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ABSTRACT 

 

This study evaluates the response reduction effect of single-degree-of-freedom (SDOF) primary systems with 

multiple tuned mass dampers (MTMDs) under harmonic excitation. To design MTMD, TMD properties are 

re-calibrated based on the natural frequencies of the system on which the number of TMDs is one less than the 
current system. This is a sequential approach that does not require any iteration for each step. Instead it 

requires starting from the case with single TMD, and then increasing the numbers of TMDs one more at a 

time until the desired number is reached. Using the obtained design parameters, the effectiveness and 
robustness of the MTMDs are studied in comparison to MTMDs designed by previous works available in the 

literature. As a result, the proposed design procedure produces an effective multiple tuned mass damper to be 

utilized in a SDOF system under harmonic excitation. Additionally, the proposed approach provides a simple 
way to design the MTMD system than the traditional optimization methods, thus it significantly reduces the 

computation effort in the design process. 

Keywords: Harmonic excitation, optimal parameters, robustness analysis, tuned mass dampers, vibration 
control. 

 

 

1. INTRODUCTION 

 

The reducing the vibrations induced on tall buildings and other civil engineering structures 

due to wind, seismic excitations and traffic loads have attracted great interest of many 

researchers. The efforts on vibration control of structures have resulted in developing various 

control devices [1, 2]. Among them, tuned mass dampers (TMDs) consisting of a mass, a spring 

and a viscous damper is one of the simplest, reliable and low-cost control devices. 

In 1909, the first application of TMD consisting of a mass and a spring is introduced by 

Frahm [3]. It has a narrow operation region, and its performance reduces significantly when the 

exciting frequency varies. Since then, many efforts have been made to obtain the optimum 

parameters of TMDs. Den Hartog [4] proposed a closed form solution to minimize the dynamic 

response of undamped main system under harmonic loads. Later, Warburton [5] derived 

expressions for optimum parameters for undamped system under harmonic and white noise 

excitations. Asami et al. [6] gave a series solution for the H∞ optimization and an exact solution 

for the H2 optimization. Since their solution is excessively complicated, they proposed an 
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approximate solution for practical use. Ghosh and Basu [7] presented a closed-form expression 

for optimal tuning ratio of TMDs based on the fixed-point theory of Den Hartog. Brown and 

Singh [8] proposed a mini-max procedure to design TMDs in the presence of uncertainties in the 

forcing frequency. Anh and Nguyen [9] carried out an approximate analytical solution for optimal 

tuning ratio of TMDs by using the equivalent linearization method. Yu et al. [10] proposed a 

reliability based robust design optimization for the tuned mass damper in passive vibration 

control. Chun et al. [11] investigated a H∞ optimal design of TMDs variant for suppressing high-

amplitude vibrations of damped primary systems. Dell'Elce et al. [12] proposed a new tuning 

strategy of the linear absorber based on the concept of robust equal peaks for suppressing a 

specific resonance of an uncertain mechanical system. 

All studies mentioned above are concerned with tuning TMD to a dominant frequency of the 

main system. However, single TMD is very sensitive to any change in the frequency of TMD or 

the main system, which is so-called the detuning. To overcome the detuning due to the frequency 

deviation, Xu and Igusa [1] proposed to use multiple tuned mass dampers (MTMDs) instead of 

the classic single TMD. They indicated that the use of MTMDs with distributed natural 

frequencies in a frequency bandwidth can be more effective than that of a single TMD with the 

same total mass. This kind of MTMD system has also been studied by references in Farshidianfar 

and Soheili [13], Salvi and Rizzi [14], Yazdi et al. [15], Bekdaş and Nigdeli [16], Zuo et al. [17] 

and Bozer and Özsarıyıldız [18]. The main difference in these studies is the methods and criteria 

adopted for obtaining the optimal design variables. 

