𝐿[𝑎, 𝑏]. If |𝑓′|𝑞 is multiplicatively harmonically 𝑃-function on [𝑎, 𝑏] for 𝑞 ≥ 1, then 
 

|
𝑓(𝑎)+𝑓(𝑏)

2
−

𝑎𝑏

𝑏−𝑎
∫

𝑓(𝑥)

𝑥2
𝑑𝑥

𝑏

𝑎
|‍  

≤
𝑎𝑏(𝑏−𝑎)|𝑓′(𝑎)||𝑓′(𝑏)|

2
[
1

𝑎𝑏
−

2

(𝑏−𝑎)2
ln (

(𝑎+𝑏)2

4𝑎𝑏
)]                                                                            (3.3) 

 

 Proof. From Lemma 1 and using the Power-mean integral inequality, we have 
 

|
𝑓(𝑎) + 𝑓(𝑏)

2
−

𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑥)

𝑥2
𝑑𝑥

𝑏

𝑎

| ≤
𝑎𝑏(𝑏 − 𝑎)

2
∫ |

1 − 2𝑡

(𝑡𝑏 + (1 − 𝑡)𝑎)2
| |𝑓′ (

𝑎𝑏

𝑡𝑏 + (1 − 𝑡)𝑎
)| 𝑑𝑡

1

0

 

≤
𝑎𝑏(𝑏 − 𝑎)

2
(∫ |

1 − 2𝑡

(𝑡𝑏 + (1 − 𝑡)𝑎)2
| 𝑑𝑡

1

0

)

1−
1
𝑞

(∫ |
1 − 2𝑡

(𝑡𝑏 + (1 − 𝑡)𝑎)2
| |𝑓′ (

𝑎𝑏

𝑡𝑏 + (1 − 𝑡)𝑎
)|

𝑞

𝑑𝑡
1

0

)

1
𝑞

. 

 

Hence, by being multiplicatively harmonically 𝑃-function of |𝑓′|𝑞 on [𝑎, 𝑏], we have  
 

|
𝑓(𝑎) + 𝑓(𝑏)

2
−

𝑎𝑏

𝑏 − 𝑎
∫

𝑓(𝑥)

𝑥2
𝑑𝑥

𝑏

𝑎

| ≤
𝑎𝑏(𝑏 − 𝑎)|𝑓′(𝑎)||𝑓′(𝑏)|

2
(∫

|1 − 2𝑡|

(𝑡𝑏 + (1 − 𝑡)𝑎)2
𝑑𝑡

1

0

) 

 

It is easily check that 
 

∫
|1 − 2𝑡|

(𝑡𝑏 + (1 − 𝑡)𝑎)2
𝑑𝑡

1

0

=
1

𝑎𝑏
−

2

(𝑏 − 𝑎)2
𝑙𝑛 (

(𝑎 + 𝑏)2

4𝑎𝑏
). 

 

Theorem 11 Let 𝑓: 𝐼 ⊂ (0,∞) → ℝ be a differentiable function on 𝐼∘, 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏, and 

𝑓′ ∈ 𝐿[𝑎, 𝑏]. If |𝑓′|𝑞 is multiplicatively harmonically 𝑃-function on [𝑎, 𝑏] for 𝑞 > 1,
1

𝑝
+

1

𝑞
= 1, 

then 
 

|
𝑓(𝑎)+𝑓(𝑏)

2
−

𝑎𝑏

𝑏−𝑎
∫

𝑓(𝑥)

𝑥2
𝑑𝑥

𝑏

𝑎
| ≤

𝑎𝑏(𝑏−𝑎)|𝑓′(𝑎)||𝑓′(𝑏)|

2
(

1

𝑝+1
)

1

𝑝
𝐿−2𝑞
−2 (𝑎, 𝑏),‍                                       (3.4) 

 

where ‍‍𝐿𝑝(𝑎, 𝑏) = (
𝑏𝑝+1−𝑎𝑝+1

(𝑝+1)(𝑏−𝑎)
)

1

𝑝
 is the p-logarithmic mean.  

Proof. From Lemma 1, Hölder’s inequality and since |𝑓′|𝑞 is the multiplicatively harmonically 𝑃-

function on [𝑎, 𝑏],we have,  
 

|
𝑓(𝑎)+𝑓(𝑏)

2
−

𝑎𝑏

𝑏−𝑎
∫

𝑓(𝑥)

𝑥2
𝑑𝑥

𝑏

𝑎
| ≤

𝑎𝑏(𝑏−𝑎)

2
(∫ |1 − 2𝑡|𝑝𝑑𝑡

1

0
)

1

𝑝
  

× (∫
1

(𝑡𝑏+(1−𝑡)𝑎)2𝑞
|𝑓′ (

𝑎𝑏

𝑡𝑏+(1−𝑡)𝑎
)|

𝑞
𝑑𝑡

1

0
)

