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ABSTRACT 

This paper includes the Artificial Neural Network (ANN) solution as one of the numerical analyses to 

investigate the buoyancy and property variation effects calculating Nusselt numbers during the upward and 

downward flow of water in a smooth pipe. Available data in the literature (Parlatan et al.) has been used in the 

analyses to show ANN’s success ratio of predictability on the measured pipe length’s averaged Nusselt numbers 

(Nuavg) and forced convection’s Nusselt numbers (Nuo). Mixed convective flow conditions were valid for Reynolds 

numbers ranging from 4000 to 9000 with Bond numbers smaller than 1.3. Dimensionless values of Reynolds 

number, Grashof number, Prandtl number, Bond number, Darcy friction factor, isothermal friction factor in forced 

convection, ratio of dynamic viscosities, and a Parlatan et al.’s friction factor were the inputs while Nuavg and Nuo 

were the outputs of ANN analyses. All data was properly separated for test/training/validation processes. The 

ANNs performances were determined by way of relative error criteria with the practice of unknown test sets. As a 

result of analyses, outputs were predicted within the deviation of ±5% accurately, new correlations were proposed 

using the inputs, and importance of inputs on the outputs were emphasized according to dependency analyses 

showing the importance of buoyancy influence (GrT) and the effects of temperature-dependent viscosity variations 

under mixed convection conditions in aiding and opposing transition and turbulent flow of water in a test tube.  

 

Keywords: Natural Convection, Single Phase Flow, Buoyancy and Property Variation, Friction Factor, 

Nusselt Number 

 

 

INTRODUCTION 

Mixed convection conditions occur when both forced and free convection have no negligible effects on 

flow. Mixed convection is nearly always the case in laminar pipe flows. If low external pressure gradient and low 

flow velocity, which are encountered in laminar flow, combine with the sufficient amount of density difference 

due to temperature change, mixed convection currents may form that modify the flow pattern significantly. Mixed 

convection has received remarkable interest over the years from various areas, mainly nuclear engineering and 

electronic cooling. 

In vertical pipes, mixed convection is named according to the acting direction of the density-based 

pressure gradients. If flow is in upward direction and cools as it progresses, density-based pressure gradients are 

counter current to the flow direction and named as opposing flow. Opposite condition (aiding flow) is true when 

fluid is flowing upward and heated along the channel because density-based pressure gradients will be in upward 

direction this time. It also should be noted that aiding and opposing flow conditions will also occur in downward 

flow (downward cooling and downward heating for aiding and opposing flows respectively). 

Tanaka et al. [1] found out the buoyancy and acceleration effects resulted in reduced shear stress near 

wall zone in turbulent forced convection in vertical tubes. These effects were found to be the reason behind the 

increment of friction; however, they have no remarkable influence over the heat transfer. In his experimental 

research with nitrogen in down flow condition, Easby [2] observed an increase in Stanton number due to buoyancy 

and shear stress distribution. His results also showed lower values as compared with previous correlations. Saylor 

and Joye [3] developed a method to compute the hydrostatic pressure difference that occurred due to temperature 

difference along the vertical pipe axis in mixed convection flows. Their improved method integrates the 
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temperature along the pipe axis to have more reliable density and hydrostatic pressure values. Parlatan et al. [4] 

investigated friction factor and heat transfer characteristics of aiding and opposing flows in their experimental 

study. Friction factor was found to deviate from isothermal conditions by about 25% depending on the type of the 

flow. Depending on whether the flow is opposing or aiding type, alteration of friction factor deviates when 

viscosity variation is taken into consideration. They also found out that the heat transfer coefficient enhances in 

opposing flow, while it first decreases and then regains in aiding flow. You et al. [5] analyzed the vertical flow of 

heated air with direct numerical solution. They observed an increase and later a decrease in friction and Nusselt 

number with increasing heat flux while in upward flow conditions. In downward flow, no deviation is observed 

with friction, but with increasing heat flux an increase in Nusselt number is present, which leads to the conclusion 

that the velocity and temperature may have dissimilarity due to buoyancy.  

