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ABSTRACT 

 

This paper focus on to study dynamic analysis of thick plates resting on Winkler foundation. The governing 

equation is derived from Mindlin’s theory. This study is a parametric analysis therefore, the effects of the 

thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick plates 

subjected to earthquake excitations is studied. In the analysis, as a dynamic solution the Newmark-β method is 
used for the time integration and finite element method is used for spatial integration. While using finite 

element method first order element is used. This element is 4-noded and it’s formulation is derived by using 

first order displacement shape functions. A computer program using finite element method is coded in C++ to 
analyze the plates clamped or simply supported along all four edges. Graphs are presented that should help 

engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 4-noded finite 

element can be effectively used in the earthquake analysis of thick plates. It is also concluded that, in general, 
the changes in the thickness/span ratio are more effective on the maximum responses considered in this study 

than the changes in the aspect ratio. 

Keywords: Parametric forced vibration analysis, thick plate, mindlin’s theory, first order finite element, 
winkler foundation. 

 

 

1. INTRODUCTION 

 

The plates resting on elastic foundation is one of the most popular topics for the last decade in 

many engineering application. Winkler model, Pasternak model, Hetenyi model, Vlasov and 

Leont’ev model are the models used by the researchers to calculate the soil effects on the plate.  

Winkler model is used as a set of uncorrelated elastic springs attached to each node of the 

plate [1]. In this method, the deflections are only related with the load on the plate. The deflection 

of neighbouring points of the foundation is independent of each other. Hetenyi [2] proposed a 

two-parameter model, Pasternak model takes in to account the effects of shear interaction among 

joining points in the foundation [3]. Vlasov and Leont’ev [4] related the solution with a γ 

parameter which is calculated with soil material and thickness of the soil. 

The dynamic behavior of thick elastic plates has been investigated by many researchers [5-

15]. Ayvaz et all. [19] derived the equations of motions for thick orthotropic elastic plates using 

Hamilton's principle, but did not present any results. Omurtag and Kadıoğlu [20] are studied free 

vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element 
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formulation, Ayvaz Y. and Oguzha n C.B. [21] are analysis free vibration of thick plates resting 

on Vlasov elastic foundation. Ozgan and Daloğlu [22] are analysis free vibration of thick plates 

resting on Winkler elastic foundation. All these studies are use 4- and 8- noded finite element 

which are second and third ordered mathematically. These elements are known having shear 

locking problem. Thick plates have a shear locking problem [23] while the thickness becomes 

smaller. This means that the bending energy, which should dominate the shear terms, will be 

incorrectly estimated to be zero in thin plate problems. Shear locking can be avoided by 

increasing the mesh size, i.e. using finer mesh, but if the thickness/span ratio is “too small”, 

convergence may not be achieved even if the finer mesh is used for the first and second order 

displacement shape functions. Either refining the finite-element mesh or increasing the order of 

the shape functions can improve the accuracy of finite-element solutions. The former is called h-

version and the latter p-version. It is well known that p convergence is more rapid than h 

convergence using the same number of degrees of freedom (DOFs) [24]. These problems can be 

prevented with using true shape function while built up the mathematical model. The author 

formed a new 17 noded, 4 order shape function finite element at the past studies and this element 

is free from shear locking [25] and also author used this element for thick plates resting on 

Winkler foundation [26]. This element is a new element and neither free vibration nor forced 

vibration analysis of thick plates resting on Winkler foundation is used before.  

The purpose of this paper is to parametric earthquake analysis of thick plates resting on 

Winkler foundation, to determine the effects of the thickness/span ratio, the aspect ratio and the 

boundary conditions on the linear responses of the thick plates subjected to earthquake 

excitations. A computer program using finite element method is coded in C++ to analyse the 

plates clamped or simply supported along all four edges. In the program, the finite element 

method is used for spatial integration and the Newmark-β method is used for the time integration. 

Finite element formulation of the equations of the thick plate theory is derived by using first order 

displacement shape functions. In the analysis, 4-noded finite element is used to construct the 

stiffness and mass matrices since shear locking problem does not occur if this element is used in 

the finite element modelling of the thick plates [27].  