Although there have been various techniques to obtain optimal tuning parameters, they are not 

simple as much as Den Hartog’s approach developed for a single TMD based on the fixed-point 

theory. The most useful aspect of Den Hartog’s approach is to give simpler, closed form formulas 

for optimal parameters of classic TMD. In addition, it is also more effective in reducing dynamic 

responses on the damped structural systems (Kwon et al. [19]; Luu et al. [20]; Bekdaş and Nigdeli 

[21]). The purpose of this paper is to extend the method proposed by Den Hartog to obtaining 

optimal MTMDs. For this aim, properties of each absorber in MTMD are re-calibrated based on 

the natural frequencies of the system on which the number of TMDs is one less than the current 

system. This is a sequential procedure that does not require any iteration for each step. Instead it 

requires starting from the case with a single TMD, and then increasing the numbers of TMDs one 

more at a time until the desired number is reached. Accuracy and efficiency of the proposed 

method is demonstrated by some numerical examples. 

 

2. GOVERNING EQUATIONS 

 

Consider a single-degree-of-freedom (SDOF) system with a MTMD shown in Fig. 1. As seen, 

the MTMD device attached to the primary structure is composed of a set of different TMD units. 

The natural frequencies of TMD units are tuned to a frequency range in the vicinity of the natural 

frequency of the main structure. Note that total DOFs of the coupled system is n + 1 where n is 

the number of TMD units. The equation of motion for the main structure with MTMD under 

harmonic excitation is 
 

1

( ) ( )
n

i t

s s s s s s j s j j s j

j

m x c x k x c x x k x x Pe


                                                                          (1) 

 

and the vertical motion of the jth TMD is  
 

( ) ( ) 0 1,2, ,j j j j s j j sm x c x x k x x j n                                                                               (2) 
 

where over dot denotes differentiation with respect to time t. m, c and k are the mass, damping 

coefficient and stiffness, respectively. Subscripts s and j denote the primary structure, the jth 

TMD, respectively. sx  and 
jx  indicate the vertical displacements. 
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Combining Eqs. (1) and (2), the equations of motion can be given in the following matrix 

form: 
 

MX +CX + KX = F                                                                                                                      (3) 
 

where M, C, K are the mass, damping and stiffness matrices, X , X  and X  are the 

acceleration, velocity and displacement vectors, respectively, F is the external force vector, that 

can be defined as:  
 

1 2( ]s ndiag m m m mΜ                                                                                                  (4) 
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In order to obtain the normalized displacement amplitude or dynamic magnification factor 

(DMF) for the primary structure under harmonic excitation, the harmonic solution can be 

assumed as  
 

T

1 2[ ]i t

s ne x x x xX
                                                                                                       (8) 

 

Substituting Eqs. (4)–(8) into Eq. (3), the displacement amplitude of the structure xs can be 

written as 
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Then, the amplitude of the displacement of the structure is finally obtained in the normalized 

form as follow 
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1
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                                                                                                        (11) 

 

 
 

Figure 1. Primary structure – MTMD coupled system 
 

where / s    is the frequency ratio between the external force and the structure, s  is the 

damping ratio of the structure, /j j sm m  is the mass ratio, /j j s    is the frequency ratio, 

and / 2j j j jc m   is the damping ratio of jth TMD. 

 

3. PROPOSED METHOD 
 

The below analytical expressions are proposed by Den Hartog [4] for obtaining the optimum 

parameters of a single TMD by depending on the mass ratio used to reduce the vibration of SDOF 

main system under harmonic excitation.  
 

1 3
,

1 8(1 )
opt optf  

 




 
                                                                                                    (12) 

 

where 
optf  is the optimal tuning ratio, 

opt is the optimal damping ratio and   is the mass 

ratio of TMD. 

Unlike Den Hartog’s approach, the proposed sequential method in this paper is a extension of 

Den Hartog’s tuning approach for a single TMD to the case of MTMDs. In addition, Den 

Hartog’s tuning approach is used together with fundamental modes of the primary structure with 

TMDs to obtain the design parameters of a MTMD system. This method is extensively examined 

in the following sections. 