Joye [6] experimentally investigated the laminar mixed flow in vertical pipe and derived an equation to 

predict the pressure drop as a function of flow rate. The equation can be used for Grashof number up to 108 and 

Reynolds number up to 11000. Busedra and Soliman [7] carried out a numerical study for mixed convection in 

inclined semicircular ducts for both aiding and opposing flow conditions under uniform heat flux and uniform wall 

temperature boundary assumptions. For upward flow conditions, friction factor was found to have an increasing 

characteristic under both boundary types but to have higher values in uniform heat flux conditions in high Grashof 

numbers. However, in downward flows, friction factor is always higher in uniform heat flux boundary conditions. 

Voicu et al. [8] numerically investigated the temperature and velocity profile of aqueous glycol solution in a vertical 

double pipe parallel heat exchanger under laminar mixed convection condition. They found out the Richardson 

number has influence over the velocity and temperature profile of the inner flow. Flow reversal in inner flow is 

observed above Richardson number 1; however, this situation diminishes as the flow progresses on because 

temperature difference along the radial direction decreases. Friction factor values were found to be related to 

Richardson number near the inlet region while they approach the forced convection regime values along the pipe 

length. Kang and Chung [9] made an experimental study to determine the influence of height-diameter ratio of a 

vertical tube over buoyancy effect. They recommended using the heated length as the characteristic length for the 

Grashof number because diameter was found to be inappropriate and cannot respond to the variety of the results 

due to length change. They used fixed diameter with varying pipe heights and fixed pipe height with varying 

diameters to identify the concept. Tam et al. [10] carried out an ANN analysis on laminar and turbulent heat transfer 

in horizontal tube to determine the importance of the different variables effecting heat transfer performance. 

Reynolds and Prandtl numbers are found to have the largest impact on the heat transfer for turbulent flow while 

Graetz and Rayleigh numbers are the most important parameters for laminar flow. Selimefendigil and Öztop [11] 

numerically investigated mixed flow characteristics of a square cavity with rotational cylinder in the center. The 

working fluid is water-Al2O3 nanoparticles mixture. GRNN method is the best procedure to determine the output, 

which was averaged Nusselt number. Their inputs are Reynolds number, Grashof number, volume fraction, and 

cylinder rotation speed. Generally all inputs are found to act as an enhancer to heat transfer if increased in certain 

amounts. 

In this study, an artificial neural network analysis of Parlatan et al.’s [4] experimental data was carried 

out as one of rare studies of literature on this subject. New correlations were formed upon acquiring ANN data 

using dimensionless numbers of Reynolds number, Grashof number, Prandtl number, Bond number, Darcy friction 

factor, isothermal friction factor in forced convection, ratio of dynamic viscosities, and Parlatan et al.’s friction 

factor, and dependency analysis has been performed among inputs to determine the parameters’ importance. Apart 

from other most in-tube forced convection studies, all analyses have the dimensionless numbers regarding 

buoyancy influence (Gr T) and the effects of temperature-dependent viscosity variations (µw/µb) to benefit from 

one of the artificial intelligence techniques numerically. 

 

DATA REDUCTION  

Input and output parameters were selected from the dimensionless numbers used in Parlatan et al.’s study 

[4]. Inputs of the ANN model were Reynolds number, Prandtl number, Grashof number, Bond number, Darcy 

friction factor, isothermal friction factor in forced convection, ratio of dynamic viscosities, and Parlatan et al.’s 

friction factor, which was obtained from the experiments [4]. Inputs of the ANN model were given as follows: 

Reynolds, Prandtl, Grashof (ΔT), Buoyancy, and Darcy friction factor numbers are expressed 

respectively: 
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However, GrΔT was used in ANN model in accordance with Parlatan et al.’s experiments. Outputs of the 

ANN model were averaged with Nusselt numbers over pipe length and Nusselt number in forced conditions. 

Nusselt number is defined as: 

 

                                                                    
 bw TTk

D''q
Nu


                                                                             (6) 

 

 Since the ANNs are one of the generally used and established models to examine the formula between 

linear or non-linear input-output patterns, they try to generalize the training group and then estimate the test group. 

