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ABSTRACT

In this study, we introduce a new class of functions called as multiplicatively harmonically P-function. Some
new Hermite-Hadamard type inequalities are obtained for this class of functions.
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1. PRELIMINARIES

The following double inequality is well known as the Hadamard inequality in the literature.
Theorem 1 [1] f: [a, b] - R be a convex function, then the inequality

f(a+b)£ 1 L"f(x)dxsf(a);rf(b)

2 b—a
is known as the Hermite-Hadamard inequality.
Definition 1 [2] We say that a function f:1 € R — R belongs to the class P(I) (or called P-
function) if it is nonnegative and for all x,y € I and 2 € [0,1] satisfies the following inequality
fOQx+ A -Dy) <f)+ )
holds.
Note that P(I) contain all nonnegative monotone convex and quasi-convex functions.
In [2], Dragomir et al. proved the following inequality of Hadamard type for class of P-
functions.

Theorem2 Let f € P(I), a,b € I witha < b and f € L[a, b]. Then

P <52 [ o < 2@ + 7))

2
Both inequalities are the best possible.
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In [4], Iscan gave the definition of harmonically convexity as follows:

Definition 2 Let I c R\{0} be a real interval. A function f:I — R is said to be harmonically
convex, if
f72) SO + - Df@ L)

tx+(1-t)y

for all x,y €I and t € 0,1]. If the inequality in (1.1) is reversed, then f is said to be
harmonically concave.
Example 1 Let f:(0,0) > R, f(x)=x, and g:(—,0) > R, g(x) =x, then f is a
harmonically convex function and g is a harmonically concave function.
The following proposition is obvious from this example:

Proposition 1 Let I ¢ R\{0} be a real interval and f: I — R is a function, then ;

«if I < (0, ) and f is convex and nondecreasing function then f is harmonically convex.
«if I < (0, %) and f is harmonically convex and nonincreasing function then f is convex.
«if I c (—o,0) and f is harmonically convex and nondecreasing function then f is convex.
«if I c (—o,0) and f is convex and nonincreasing function then f is a harmonically convex.

The following result of the Hermite-Hadamard type holds.

Theorem 3 Let f:1 < R\{0} = R be a harmonically convex function and a, b € I with a < b. If
f € L[a, b] then the following inequalities hold

2ab ab b f(x) f(a)+f(b)
f(55) syl b ax < BE2, (1.2)
The above inequalities are sharp.
In [4], Iscan used the following lemma to prove Theorems.
Lemma 1 Let f:1 c R\{0} - R be a differentiable function on I° and a,b € I with a < b. If
f' € L[a, b] then

f@+fb) ab ("f(x)  ab(b—a) (! 1-2t , ab
2 boal, @ T3 fo(tb+(1—t)a)2f(tb+(1—t)a)dt'

Definition 3 [3] A function f:1 € (0,0) - R is said to be harmonically P-function on I or
belong to the class HP(I) if it is nonnegative and,

fo2) S FOO +FO),

ty+(1-t)x

forany x,y € I and t € [0,1].

Proposition 2 [3] Let f: 1 < (0,) — R. If f is P-function and nondecreasing, then f € HP(I).
Proposition 3 [3] Let f:1 < (0,0) — R. If f € HP(I) and nonincreasing, then f is P-function
onl.

Hermite-Hadamard’s inequalities can be represented for harmonically P-function as follows.
Theorem 4 [3] Let f:1 < (0,o0) = R be a function such that f € L[a, b], where a,b € I with
a < b. If f is a harmonically P-function on [a, b], then the following inequalities hold:

b b (b
f(32) <292 (718 gy < 2[f(a) + £(D)]. (1.3)

Recently, Kadakal gave a new definition called as multiplicatively P-function as follows.
Definition 4 Let I + @ be an interval in R\{0}. The function f:I — 0,0) is said to be
multiplicatively P-function, if the inequality

flex+ (1 -0y) < ff )
holds for all x,y € I and t € [0,1].
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In [5], Kadakal also gave the following Hermite Hadamard type inequalities for this class of
functions.
Theorem 5 Let the function f:1 € R — 1, ),be a multiplicatively P-function and a, b € I with
a < b.If feLla,b],then the following inequalities hold:
a+b

D f(5) <55l F @@+ b —xdx < [F@f )

. b b

i) £(22) < F@f 0) 5= J; FOOdx < [f(@f b))

The main purpose of this paper is to give a new concept called as multiplicatively
harmonically P-function, compare other function classes with this class of functions, establish
Hermite-Hadamard type inequalities for functions multiplicatively harmonically P-function. Ideas
of this paper may stimulate further research.