 

2. MATHEMATICAL MODEL  
 

The governing equation for a flexural plate (Fig. 1) subjected to an earthquake excitation 

without damping can be given as [16, 28] 
 

          guMFwKwM                                 (1) 
 

where [K] and [M] are the stiffness matrix and the mass matrix of the plate, respectively, w 

and w  are the lateral displacement and the second derivative of the lateral displacement of the 

plate with respect to time, respectively, gu  is the earthquake acceleration. 

In order to do forced vibration analysis of a plate, the stiffness, [K], mass matrices, [M], and 

equivalent nodal loads vector, [F], of the plate should be constructed. The evaluation of these 

matrices is given in the following sections.  

The total strain energy of plate-soil-structure system (see Fig. 1) can be written as; 
 

П= Пp+ Пs+ V                                                           (2) 
 

where Пp is the strain energy in the plate, 
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Figure 1. T he sample plate used in this study 

 

where Пs is the strain energy stored in the soil, 
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and V is the potential energy of the earthquake loading; 
 

V=- A Awdq                                                                                           (5) 
 

In this equation  EandE  are the elasticity matrix and these matrices are given below at 

Eq. (14), q  shows earthquake loading.  

 

2.1. Evaluation of the Stiffness Matrix 

 

The total strain energy of the plate-soil system according to Eq. (2) is; 
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At this equation the first and second part gives the conventional element stiffness matrix of 

the plate, [kp
e], differentiation of the third integral with respect to the nodal parameters yields a 

matrix, [kw
e], which accounts for the axial strain effect in the soil. Thus the total energy of the 

plate-soil system can be written as; 
 

Ue         Ae
e
w

e
p

T
e dwkkw

2

1
=                                                                      (7) 

 

where  
 

   Txnynn1x1y1e w...ww                                     (8) 
 

Assuming that in the plate of Fig. 1 u and v are proportional to z and that w is the independent 

of z [29], one can write the plate displacement at an arbitrary x, y, z in terms of the two slopes and 

a displacement as follows; 
 

{w, v, u}={w0(x,y,t), -zφy (x,y,t), zφx (x,y,t)}                                                                                (9) 
 

where w0 is average displacement of the plate, and φx and φy are the bending slopes in the x 

and y directions, respectively. 

The nodal displacements for 4-noded quadrilateral serendipity element (MT4) (Fig. 2) can be 

written as follows; 
 

w= 
17

1
iiwh , v=-zφy=  

17

1
y iihz , u=-zφx=  

17

1
xiihz   ,      (i=1, 2, 3, 4)                         (10) 

 

The displacement function chosen for this element is; 
 

w=c1+ c2r + c3s + c4rs                                                                                       (11) 
 

From this assumption, it is possible to derive the displacement shape function to be; 
 

hi=[h1, h2, h3,h4]                                                   (12) 
 

where 
 

h1= (0.25)*(1+r)*(1+s),  h2= (0.25)*(1-r)*(1+s), 

h3= (0.25)*(1-r)*(1-s),  h4= (0.25)*(1+r)*(1-s),                                (13) 
 

The 3x3 Jacobian matrix required in this formulation is; 
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Figure 2. 4-noded (first order) quadrilateral finite element used in this study [31]. 
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The inverse of J becomes 
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We need certain derivatives with respect to local coordinates, which are placed into a 3x3 

matrix; 
 

 

1 2 

φxi 

3 

2a 

2b 
x, r=  

y, s=  
z 

w 

wi 

φyi i 

4 

 

r 

s 

1 2 

3 4 

Eartquake Behaviour of Thick Plates Resting   …      /   Sigma J Eng & Nat Sci 36 (4), 935-950, 2018 



940 

 













































4

1i
xir,iy ir,iir,i

xis,iy is,iis,i

xiiy ii

rrr

sss

zzz

zfzfwf

zfzfwf

ff0

uvw

uvw

uvw

                   (17) 

 

Transformation of these derivatives to global coordinates is accomplished using the inverse of 

the Jacobian matrix, as follows; 
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The five types of nonzero strains to be considered for this element are; 
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As a preliminary matter before formulating element stiffness matrix, matrix B partitioned and 

z factored from the upper part, as follows [30].; 
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where Bk has three rows and B has two rows, then the stiffness matrix for this element is 

written as; 
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Integration through the thickness yields; 
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which must be evaluated numerically [30]. 
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Thus this is a plane stress problem equation, [ kE ] is of size 3x3 and [ E ] is of size 2x2 and 

they can be written as follows [31, 32]: 
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where E, υ, and t are modulus of the elasticity, Poisson’s ratio, and the thickness of the plate, 

respectively, k is a constant to account for the actual non-uniformity of the shearing stresses. By 

assembling the element stiffness matrices obtained, the system stiffness matrix is obtained. 