Performance of ANNs is determined with the achievement of the estimation. It should be noted that extensive 

knowledge of the use of ANN methods on the single- and two-phase flows, method of least squares, error analyses’ 

calculation procedure including R square error, proportional error, and Mean square error can be seen from authors’ 

previous publications [12-19]. 

 

RESULTS AND DISCUSSION 

In dimensional examination, a dimensionless value is an amount without a related physical dimension. 

Dimensionless numbers are commonly used in many scientific areas. There are a lot of well-known quantities, 

such as Reynolds number, which is the ratio of inertial forces to viscous forces in a fluid. It is also defined as the 

ratio of total momentum transferred to the molecular transferred. The flow is smooth, continues, streamlines at 

low Re numbers. By contrast, the flow has eddies, vortices, and discontinues at high Re numbers. Prandtl number, 

which is the ratio between the momentum diffusivity to thermal diffusivity, depends on the state and type of the 

fluid and is independent from any length dimension. Grashof number, which is the ratio of the buoyancy to viscous 

force acting on a fluid, is a dominant one for natural convection. Bond number is the ratio of gravitational force to 

surface tension force. Nusselt number is the ratio of convective heat transfer across to boundary layer of the fluid 

to the conductive heat transfer. In this study, Nusselt numbers were determined numerically using the ANN 

analyses including various dimensionless numbers. The experimental data of Parlatan et al. [4] was shown in 

Tables 1 and 2 for opposing and aiding turbulent mixed convection flow conditions respectively. The range of 

experiments was 4160 ≤ Re ≤ 9060, 0.30 ≤ GrΔT × 10-6 ≤ 6.93, 4.28 ≤ Pr ≤5.43, and 0.03 ≤ Bo ≤ 1.27 for water in 

a vertical pipe. 

 

 

 

 

 

http://en.wikipedia.org/wiki/Dimensional_analysis
http://en.wikipedia.org/wiki/Quantity
http://en.wikipedia.org/wiki/Dimensional_analysis
http://en.wikipedia.org/wiki/Buoyancy
http://en.wikipedia.org/wiki/Viscous
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Table 1. Inputs and outputs of numerical analyses having the experimental database of upward flow from 

Parlatan et al. [4]’s study. 

 

Exp 

Input 1 

Re 

Input 2 

GrΔTx10-

6 

Input 3 

Pr 

Input 4 

Bo 

Input 5 

f 

Input 6 

fo 

Input 7 

µw/µb 

Input 8 

fvp 

Output 1  

Nuavg 

Output 

2 

Nuo 

1U  7513 4.73 4.97 0.138 0.0287 0.0328 0.51 0.0275 24.3 49.390 

2U  7391 2.11 5.06 0.114 0.0306 0.0330 0.7 0.0307 41.6 49.056 

3U  7200 0.988 5.22 0.061 0.0317 0.0333 0.84 0.0323 46.8 48.397 

4U  7031 0.474 5.36 0.031 0.0328 0.0336 0.91 0.0329 47.1 47.865 

5U  6069 0.538 5.38 0.05 0.0344 0.0355 0.9 0.0348 39.7 42.688 

6U 5012 0.653 5.4 0.094 0.0409 0.0378 0.87 0.0371 31.5 36.713 

7U  4163 1.08 5.36 0.151 - - - - 16.6 31.499 

8U  4143 0.405 5.38 0.089 0.0408 0.0402 0.92 0.0394 24.8 31 

9U  4990 0.304 5.43 0.047 0.0388 0.0380 0.94 0.0376 33.8 36.540 

10U  5087 1.61 5.31 0.139 0.0328 0.0377 0.75 0.0354 20.1 36.948 

11U  4210 2.06 5.29 0.249 - - - - 14.3 31.567 

12U  6218 1.05 5.24 0.088 0.035 0.0352 0.82 0.0338 37.6 43.168 

13U 5268 3.13 5.1 0.227 - - - - 17.8 37.552 

14U  4391 3.24 5.04 0.497 - - - - 19.3 35.873 

15U  4578 4.62 4.82 0.771 - - - - 28.1 33.733 

16U  5462 4.48 4.9 0.398 0.0394 0.0368 0.47 0.0302 22.7 38.151 

17U  6341 2.82 5.12 0.14 0.0312 0.0349 0.65 0.0317 24 43.557 

18U  6689 5.54 4.81 0.27 0.0436 0.0343 0.46 0.0278 24.8 44.604 

19 U  4658 2.59 5.19 0.259 - - - - 16.3 34.100 

20U 4837 3.54 4.97 0.441 0.0471 0.0384 0.54 0.0330 21 34.710 

21U 5220 6.93 4.55 0.92 - - - - 27.8 36.010 

 