To obtain optimal parameters of TMD according to the Den Hartog’s approach, the 

fundamental mode of the primary structure is considered. On the other hand, it can be obviously 

seen in Table 1 that the natural frequency of the primary structure without TMD is split into two 

independent modes, when a TMD (n = 1) is attached to it. From this observation, if n TMD are 

installed on the primary structure, its natural frequency without TMD will be split into n + 1 

independent modes. Similarly, if n TMD are installed on the primary structure, its response curve 

without TMD will be split into n + 1 independent resonant peaks, as shown in Fig. 2. The 

structural response is plotted for n = 0.2,  = 0.01 and Tf = 1 [22].  
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In the approach proposed, MTMD properties are re-calibrated based on the natural 

frequencies of the system on which the number of TMDs is one less than the current system. This 

is a sequential procedure, and it does not require any iterations for each step. Instead it requires to 

start from the system with single TMD, and then to increase in number of TMD units one more at 

a time until the desired number is reached. For example, when n = 1, the frequency of the TMD is 

tuned to that of the structure without TMD. When n = 2, each TMD is tuned to those of the 

coupled SDOF primary - TMD (n = 1) system. Similarly, if MTMD system is composed of n 

TMDs, n - 1 independent modes must be considered in design process. Therefore, the following 

expressions can be proposed for the optimal tuning parameters of each TMD unit based on the 

formulas given by Eqs. (12): 
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where 
,j n  and 

,j n  is the natural frequency and the damping ratio of the jth TMD in 

MTDM composed of n TMDs,   is the MTMD/primary structure mass ratio, T  is the average 

frequency, Tf  is the average frequency ratio, and n  is the non-dimensional frequency 

bandwidth of MTMD. 
,j n  is the frequency ratio of the jth TMD, and 

1,0  is the natural 

frequency of the primary structure without TMD. 
, 1j n  denotes the jth natural frequency of the 

primary structure carrying (n – 1) TMD units. In the proposed approach, MTMD system is 

designed with the identical mass ratio, T , i.e.,
1, 2, ,n n n nm m m   , and the stiffness of each 

TMD unit is adjusted based on , , ,/j n j n j nk m . We assume the damping ratio T  is constant 

for all TMD units. The MTMD model considered herein is validated for structures under the 

ground acceleration by Li [23]. 

 

Table 1. Natural frequencies (rad/s) of a SDOF main system with MTMD system (ms = 10kg, ks = 

1kN/m, µ = 0.01) 
 

Mode 
w/o 

TMD 
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 

1 10.00 9.4653 9.2533 9.1290 9.0435 8.9793 8.9284 

2 - 10.4603 9.9380 9.6894 9.5346 9.4256 9.3430 

3 - - 10.6599 10.1775 9.9265 9.7625 9.6438 

4 - - - 10.7808 10.3326 10.0874 9.9217 

5 - - - - 10.8651 10.4444 10.2070 

6 - - - - - 10.9287 10.5303 

7 - - - - - - 10.9791 

 

If the mass ratio μ of MTMD system is known, the proposed procedure can be summarized as 

follows: 
 

Step 1: Design single TMD (n = 1):  
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First, the first natural frequency of the main system without TMD is obtained, then TMD is tuned 

to the first natural frequency 1,0 . Then, the first two natural frequencies of the main system with 

TMD 
,1 ( 1,2)i i   are obtained. Here T  is get as / 1 , and the optimal frequencies and 

damping ratios for TMD are given as follows: 
 

1,0 1,1
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3
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T T
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Figure 2.  Variation of response amplitude under harmonic excitation for different number of 

TMD units 

 

where 1,0 first natural circular frequency of the main system without TMD, 1,1f  is the 

optimal frequency ratio, 1,1  is the optimal damping ratio, T  is the mass ratio of TMD, 1,1   is 

the natural circular frequency for TMD. 
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Figure 3. Variation of the average frequency ratio, the damping ratio and the non-dimensional 

frequency bandwidth of MTMDs with the mass ratio 

 