 

2.2. Foundation formulation 

 

As explained before, Winkler model is the simplest model for the plates resting on elastic 

foundation. In this model, all the deflections on the plate are due to the load on it. The foundation 

is represented with a set of uncorrelated elastic springs. So in the analysis, the stiffness of these 

springs are calculated and are added to the element stiffness matrix. The stiffness matrices for the 

Winkler foundation can be derived by; 
 

    
 

1

1

1

1

T
w drdsJhhkk .                                                                         (25) 

 

where k is the elastic foundation modulus. 

After calculating all element stiffness matrices, global stiffness matrix can be assembled as; 
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1i
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where pe is the node number. 

 

2.3. Evaluation of the mass matrix 

 

The formula for the consistent mass matrix of the plate may be written as 
 

 


dHHM i
T
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In this equation,  is the mass density matrix of the form [32] 
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where m1=pt, m2=m3=  3
p t

12

1
 , and p is the mass densities of the plate. and Hi can be 

written as follows, 
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  .4...1idx/dhdy/dhhH iiii  .                                               (29) 
 

It should be noted that the rotation inertia terms are not taken into account. By assembling the 

element mass matrices obtained, the system mass matrix is obtained. 

 

2.4. Evaluation of equivalent nodal loads vector 

 

Equivalent nodal loads, [F], can be obtained by the following equation. 
 

T

i[F] H q d  .                                                                                   (30) 
 

In this equation, Hi can be obtained by Equation (29), and 
q

 denotes 
 

 g[M] u
                                                                                         (31) 

 

It should also be noted that, the Newmark-β method is used for the time integration of 

Equation (1) by using the average acceleration method.  

 

3. NUMERICAL EXAMPLES 

 

3.1. Data for numerical examples 

 

In the light of the results given in references [25, 27], the aspect ratios, b/a, of the plate are 

taken to be 1, 2.0, and 3.0. The thickness/span ratios, t/a, are taken as 0.05, 0.1, 0.2, and 0.3 for 

each aspect ratio. The shorter span length of the plate is kept constant to be 3 m. The mass 

density, Poisson’s ratio, and the modulus of elasticity of the plate are taken to be 2.5 kN s2/m2, 

0.2, and 2.7x107 kN/m2. Shear factor k is taken to be 5/6. The subgrade reaction modulus of the 

Winkler-type foundation is taken to be 5000 kN/m3. 

In order to obtain the response of each plate by using the time history analysis, the East-West 

component of March 13 1992 Erzincan earthquake in Turkey is used. East-West component of 

earthquake is applied vertically direction to the plate. Duration of this earthquake is 21 s, but, in 

this study, the first 8 s of the earthquake is used since the peak value of the record occurred in this 

range (Fig. 3).  

For the sake of accuracy in the results, rather than starting with a set of a finite element mesh 

size and time increment, the mesh size and time increment required to obtain the desired accuracy 

were determined before presenting any results. This analysis was performed separately for the 

mesh size and time increment. It was concluded that the results have acceptable error when 

equally spaced 20x20 mesh sizes are used for a 3 m x 3 m plate even if it is a thin plate, if the 

0.01s time increment is used. Length of the elements in the x and y directions are kept constant 

for different aspect ratios as in the case of square plate.  
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Figure 3. East-West component of the March 13, 1992 Erzincan earthquake in Turkey . 

 

3.2. Results 

 

One of the purposes of this paper was to determine the time histories of the displacements and 

the bending moments at different points of the thick and thin plates subjected to earthquake 

excitations, but presentation of all of the time histories would take up excessive space. Hence, 

only the absolute maximum displacements and bending moments for different thickness/span 

ratio and aspect ratio are presented after two time histories are given. This simplification of 

presenting only the maximum responses is supported by the fact that the maximum values of 

these quantities are the most important ones for design. These results are presented in graphical 

rather than in tabular form. 

The time histories of the center displacements of the thick clamped plates resting on elastic 

foundation with the subgrade reaction modulus of the Winkler-type foundation 5000 kN/m3 for 

b/a= 1.0, and 2.0 when t/a=0.2 are given in Figs. 4(a), and 4(b), respectively.  