2. MULTIPLICATIVELY HARMONICALLY P-FUNCTIONS

In this section, we begin by setting the definition of multiplicatively harmonically P-function
and some algebraic properties for this class of functions.

Definition 5 Let I # @ be an interval in R\{0}. The function f:I — [0,) is said to be
multiplicatively harmonically P-function, if the inequality

f(G2s) < F@fO) 1)

ty+(1-t)x
holds for all x,y € I and t € [0,1].

We will denote by MHP(I) the class of all multiplicatively harmonically P-functions on
interval I.

Remark 1 If f € MHP(I), the range of f is greater than or equal to 1.
Proof. In the inequality (2.1), for t = 1;
f<fOf)=f@I1-fl=<o.
Since f(x) = 0 for all x € I, we obtain f(y) = 1, for all y € I. Also, since for t = 0,
<@ =fMI-fx]=<0,
and f(y) =0forall x € I,weget f(x) =1, forall x € I.

Remark 2 i.) Let f:1 < (0,00) — [1,) be a function. Then, f is multiplicatively harmonically
P-function if and only if Inf is harmonically P-function. So, a multiplicatively harmonically P-
function f:1 € (0, ) — [1, ) can be called as log-harmonically P-function.

ii.) If f:1 € (0,0) — [1,00) is a harmonically P-function, then f is also a multiplicatively
harmonically P-function. Since we have

f(572) < F@ +fO) < FEOFO).

Example 2 The function f:[1,00) — [1,), f(x) = x is a multiplicatively harmonically P-
function. Really, for any x, y € 1, o) with x < y, we have

Xy _ xy _
f (ty+(1—t)x) T tx+(1-t)y Sy =xy=fefm.

Example 3 i.) The function f:(0,0) — (1, ), f(x) = e* is a multiplicatively harmonically P-
function. Since, for any x,y € (0, ») with x < y, we have

xy
xy
f (ty+(1—t)x) =ewtt-tx < e¥ < efed = f(0)f ().

ii.) The function f:(—o0,0) — (1,), f(x) = e~ is a multiplicatively harmonically P-
function.
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Example 4 The function f:[e, o) — [1,), f(x) = Inx is a multiplicatively harmonically P-
function. Since, for any x,y € 0, ) with x < y, we have

f( Xy )=ln< 24 >=lny+ln(
ty+ (1 —-t)x ty+(1—-t)x

<lIny < lny.lnx = f(x)f (y).
Proposition 4 Let f:1 c R\{0} — [1, ) be a function and g: {ix € 1} -1, gx)=1/x.fis
multiplicatively harmonically P-function on the interval I if and only if f o g is multiplicatively P-
function on the interval g=*(I) = &x € I}.

X
ty+(1- t)x)

Proof. Let f be a multiplicatively harmonically P-function on the interval I. If we take arbitrary
x,y € g~1(I), then there exist u, v € I suchthatx = 1/uandy = 1/v

(Fog)tx+@-ty) =f( )< F@F@) = (f o @ D)

Conversely, if f o g is multiplicatively P-function on the interval g=1(I) then it is easily seen
that f is multiplicatively harmonically P-function on the interval I by a similar procedure. The
details are omitted.

Proposition 5 Let I € R\{0} be a real interval and f: I — [1, o) is a function, then ;

« if f is harmonically convex, then f is also harmonically multiplicatively P-function.

« if 1 € (0,) and f is multiplicatively P-function and nondecreasing function then f is
harmonically multiplicatively P-function.

if I € (0,00) and f is harmonically multiplicatively P-function and nonincreasing function
then f ismultiplicatively P-function.

if I € (—o0,0) and f is harmonically multiplicatively P-function and nondecreasing function
then f is multiplicatively P-function.

if I € (—o0,0) and f is multiplicatively P-function and nonincreasing function then f is a
harmonicallymultiplicatively P-function.

Proof. i.) Since

uv
tv+(1-t)u

f (ress) S U@+ A= Of0) < FEFO),
f is also multiplicatively P-function.
ii.) Since forany x,y € I € (0,00) and t € [0,1]

Xy —
prory e <tx+ (1 -0y, (2.2)

and f is nondecreasing and multiplicatively P-function we have
f(Grasss) < fex+ (1= 09) < F@F ).
iii.) By the inequality (2.2) and since f is nonincreasing and harmonically multiplicatively P-
function we have

fltx+ (1= 0y) < f (522—) < FOOf ).

ty+(1-t)x
forany x,y € I € (0,c0) and t € [0,1]
iv.) Since forany x,y € I € (—,0) and t € [0,1]

xy
yraor =Xt 1 -0y, (2.3)

and f is nondecreasing and harmonically multiplicatively P-function we have
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flex+ (=09 < f (5r7) < FOF ).

v.) By the inequality (2.3) and since f is nonincreasing and multiplicatively P-function we
have

f(G2) < flex + (1= 0Y) < F@F Q).