Step 2: Design MTMD (n = 2):  

TMD units in MTMD are tuned to 1,1 and 2,1 , respectively. Then, the first three natural 

frequencies of the main system with MTMD ,2 ( 1,2,3)i i  are obtained. T  is get as / 2 , and 

the optimal frequency and damping ratios for jth TMD unit are given as follows: 
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where ,2jf , ,2j , ,2j  and T  are the optimal frequency ratio, optimal damping ratio, natural 

circular frequency and  mass ratio for jth TMD in MTMD system with n = 2. 
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Step N: Design MTMD (n = N):  

TMD units in MTMD are tuned to 1, 1 2, 1 , 1, , ,N N N N     , respectively. T  is get as / N , and 

the optimal frequency and damping ratios for jth TMD unit are given as follows: 
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j N j N T
j N j N j N
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f j N
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                                      (16) 

 

where ,j Nf , 
,j N , 

,j N  and T  are the optimal frequency ratio, optimal damping ratio, 

natural circular frequency and  mass ratio for jth TMD in MTMD system with n = N. 

In Figs. 3, variation of the average frequency ratio, damping ratio and non-dimensional 

frequency bandwidth of MTMDs with the mass ratio are given. Here, n = 1, 5, 7 and 11 are 

selected. As can be seen, the average frequency ratio decreases with increasing the mass ratio. 

The average frequency ratio for MTMD devices is greater than that of TMD-1. For greater mass 

ratio, it is much lower than that of MTMDs. As also seen, the difference between the curves are 

very small for MTMD devices considered. The damping ratio increases with increasing the mass 

ratio. This is more notable for the single TMD compared to the MTMD systems. Increasing the 

number of TMD units results in reduction of the damping ratio. In the last graph of Fig. 3, 

variation of the non-dimensional frequency bandwidth n  of various MTMDs with the mass 

ratio is shown. The non-dimensional frequency bandwidth increases with increasing the mass 

ratio. It becomes larger when the number of TMDs increases.  

 

4. RESULTS AND DISCUSSION 

 

To demonstrate the performance of the proposed design method for MTMDs in vibration 

control, some illustrative examples are presented. The effectiveness and robustness of the 

MTMDs (TMD-5, TMD-7, TMD-9, TMD-11 and TMD-20) designed by the proposed method 

studied.  

Fig. 4 gives the normalized maximum displacement amplitudes of the primary system with 

TMDs in case of the error in the tuning frequency ratio. The abscissa shows the error in the 

estimated tuning frequencies of TMDs, and the ordinate is the normalized maximum amplitude 

(DMF) calculated by Eq. (11) for 0.5 1.5  . It can be clearly seen that the robustness of the 

proposed MTMD systems (TMD-5, TMD-7 and TMD-11) are better than that of TMD-1. Here, 

TMD-1 is designed by Den Hartog’s Approach. As seen, we still have more smooth curves for 

MTMD devices, especially for greater mass ratio, in spite of increasing amount of the frequency 

detuning. That is, MTMD devices are less sensitive to the frequency detuning compared to the 

classical TMDs. This figure also indicates that the effectiveness of TMD-1 rapidly decreases for 

lower mass ratio when the error in the tuning frequency increases. Finally, increasing the total 

number of TMD units increases the robustness. However, as reported in the literature, there is 

almost no difference between the curves for the maximum amplitudes for n > 7 as seen in the 

figure.  
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Figure 4. Normalized maximum displacement amplitude vs. tuning error for undamped primary 

system with different TMDs 

 

In Fig. 5, variation of the amplitude of the displacement of the main system against harmonic 

excitation frequency is shown for MTMD systems for damped main system. MTMD systems are 

composed of two different TMD units (i.e., n = 5 and 11) with other parameters as 0.01μ   and 