As seen from Figs. 4(a), and 4(b), the center displacements of the thick simply supported 

plates for b/a = 1, and t/a = 0.05, and for b/a = 2, and t/a = 0.05, reached their absolute maximum 

values of 0.06162 mm at 3.48 s, and of 0.14835 mm at 3.48 s, respectively. These absolute 

maximum values are different even with the same occurring time as the dynamic characteristics 

of the thick plates affect the response. It is also understandable that the system becomes more 

flexible as the aspect ratio increases. 

The absolute maximum displacements of the thick and thin plates for different aspect ratios, 

and thickness/span ratios are given in Fig. 5 for the thick plates simply supported along all four 

edges and in Fig. 6 for the thick plates clamped along all four edges. 

As seen from Figs. 5, and 6, the absolute maximum displacements of the thick plates increase 

with increasing aspect ratio for a constant t/a ratio. The same displacements decrease with 

increasing t/a ratio for a constant b/a ratio. As also seen from these figures, the decrease in the 

absolute maximum displacement for a constant b/a ratio increases with increasing b/a ratio. The 

curves for a constant value of the aspect ratio, b/a are fairly getting closer to each other as the 

value of t/a increases. This shows that the curves of the absolute maximum displacements will 

almost coincide with each other when the value of the thickness/span ratio, t/a, increases more. In 

other words, the increase in the thickness/span ratio will not affect the absolute maximum 

displacements after a determined value of t/a.  
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Figure 4. The time history of the center displacement of the thick simply supported plate resting 

on Winkler foundation for (a) b/a=1.0 and t/a=0.05, and (b) b/a=2.0 and t/a=0.05. 

 

As also seen from Figs. 5, and 6, the absolute maximum displacements of the thick simply 

supported plates are larger than those of the thick clamped plates for the same aspect and 

thickness/span ratios. In general, the effects of the changes in the thickness/span ratios on the 

absolute maximum displacement are larger than the changes in the aspect ratios.  

The absolute maximum bending moments Mx at the center of the thick plates for different 

aspect ratios and thickness/span ratios are given in Fig. 7 for the thick simply supported plates and 

in Fig. 8 for the thick clamped plates, respectively. 
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Figure 5. Absolute maximum displacement of the thick simply supported plates resting on 

Winkler foundation for different aspect ratios and thickness/span ratios. 

 

1 2 3

b/a

0.00

0.01

0.02

0.03

0.04

0.05

A
b
so

lu
te

 m
ax

im
u

m
 d

is
p

la
ce

m
en

t
 a

t 
th

e 
ce

n
te

r 
(m

m
)

t/a=0.05

t/a=0.1

t/a=0.2

t/a=0.3

 
 

Figure 6. Absolute maximum displacement of the thick clamped plates resting on Winkler 

foundation for different aspect  ratios and thickness/span ratios. 

 

As seen from Fig. 7, the absolute maximum bending moment, Mx, at the center of the thick 

simply supported plates increases with increasing aspect ratio and thickness/span ratio. The 

increases in the absolute maximum bending moment, Mx, increase with increasing aspect and 

thickness/span ratios. This is understandable that increasing the aspect ratio makes the plate stiffer 

in the short span, the x axis, direction. As also seen from this figure, in general, the effects of the 

changes in the aspect ratios on the absolute maximum bending moment, Mx, are larger than the 

changes in the thickness/span ratios. 
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Figure 7. Absolute maximum bending moment Mx at the center of the thick simply supported 

plates resting on Winkler foundation for different aspect ratios and thickness/span ratios. 

 

 
 

Figure 8. Absolute maximum bending moment Mx at the center of the thick clamped plates 

resting on Winkler foundation for different aspect ratios and thickness/span ratios. 

 

As seen from Fig. 8, the absolute maximum bending moment, Mx, at the center of the thick 

clamped plates, as in the case of the absolute maximum bending moment, Mx, at the center of the 

thick simply supported plates, increases with increasing aspect ratio and thickness/span ratio. The 

increases in the absolute maximum bending moment, Mx, increase with increasing aspect and 

thickness/span ratios. This is also understandable that increasing the aspect ratio makes the plate 

stiffer in the short span, the x axis, direction. As also seen from this figure, in general, the effects 

of the changes in the aspect ratios on the absolute maximum bending moment, Mx, are larger than 

the changes in the thickness/span ratios. 
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Figure 9. Absolute maximum bending moment My at the center of the thick simply supported 

plates resting on Winkler foundation for different aspect ratios and thickness/span ratios. 