ANN analyses have 8 inputs mainly as dimensionless values of Reynolds number, Grashof number, 

Prandtl number, Bond number, Darcy friction factor, isothermal friction factor in forced convection, ratio of 

dynamic viscosities, and Parlatan et al.’s friction factor, while Nuavg and Nuo were the outputs of ANN analyses. 

Fig. 1 shows ANN results for the pipe length averaged and forced convection’s Nusselt numbers within the 

deviation band of ±20% and ±10% respectively. Table 3 shows the error rates of ANN analyses for the predicted 

outputs. According to this table, it is possible to derive many results. The effect of input numbers after first 4 inputs 

on the outputs were found to have almost negligible effect. For instance, the first 4 inputs have prediction capacity 

of output one as 0.965 whereas all inputs have increased these values to 0.973 in this table. This result shows the 

importance of first 4 inputs in the analyses. All inputs of analyses were found to have significant importance with 

their individual error values in this table. Generally, Table 3 shows the possibility of the prediction by ANN 

analyses on the investigated subject using proper inputs clearly.  

 Tables 4 and 5 include all proposed correlations by means of the method of least squares for the prediction 

of outputs 1 and 2 respectively. Number of inputs in these correlations decreases with increasing their labels. 

Correlation 1 has all inputs and correlation 6 has 3 inputs. As their success can be seen from Figs. 2 to 5, correlation 

1 is the most predictive one due to its large number of inputs as expected. Figs. 2 and 3 illustrate the results of 

proposed correlations of 1, 2, 5, and 6 for output 1 while Figs. 4 and 5 depict the results of proposed correlations 

of 1, 2, 5, and 6 for the output 2, which was predicted more accurately than another one within the deviation band 

of ±5%. Table 6 shows the results of correlations 3 and 4 numerically. Accuracy of the proposed correlations 

increase with increasing input numbers as shown in related tables and figures.  
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Table 2. Inputs and outputs of numerical analyses (Downward flow data from Parlatan et al. [4]) 

 