Theorem 6 Let f,g:1 € R\{0} » [1,). If f and g are multiplicatively harmonically P-
function, then fg are multiplicatively harmonically P-function.
Proof. Forx,y € I and t € [0,1], we have

Xy _ xy xy

9 (ty +(1- t)x) =/ (ty +(1- t)x) (ty +(1- t)x)

< [FfIgx)y»)]
[f () gIIf Mg ()]
[FPOIFPH O]

This completes the proof of theorem.

Theorem 7 Let f,g:1 € R\{0} - [1,0). If f is multiplicatively P-function and nonincreasing
and g is harmonically convex function, then fog is multiplicatively harmonically P-function.
Proof. For x,y € I and t € [0,1], we obtain

(fog) (ty+(1 t)x) =/ <g (ﬁ)>

< fltgx) + (1 -tg)
< fg)fg»)
= (fog)(x)(fog) ).

This completes the proof of theorem.
3. HERMITE-HADAMARD TYPE INEQUALITIES

The goal of this paper is to develop concepts of the multiplicatively harmonically P-functions
and to establish some inequalities of Hermite-Hadamard type for these classes of functions.

Theorem 8 Let the function f:1 € R\{0} — [1, c0),be a multiplicatively harmonically P-function
and a,b € I witha < b. If f € L[a, b], then the following inequalities hold:

) f(32) < PO ) gy < [F(a)f (b))

a+b
i) f(22) < f(@f b) 2 2 X2 dx < [f(@)f (D)2

Proof. i) Since the function f is a multiplicatively harmonically P-function, we write the
following inequality:

f<2ab)=f 2[ta+(1—t)b”tb+(1—t)a] sf( ab )f( ab )

a+b [ ] [ ] ta+(1—t)b)" \th+ (1 —t)a
ta+(1—t)b tb+(1—t)a
By integrating this inequality on [0,1] and changing the variable as x = m then
2ab ab b fx)f([a t+b~t—x"1"1)
1) =il Pz dx.

Moreover, a simple calculation give us that
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fOl f (ta+;11b—t)b)f (tb+211b—t)a) dt < [f(a)f (b)]?
So, we get

( 2ab ) __ab fbf(x)f([a‘l +b71 —x71Y)
f a+b/ " b—a x2
ii) Similarly, as f is a multiplicatively harmonically P-function, we write the following:

f (az-cll-bb) </ (ta + (alb— t)b)f <tb + (alb— t)a) < f@fbf (ﬁ)

dx < [f(a)f (b)]*.

Here, by integrating this inequality on [0,1] and changing the variable as x = m then,
we have
f(zab)sf(a)f(b)ifbf(ﬁdx

a+b b—al, x?

Since,
[ (e de < )

o \th+(1—-1t)a - ’

we obtain

< F@fmI*

2a ab (P f(x)
£ (22 < rarr o

This completes the proof of theorem.
Remark 3 Above Theorem (i) and (ii) can be written together as follows:

2ab ab b fx)f([a~1+b~1-x"1]"1) bf(x)
HEAEE) dx < f(@)f (b) 2 [7 12 dx

a x2

< [f@f®]% (3.1)

Then by (2.2) we get required inequalities.
Remark 4 By helping Theorem 5 and Proposition 4, the proof of Theorem 8 can also be given as
follows :

Since f:1 € R\{0} - 1,00) is a multiplicatively harmonically P-function, fog is
multiplicatively P-function on the interval [1/b,1/a] for a,b € I with a < b So, by Theorem 5
we have

(e g)(l/a+1/b)<mf11//ab (f o D@W(f o 9)(1/a+ b —w)du
<[(f » 9)(1/a)(f * 9)(1/b)]?
i) (f o) (£5L) < (F e /@S © DA/B) 7z oy (f © ) (wdu

<[rea@® )]

In the last inequalities, if we put g(x) = 1/x and change the variable as u = 1/x in the
integrals, then we obtain the inequalities in Theorem 8.

By using Theorem 4 and Remark 2, we can give the following integral inequalities for
multiplicatively harmonically P-functions.

Theorem 9 Let the function f:1 < (0, ) — [1, %),be a multiplicatively harmonically P-function
anda,b € I witha < b. If f € L[a, b], then the following inequalities hold:

f(ﬂ) < exp {;al; fb Inf (u) du} < [F@fB)]2. (3.2

a+b u?
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Proof. The proof of inequalities are easily seen that by using Theorem 4 and Remark 2. We
ommited the detailes.