1

𝑞
  

≤
𝑎𝑏(𝑏−𝑎)|𝑓′(𝑎)||𝑓′(𝑏)|

2
(

1

𝑝+1
)

1

𝑝
(∫

1

(𝑡𝑏+(1−𝑡)𝑎)2𝑞
𝑑𝑡

1

0
)

1

𝑞
,  

 

where an easy calculation gives 
 

∫
1

(𝑡𝑏+(1−𝑡)𝑎)2𝑞
𝑑𝑡

1

0
=

𝑏−2𝑞+1−𝑎−2𝑞+1

(−2𝑞+1)(𝑏−𝑎)
,  

 

which completes the proof.  

 

4. SOME APPLICATIONS FOR SPECIAL MEANS 

 

Let us recall the following special means of two nonnegative number 𝑎, 𝑏 with 𝑏 > 𝑎:  
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1.  The arithmetic mean:           𝐴 = 𝐴(𝑎, 𝑏):=
𝑎+𝑏

2
. 

2.  The geometric mean:           𝐺 = 𝐺(𝑎, 𝑏):= √𝑎𝑏. 

3.  The harmonic mean:           𝐻 = 𝐻(𝑎, 𝑏):=
2𝑎𝑏

𝑎+𝑏
. 

4.  The Logarithmic mean        𝐿 = 𝐿(𝑎, 𝑏):=
𝑏−𝑎

ln𝑏−ln𝑎
. 

5.  The p-Logarithmic mean: 𝐿𝑝 = 𝐿𝑝(𝑎, 𝑏): = (
𝑏𝑝+1−𝑎𝑝+1

(𝑝+1)(𝑏−𝑎)
)

1

𝑝
,‍‍‍‍𝑝 ∈ ℝ\{−1,0}. 

6.  The Identric mean:              𝐼 = 𝐼(𝑎, 𝑏) =
1

𝑒
(
𝑏𝑏

𝑎𝑎
)

1

𝑏−𝑎
. 

 

These means are often used in numerical approximation and in other areas. However, the 

following simple relationships are known in the literature: 𝐻 ≤ 𝐺 ≤ 𝐿 ≤ 𝐼 ≤ 𝐴. 
It is also known that 𝐿𝑝 is monotonically increasing over 𝑝 ∈ ℝ, denoting 𝐿0 = 𝐼 and 

𝐿−1 = 𝐿. 
 

Proposition 6 Let 1 ≤ 𝑎 < 𝑏. Then we have the following inequality 
 

𝐴−1 ≤ 𝐻. 𝐿−1 ≤ 𝐺2 . 𝐿−1 ≤ 𝐺2.  
 

Proof. The assertion follows from the inequality (3.1), for 𝑓: [1,∞) → ℝ, 𝑓(𝑥) = 𝑥.  
 

Proposition 7 Let 1 ≤ 𝑎 < 𝑏 and 𝑞 > 1. Then we have the following inequality 
 

|𝐴(𝑎1+1/𝑞 , 𝑏1+1/𝑞) − 𝐺2𝐿1/𝑞−1
1/𝑞−1

| ≤
(𝑞 + 1)(𝑏 − 𝑎)𝐺2(1+1/𝑞)

2𝑞
[𝐺−2 −

4

(𝑏 − 𝑎)2
𝑙𝑛
𝐴

𝐺
]. 

 

Proof. The assertion follows from the inequality (3.3) for 𝑓: [1,∞) → ℝ, 𝑓(𝑥) =
𝑞

𝑞+1
𝑥1+1/𝑞 .   

 

Proposition 8 Let 0 < 𝑎 < 𝑏 and 𝑞 > 1. Then we have the following inequality 
 

|𝐴(𝑎1+1/𝑞 , 𝑏1+1/𝑞) − 𝐺2𝐿1/𝑞−1
1/𝑞−1

| ≤
(𝑞 + 1)(𝑏 − 𝑎)𝐺2(1+1/𝑞)

2𝑞
(

1

𝑝 + 1
)

1
𝑝
𝐿−2𝑞
−2 (𝑎, 𝑏). 

 

Proof. The assertion follows from the inequality (3.4) for 𝑓: [1,∞) → ℝ, 𝑓(𝑥) = 𝑓(𝑥) =
𝑞

𝑞+1
𝑥1+1/𝑞 .  

 

Proposition 9 Let 0 < 𝑎 < 𝑏. Then we have the following inequality 𝐻. 𝐿 ≤ 2𝐺2 ≤ 2𝐴. 𝐿 
 

Proof. The assertion follows from the inequality (3.2) for 𝑓: (0,∞) → ℝ, 𝑓(𝑥) = 𝑒𝑥 .  
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