Exp 

Input 1 

Re 

Input 2 

GrΔTx10-6 

Input 3 

Pr 

Input 4 

Bo 

Input 5 

f 

Input 6 

fo 

Input 7 

µw/µb 

Input 8 

fvp 

Output 1  

Nuavg 

Output 2 

Nuo 

22D 5154 1.09 5.23 0.181 0.0325 0.0401 0.82 0.0385 40.2 37.050 

23D 5307 1.72 5.06 0.279 0.0309 0.0398 0.76 0.0378 42 37.701 

24D 5646 3.14 4.74 0.498 - - - - 48 38.709 

25D 5956 4.95 4.43 0.73 - - - - 52.1 39.710 

26D 5112 0.74 5.28 0.119 0.34 0.4023 0.87 0.3943 38 37.037 

27D 4653 0.815 5.19 0.174 0.0328 0.0413 0.87 0.0400 36 34.058 

28D 4366 0.812 5.29 0.204 - - - - 34.5 32.608 

29D 4339 0.433 5.33 0.106 0.0367 0.0421 0.92 0.0412 32.3 32.527 

30D 4671 0.424 5.31 0.083 0.0366 0.0413 0.92 0.0408 34.2 34.475 

31D 4873 1.26 5.16 0.26 0.0321 0.0409 0.81 0.0393 38.1 34.890 

32D 4527 1.35 5.08 0.334 0.0321 0.0416 0.8 0.0399 37.4 33.156 

33D 4999 1.96 4.91 0.39 - - - - 41.4 35.506 

34D 6333 1.53 5.13 0.15 0.0299 0.0378 0.78 0.0359 47.1 43.530 

35D 7357 1.37 5.18 0.088 0.0297 0.0360 0.79 0.0346 52.5 49.203 

36D 8468 1.25 5.15 0.055 0.0289 0.0344 0.81 0.0330 58.3 55 

37D 8640 1.9 5.03 0.082 0.0276 0.0341 0.75 0.0321 59.8 55.421 

38D 7582 2.14 5 0.135 0.0275 0.0356 0.73 0.0335 54.8 49.863 

39D 6606 2.47 4.89 0.234 - - - - 50.7 44.395 

40D 5048 3.01 4.73 0.637 - - - - 44.2 35.473 

41D 4868 3.89 4.67 0.756 - - - - 43.8 34.272 

42D 7702 2.78 4.91 0.173 - - - - 56.6 50.311 

43D 6710 3.19 4.8 0.302 - - - - 52.8 44.707 

44D 5293 4.97 4.6 0.782 - - - - 47.2 36.140 

45D 5020 4.14 4.51 0.983 - - - - 46.9 34.766 

46D 8740 2.5 4.97 0.108 - - - - 61.4 55.818 

47D 6993 4.34 4.57 0.39 - - - - 55.8 45.551 

48D 7930 3.73 4.75 0.223 - - - - 58.7 50.910 

49D 9059 3.41 4.77 0.139 - - - - 63.7 56.723 

50D 5518 5.15 4.38 0.987 - - -  50.8 37.216 

51D 5251 5.6 4.28 1.273 - - - 0.0275 50.4 35.492 

 

  Table 3. Error rates of ANN analyses for the predicted outputs 

Output 1 (Nuavg,exp) 

 Input 

1 

(Re) 

Input 2 

(GrT 

.10-6) 

Input 

3 

(Pr) 

Input 

4 

(Bo) 

Input 

5 

(f) 

Input 

6 

(fo) 

ANN inc. all 

inputs 

ANN inc. inputs 

from 1 to 4 

Root Mean 

Squared Error 2.271 2.281 2.284 2.34 2.404 3.593 2.22 2.549 

R-Squared Error 0.958 0.957 0.957 0.955 0.953 0.928 0.973 0.965 

Output 2 (Nuo,exp) 

 Input 

1 

(Re) 

Input 2 

(GrT 

.10-6) 

Input 

3 

(Pr) 

Input 

4 

(Bo) 

Input 

5 

(f) 

Input 

6 

(fo) 

ANN inc. all 

inputs 

ANN inc. inputs 

from 1 to 4 

Root Mean 

Squared Error 0.274 0.276 0.3 0.301 0.874 0.907 0.472 0.528 

R-Squared Error 0.998 0.998 0.998 0.998 0.985 0.984 0.996 0.994 
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Figure 1. ANN results for the pipe length averaged (a) and forced convection’s (b) Nusselt numbers  
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Figure 2. Comparison of proposed correlations with output 1 experimental data  
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Figure 3. Comparison of proposed correlations with output 1 experimental data  
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Figure 4. Comparison of proposed correlations with output 2 experimental data  
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Figure 5. Comparison of proposed correlations with output 2 experimental data  
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Table 4. Proposed correlations, their coefficients and p-values for output 1  

Correlation 1: b1/(1 + exp(b2*input1 + b3*input2 + b4*input3 + b5*input4 + b6*input5 + b7*input6 + b8*input7 + b9*input8)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 76.6042 -0.0005 0.0683 1.6986 -3.2181 9.8277 -85.3757 -6.6665 78.2192 

p-value 1.22E-05 0.0005 0.6859 0.0007 0.0012 0.312 0.6205 0.0071 0.6478 

Correlation 2: b1/(1 + exp(b2*input1 +  b3*input3 + b4*input4 + b5*input5 + b6*input6 + b7*input7 + b8*input8)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 78.2551 -0.0005 1.6871 -3.1923 8.375 -33.5803 -6.6123 26.6497 - 