For finding some new inequalities of Hermite-Hadamard type for functions whose derivatives
are multiplicatively harmonically P-function, we need Lemma 1.
Theorem 10 Let f:1 < (0,) — R be a differentiable function on I°, a,b € I with a < b, and
f' € L[a, b]. If | f'|7 is multiplicatively harmonically P-function on [a, b] for ¢ = 1, then
f(a)+f(b) ab fb fx) dx

-0 (b il 1 (@+b)
abbalfallfbl 2 a+b
s 2 [ab (b—a)? n( 4ab )] 3.3)

Proof. From Lemma 1 and using the Power-mean integral inequality, we have
+f(b b b(b 1-2t b
f@+f)  ab P10 | _ab( |f,( a )|dt
th+(1-10t)a

b—al, x* 2 |

1-1 1

ab(b — a) 1-2t | q 1| 1-—2t ab 7 \a

< dt f f’< )| dt) .
2 1—t)a)?l o 1th + (1 —t)a)? th+(1-t)a
Hence, by being multiplicatively harmonically P-function of |f'|? on [a, b], we have

‘f(a)+f(b) _ab f(x) ab(b—a)lf @llf’ (b)|< 11 -2t dt)

b—a x2 2 (th + (1 —t)a)?
It is easily check that
1 |1 — 2t 1 2 (a + b)?
o (th+ (1 - t)a)? tzﬁ_(b—a)z n( 4ab )
Theorem 11 Let f:1 c (0,) — R be a differentiable function on I°, a,b € I with a < b, and
f' € Lla,b]. If |[f'|? is multiplicatively harmonically P-function on [a, b] for q > 1, %+ % =1,
then

2 b-a‘a x? 2

1
f@+f®) _ ab (b1 ab -l @IIF' B (1 V5 -
dx| < () 1 34(@b), (3.4)

1

+1_
prT b ) is the p-logarithmic mean.

where Lp(a, b) = (m
Proof. From Lemma 1, Holder’s inequality and since |f'|? is the multiplicatively harmonically P-
function on [a, b],we have,

|f(a)+f(b)_ba_baf:fg)d |<ab(b a) (f 11— Ztlpdt)
X (fO1 (tb+(11—t)a)2‘1 fl 1(tb+?1b—t)a.)| dt)

1
DO @ISO (1 Yo ((1 14
= 2 (p+1) (fo (th+(1-t)a)24 dt) ’

where an easy calculation gives

1 1 p—2a+1_g-2q+1
fo (thb+(1-t)a)2d ~  (-2q+1)(b—a)’
which completes the proof.

4. SOME APPLICATIONS FOR SPECIAL MEANS

Let us recall the following special means of two nonnegative number a, b with b > a:

527



I Iscan, V. Olucak I Sigma J Eng & Nat Sci 37 (2), 521-528, 2019

1. The arithmetic mean: A=A(a,b):= azﬂ.
2. The geometric mean: G = G(a,b): = ab.
3. The harmonic mean: H=H(a,b):= EL:;'
4. The Logarithmic mean L = L(a, b): = lnz:;’na.

)”, p € R\{-1,0}.

pPHi_gp+l

5. The p-Logarithmic mean: L,, = L,,(a, b): = (m

b\b-a

6. The Identric mean: I =1I(a,b) = é(%)b .

These means are often used in numerical approximation and in other areas. However, the
following simple relationships are known in the literature: H < G < L <[ < A.

It is also known that L, is monotonically increasing over p € R, denoting L, =/ and
L., =1L.
Proposition 6 Let 1 < a < b. Then we have the following inequality

AP <HL'<G2L'<G2

Proof. The assertion follows from the inequality (3.1), for f:[1,0) - R, f(x) = x.
Proposition 7 Let 1 < a < b and g > 1. Then we have the following inequality

— 2(1+1/q) 4 A

1+1/q p1+1/q) _ c271/a-1 (q+1D(b—-a)G [ 2 _ _]
|a(ar+1/a,p1+1/a) — G213 < 74 e e
Proof. The assertion follows from the inequality (3.3) for f: [1,0) - R, f(x) = _qzlx1+1/q_

Proposition 8 Let 0 < a < b and g > 1. Then we have the following inequality

1
_ 2(1+1/q) P
|A(a1+1/q,b1+1/q) _ g2t < @+ 1) -a)G ( 1 )v 13 (a,b).

Ya-1 = 2q p+1
Proof. The assertion follows from the inequality (3.4) for f:[1,0) > R, f(x) = f(x) =
4 ,1+1/q
X .
q+1

Proposition 9 Let 0 < a < b. Then we have the following inequality H.L < 2G% < 2A.L
Proof. The assertion follows from the inequality (3.2) for f: (0,0) - R, f(x) = e*.
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