0.02sξ  . Optimal parameters for MTMD systems are given in Table 2. In this figure, TMD-5* 

and TMD-11* represent TMD devices designed by Bandivadekar and Jangid [24]. The reduction 

of the maximum amplitude with TMD-5, TMD-5*, TMD-11 and TMD-11* are 65.72, 60.95, 

66.67 and 62.59 % for the displacement of the main system, respectively. The maximum 

difference between both design method is found to be less than 5%. This result demonstrates that 

the proposed MTMD system is also effective for reducing the maximum amplitude of damped 

main system. 
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Figure 5. Variation of response amplitude against harmonic excitation frequency with and 

without MTMD system 

 

Table 2. Optimal tuning parameters of TMD-5 and TMD-11 calculated by the both method for 

undamped and damped main system 
 

MTMD µ 
T  (%) Tf  n  

Present [24]  Present [24]  Present [24]  

TMD-5 0.01 2.74 2.39 

(2.57) 

0.9921 0.99571 

(0.991) 

0.1833 0.1113 

(0.115) 

 0.03 4.73 4.11 

(4.35) 

0.9765 0.9878 

(0.9791) 

0.3178 0.1893 

(0.198) 

TMD-11 0.01 1.85 1.70 

(1.82) 

0.9923 0.99686 

(0.9946) 

0.2334 0.1353 

(0.1408) 

 0.03 3.19 3.00 

(3.08) 

0.9773 0.9909 

(0.9826) 

0.406 0.2294 

(0.2424) 

Numbers in parenthesis are found for 0.02s  . 

 

Optimal tuning parameters of TMD-5 and TMD-11 obtained by the proposed method are 

shown in Table 2 with comparison to those of Bandivadekar and Jangid [24]. As seen, the present 

method gives slightly greater damping ratios, and slightly smaller frequency ratios than those of 

the considered reference for MTMDs considered. The frequency bandwidth obtained from the 

present study significantly larger than that of the considered reference.  

The sensitivity of a system to a certain parameter is determined by comparing the optimal 

case with those obtained using variations of the parameters of interest. In this study, the 

robustness of the MTMD system is examined for optimum tuning frequency, i.e. the rest of the 

parameters except the one examined are the optimum values for MTMD system [24, 25]. The 

formula of tuning error is expressed by Error (%) = ((fd  - fopt) / fopt). Where, fopt is optimum tuning 

frequency ratio and fd is detuned frequency ratio. 

Figs. 6 and 7 show comparison of the maximum displacement amplitudes of the primary 

structure with optimal TMD-5 and TMD-11 devices in case of the frequency detuning. In these 
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figures, TMD-5* and TMD-11* represent TMD devices given by Bandivadekar and Jangid [24]. 

As can be seen from the figures, the effectiveness of TMD-5* and TMD-11* are better than those 

designed by the present method when the frequency detuning is rather small. However, the 

effectiveness of TMD-5* and TMD-11* rapidly decrease as the tuning error increases. When the 

error greater than  5%, their performance in reducing vibration is worst compared to MTMDs 

proposed in this study. According to Figs. 6 and 7, the robustness of the proposed MTMDs are 

also better than that of the considered reference. This is not surprising, since the proposed MTMD 

covers a wider frequency bandwidth. 