p-value 1.34E-05 0.0003 0.0005 0.0011 0.3277 0.768 0.006 0.8136 - 

Correlation 3: b1/(1 + exp(b2*input1 +  b3*input3 + b4*input4 +   b5*input5 + b6*input6 +  b7*input7)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 79.1742 -0.0004 1.6126 -3.1975 7.6753 -6.8591 -6.181 - - 

p-value 1.05E-05 0.0002 6.11E-06 0.0008 0.313 0.2837 4.35E-05 - - 

Correlation 4: b1/(1 + exp(b2*input1 +  b3*input3 + b4*input4 +   b5*input6 + b6*input7)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 75.2515 -0.0005 1.7637 -3.6054 -0.4375 -6.8368 - - - 

p-value 6.49E-07 5.70E-05 9.20E-07 0.0001 0.2918 5.51E-06 - - - 

Correlation 5: b1/(1 + exp(b2*input1 +  b3*input3 + b4*input4 +   b5*input7)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 74.4857 -0.0005 1.7732 -3.6349 -6.9243 - - - - 

p-value 3.50E-07 5.27E-05 8.32E-07 0.0001 4.61E-06 - - - - 

Coefficient 70.7088 -0.0004 0.6426 3.3675 -0.8131 -15.8385 - - - 

p-value 1.81E-12 3.67E-05 1.34E-08 1.65E-06 0.0916 2.14E-05 - - - 

 

Table 5. Proposed correlations, their coefficients and p-values for output 2 

Correlation 1: b1/(1 + exp(b2*input1 +  b3*input2 + b4*input3 +   b5*input4 + b6*input5 +  b7*input6 + b8*input7 + b9*input8)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 73.4234 -0.0003 0.079 0.1861 0.3411 -1.3435 -9.6328 0.5148 10.9657 

p-value 9.79E-16 7.12E-12 0.0004 4.19E-05 9.42E-05 0.2305 0.61 0.017 0.5594 

Correlation 2: b1/(1 + exp(b2*input1 +  b3*input2 + b4*input3 +   b5*input4 + b6*input5 +  b7*input7 + b8*input8)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 73.5949 -0.0003 0.0724 0.1778 0.3241 -1.6517 0.5688 1.4057 - 

p-value 1.67E-16 1.68E-12 2.13E-05 9.60E-06 2.69E-05 0.0786 0.0022 0.0805 - 

Correlation 3: b1/(1 + exp(b2*input1 + b3*input2 + b4*input3 + b5*input4 + b6*input5 +  b7*input7)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 73.3652 -0.0003 0.0715 0.1612 0.3578 -0.0147 0.6424 - - 

p-value 9.54E-17 1.68E-12 4.33E-05 2.88E-05 6.65E-06 0.8222 0.0009 - - 

Correlation 4: b1/(1 + exp(b2*input1 +  b3*input2 + b4*input3 + b5*input4 + b6*input7)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 73.3305 -0.0003 0.0714 0.1612 0.3584 0.6414 - - - 

p-value 1.55E-17 4.71E-13 2.85E-05 1.86E-05 3.83E-06 0.0007 - - - 

Correlation 5: b1/(1 + exp(b2*input1 +  b3*input2 + b4*input3 + b5*input4)) 

 b1 b2 b3 b4 b5 b6 b7 b8 b9 

Coefficient 76.677 -0.0002 0.0152 0.2564 0.2842 - - - - 

p-value 1.24E-16 6.82E-11 0.0677 5.11E-36 6.83E-08 - - - - 

Coefficient 75.8406 -0.0002 0.251 0.3574 - - - - - 

p-value 8.06E-17 1.02E-10 3.11E-37 4.11E-18 - - - - - 
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Table 6. Comparison of proposed correlations of 3 and 4 for prediction of outputs 

Ex

p 

Input 

1 

Re 

Input 2 

GrΔTx10-

6 

Input 

3 

Pr 

Input 

4  

Bo 

Input 

5 

f 

Input 

6  

fo 

Input 

7 

µw/µb 

Input 

8 

fvp 

Corr. 

3  

Nuav 

Corr. 

4 

Nuav 

Output 

1 

Nuav 

Outpu

t 2 

Nuo 

1U  7513 4.730 4.970 0.138 0.029 0.033 0.510 0.028 26.300 25.401 24.300 49.390 

2U  7391 2.110 5.060 0.114 0.031 0.033 0.700 0.031 43.158 43.469 41.600 49.057 

3 U  7200 0.988 5.220 0.061 0.032 0.033 0.840 0.032 49.613 50.166 46.800 48.397 

4U  7031 0.474 5.360 0.031 0.033 0.034 0.910 0.033 50.001 50.691 47.100 47,866 

5U  6069 0.538 5.380 0.050 0.034 0.036 0.900 0.035 40.188 40.745 39.700 42.688 

6U 5012 0.653 5.400 0.094 0.041 0.038 0.870 0.037 27.984 28.581 31.500 36.713 

7U  4163 1.080 5.360 0.151 - - - - - - 16.600 31.499 

8U  4143 0.405 5.380 0.089 0.041 0.040 0.920 0.039 26.418 26.601 24.800 31.000 

9U  4990 0.304 5.430 0.047 0.039 0.038 0.940 0.038 32.470 33.019 33.800 36.541 

10

U  5087 1.610 5.310 0.139 0.033 0.038 0.750 0.035 21.951 21.001 20.100 36.949 

11

U  4210 2.060 5.290 0.249 - - - - - - 14.300 31.567 

12

U  6218 1.050 5.240 0.088 0.035 0.035 0.820 0.034 38.603 39.210 37.600 43.169 

13

U 5268 3.130 5.100 0.227 - - - - - - 17.800 37.553 

14

U  4391 3.240 5.040 0.497 - - - - - - 19.300 35.874 

15

U  4578 4.620 4.820 0.771 - - - - - - 28.100 33.733 

16

U  5462 4.480 4.900 0.398 0.039 0.037 0.470 0.030 20.215 20.202 22.700 38.151 

17

U  6341 2.820 5.120 0.140 0.031 0.035 0.650 0.032 27.102 26.458 24.000 43.557 

18

U  6689 5.540 4.810 0.270 0.044 0.034 0.460 0.028 23.891 24.866 24.800 44.604 

19

U  4658 2,590 5,190 0,259 - - - - - - 16.300 34.100 

20

U 4837 3,540 4,970 0,441 0,047 0,038 0,540 0,033 21.746 22.816 21.000 34.711 

21

U 5220 6,930 4,550 0,920 - - - - - - 27.800 36.010 

22

D 5154 1,090 5,230 0,181 0,033 0,040 0,820 0,039 35.438 34.989 40.200 37.051 

23

D 5307 1,720 5,060 0,279 0,031 0,040 0,760 0,038 41.410 41.112 42.000 37.702 

24

D 5646 3,140 4,740 0,498 - - - - - - 48.000 38.710 

25

D 5956 4,950 4,430 0,730 - - - - - - 52.100 39.710 

26

D 5112 0,740 5,280 0,119 0,340 0,402 0,870 0,394 38.073 38.103 38.000 37.037 

27

D 4653 0,815 5,190 0,174 0,033 0,041 0,870 0,040 37.583 37.143 36.000 34.059 

28

D 4366 0,812 5,290 0,204 - - - - 0.259 0.150 34.500 32.609 

29

D 4339 0,433 5,330 0,106 0,037 0,042 0,920 0,041 31.486 31.170 32300 32.528 
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Table 6. (Cont.). Comparison of proposed correlations of 3 and 4 for prediction of outputs  

Ex

p 

Input 

1 

Re 

Input 2 

GrΔTx10-

6 

Input 

3 

Pr 

Input 

4  

Bo 

Input 

5 

f 

Input 

6  

fo 

Input 

7 

µw/µb 

Input 

8 

fvp 

Corr. 

3  

Nuav 

Corr. 