 

 
 

Figure 6. Normalized maximum displacement amplitude vs. tuning error for undamped primary 

system with different MTMDs 

 

 
 

Figure 7. Normalized maximum displacement amplitude vs. tuning error for damped primary 

system with different MTMDs 

 

In the next example, the robustness of MTMD systems designed by present method is 

compared with that of MTMD systems available in the literature considering different levels of 

A Sequential Approach Based Design of    …       /   Sigma J Eng & Nat Sci 37 (1), 225-239, 2019 



236 

 

tuning error in Figs. 8. Here, the damping ratio of the structural system is 0.01 and the total mass 

ratio of the MTMD system is 0.01 [25]. Optimal tuning parameters for various n values obtained 

by the proposed method are shown in Table 3 with comparison to those of Park and Reed [25]. As 

seen, the present method gives slightly smaller frequency ratios than those of the considered 

reference for MTMDs considered. The frequency bandwidth obtained from the present study 

significantly larger than that of the considered reference. Figs. 8 indicate that the effectiveness of 

MTMD systems designed by Park and Reed [25] is better than those designed by the present 

method when the frequency detuning is rather small. Furthermore, the maximum amplitude 

values of the MTMD systems designed by Park and Reed [25] become even higher than those 

designed by present method when the offset of the tuning ratio goes beyond certain ranges. As a 

result, the optimum MTMD system designed by Park and Reed [25] lose its robustness in the 

presence of detuning, because its bandwidth is not be wide enough to cover the deviated optimum 

frequencies. 

 

 

 
 

Figure 8. Normalized maximum displacement amplitude vs. tuning error for damped main 

system with different MTMDs 
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Table 3. Optimal tuning parameters for damped main system with various number of TMD units 

(µ = 0.01 and 0.01s  ) 
 

MTMD 
T  (%) Tf  n  

Present [25]  Present [25] Present [25] 

TMD-5 2.74 2.50 0.9921 0.9912 0.1833 0.1150 

TMD-7 2.31 2.50 0.9922 0.9924 0.2064 0.1200 

TMD-9 2.04 2.00 0.9923 0.9941 0.2219 0.1300 

TMD-11 1.85 2.00 0.9923 0.9932 0.2334 0.1350 

 

 
 

Figure 9. Normalized maximum displacement amplitude vs. tuning error for damped main 

system with TMD-20 system 

 

As another example, a similar diagram is plotted in Fig. 9, where the robustness test is 

performed for 0.5%s  , 0.01 , 0.0005T   and n = 20 in [26]. The average damping ratio 

5%T   and frequency ratios spanning from 0.944 to 1.056 are chosen by Igusa and Xu [26]. 

These values are chosen 1.37% and 0.864 to 1.126 for present method, respectively. Compared 

with Igusa and Xu [26], MTMD system designed by present method are shown to be more 

effective in reducing the dynamic response of damped main system under harmonic excitation in 

the existence of detuning effects. 

 

6. CONCLUSIONS 

 

In this paper, a new approach to design MTMD devices with the basis of Den Hartog’s 

optimal criteria is presented. We demonstrated that significantly increased robustness can be 

obtained when the proposed MTMD is attached to the primary SDOF system. According to the 

results, we have the following conclusions:  
 

1. The numerical results proved that the proposed MTMD is quite effective for suppressing 

the maximum amplitudes of the primary system under harmonic excitation. For TMD-5 and 
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TMD-11 systems, the maximum normalized amplitude is reduced up to 60.95 and 62.59%, 

respectively. 

2. Although the proposed MTMD has the same control effectiveness as the classical single 

TMD (TMD-1) tuned by Den Hartog’s criteria without the frequency detuning, it is more robust 

to the natural frequency changes in TMD units than TMD-1. 

3. Another advantage of the present method is that since design parameters are not obtained 

based on an optimization routine (i.e., objective function, initial values and boundaries for tuning 

parameters) for present method, the computational effort required for present method is less than 

the other optimization techniques. 

4. It is interesting to note that the maximum displacement amplitudes of the proposed 

MTMD is almost insensitive to  10% changes in the tuning frequency of TMD units with higher 

mass ratio. 

5. According to the results of this study, MTMD systems designed by present method 

provide higher robustness than all the reference systems considered in suppressing the vibrations 

of both damped and undamped systems under harmonic excitation. 

6. This approach can also be extended to vibration control of short and medium span bridge 

structures by using MTMDs, because the first natural frequency of these structures is dominant in 

vibration.   
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