4 

Nuav 

Output 

1 

Nuav 

Outpu

t 2 

Nuo 

30D 4671 0.424 5.310 0.083 0.037 0.041 0.920 0.041 33.750 33.620 34.200 34.476 

31D 4873 1.260 5.160 0.260 0.032 0.041 0.810 0.039 38.860 38.507 38.100 34.890 

32D 4527 1.350 5.080 0.334 0.032 0.042 0.800 0.040 41.569 41.342 37.400 33.156 

33D 4999 1.960 4.910 0.390 - - - - 1.173 0.802 41.400 35.506 

34D 6333 1.530 5.130 0.150 0.030 0.038 0.780 0.036 43.376 43.082 47.100 43.530 

35D 7357 1.370 5.180 0.088 0.030 0.036 0.790 0.035 48.745 48.687 52.500 49.203 

36D 8468 1.250 5.150 0.055 0.029 0.034 0.810 0.033 59.139 58.894 58,300 55.000 

37D 8640 1.900 5.030 0.082 0.028 0.034 0.750 0.032 59.175 58.796 59,800 55.422 

38D 7582 2.140 5.000 0.135 0.028 0.036 0.730 0.034 52.313 52.001 54.800 49.864 

39D 6606 2.470 4.890 0.234 - - - - - - 50.700 44.396 

40D 5048 3.010 4.730 0.637 - - - - - - 44.200 35.474 

41D 4868 3.890 4.670 0.756 - - - - - - 43.800 34.272 

42D 7702 2.780 4.910 0.173 - - - - - - 56.600 50.311 

43D 6710 3.190 4.800 0.302 - - - - - - 52.800 44.708 

44D 5293 4.970 4.600 0.782 - - - - - - 47.200 36.141 

45D 5020 4.140 4.510 0.983 - - - - - - 46.900 34.766 

46D 8740 2.500 4.970 0.108 - - - - - - 61.400 55.818 

47D 6993 4.340 4.570 0.390 - - - - - - 55.800 45.551 

48D 7930 3.730 4.750 0.223 - - - - - - 58.700 50.911 

49D 9059 3.410 4.770 0.139 - - - - - - 63.700 56.723 

50D 5518 5.150 4.380 0.987 - - - - - - 50.800 37.216 

51D 5251 5.600 4.280 1.273 - - - - - - 50.400 35.493 

 

 It should be noted that this paper should be evaluated as an extension of authors’ previous study [18]. 

Detailed information on ANN analyses can be obtained from that study [18]. 

 

CONCLUSION 

This investigation studied some single-phase flow characteristics of water during transition and turbulent 

flow in a vertical tube. Parlatan et al.’s [4] experimental data were used in the analyses. The purpose of this 

numerical study was to illustrate ANN method’s capability to determine Nusselt numbers, effect of dimensionless 

numbers as inputs on Nusselt numbers as outputs, and propose various empirical correlations using the inputs. The 

validation process of the results revealed the importance of dimensionless numbers on the measured pipe length 

averaged Nusselt numbers and forced convection’s Nusselt numbers according to aiding and opposing flow types. 

There are few research studies on such cases in the literature. For this reason, the results of this study are expected 

to fill a gap in the literature. Twelve different correlations were proposed using inputs of the numerical model for 

the outputs separately. The best correlations’ figures were plotted within the deviation of ±5%. Some dimensionless 

numbers regarding buoyancy influence (Gr T) and the effects of temperature-dependent viscosity variations 

(µw/µb) were added into both ANN analyses. 
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NOMENCLATURE  

ANN  Artificial Neural Network 
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Bo  Buoyancy number 

D  Inside diameter of tube, m 

f  Darcy friction factor 

fo  Isothermal friction factor in forced convection 

g  Gravitational acceleration, m s-2 

Gr  Grashof number 

L  Test section length 

Nu  Nusselt number 

Nuavg  Tube length averaged Nusselt number 

Nuo  Nusselt number in forced convection 

Pr  Prandtl number 

Re  Reynolds number 

q”  Net wall heat flux, W m-2 

Tb  Bulk temperature, oC 

Tw  Wall temperature, oC 

ΔP  Pressure drop, Pa 

β  Thermal expansion coefficient, 1 K-1 

υ  Kinematic viscosity, m2 s-1  

α  Thermal diffusivity 

ρ   Density, kg m-3 
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