 

The absolute maximum bending moments My at the center of the thick plates for different 

aspect ratios and thickness/span ratios are given in Fig. 9 for the thick simply supported plates and 

in Fig. 10 for the thick and clamped plates, respectively. 

As seen from Fig. 9, the absolute maximum bending moment, My, at the center of the thick 

simply supported plates decreases with increasing aspect ratio and increases with increasing 

thickness/span ratio. The decrease in the absolute maximum bending moment, My, increase with 

increasing aspect ratio. The increase in the absolute maximum bending moment, My, increases 

with increasing thickness/span ratios. This is understandable that increasing the aspect ratio 

makes the thick plates more flexible in the long span, the y axis, direction. As also seen from this 

figure, in general, the effects of the changes in the thickness/span ratios on the absolute maximum 

bending moment, My, are larger than the changes in the aspect ratios. 

As seen from Fig. 10, the absolute maximum bending moment, My, at the center of the thick 

clamped plates, as in the case of the absolute maximum bending moment, My, at the center of the 

thick simply supported plates, decreases with increasing aspect ratio and increases with increasing 

thickness/span ratio. The decrease in the absolute maximum bending moment, My, increase with 

increasing aspect ratio. The increase in the absolute maximum bending moment, My, increases 

with increasing thickness/span ratios. This is also understandable that increasing the aspect ratio 

makes the thick plates more flexible in the long span, the y axis, direction. As also seen from this 

figure, in general, the effects of the changes in the thickness/span ratios on the absolute maximum 

bending moment, My, are larger than the changes in the aspect ratios. 

In this study, the absolute maximum bending moments Mx at the center of the edge in the y 

direction and the maximum bending moment My at the center of the edge in the x direction are 

not presented for the thick plates clamped along all four edges. It should be noted that the 

variations of these moments are similar to the absolute maximum bending moments Mx at the 

center of the thick clamped plates. 
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Figure 10. Absolute maximum bending moment My at the center of the thick clamped plates 

resting on Winkler foundation for different aspect ratios and thickness/span ratios. 

 

4. CONCLUSIONS 

 

The purpose of this paper is to study parametric earthquake analysis of thick plates resting on 

Winkler foundation, to determine the effects of the thickness/span ratio, the aspect ratio and the 

boundary conditions on the linear responses of the thick plates resting on Winkler foundation 

subjected to earthquake excitations. It is concluded that 4-noded finite element can be effectively 

used in the earthquake analysis of thick plates resting on elastic foundation. The coded program 

can be effectively used in the earthquake analyses of any thick plates resting on elastic 

foundation. It is also concluded that, in general, the changes in the thickness/span ratio are more 

effective on the maximum responses considered in this study than the changes in the aspect ratio. 

For a thick plates resting on Winkler foundation subjected to the earthquake excitations, it is 

somewhat difficult to interpret the effects of the thickness/span ratio, the aspect ratio, and the 

boundary conditions on the responses because both the frequency content of the earthquake 

excitation and the exact natural frequency of the particular thick plates resting on Winkler 

foundation can make a difference to its response. In order to generalize the results obtained in this 

study, the responses of the different thick plates resting on Winkler foundation subjected to 

different earthquake excitations should be evaluated all together. Therefore, the curves presented 

herein can help the designer to anticipate the effects of the thickness/span ratio, the aspect ratio, 

and the boundary conditions on the earthquake response of a thick plate resting on Winkler 

foundation.  

The following conclusions can also be drawn from the results obtained in this study. 

The absolute maximum displacements of the thick and thin plates increase as the aspect ratio 

increases for a constant t/a ratio. The same displacements decrease as the t/a ratio increases for a 

constant b/a ratio. 

The changes in the aspect ratios are generally less effective on the absolute maximum 

displacement than the changes in the thickness/span ratios. 

The absolute maximum bending moment, Mx, at the center of the thick simply supported 

plates resting on Winkler foundation increases as the aspect ratio and thickness/span ratio 

increase.  
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The changes in the aspect ratios are generally more effective on the absolute maximum 

bending moment, Mx, of the thick and thin simply supported plates than the changes in the 

thickness/span ratios. 

The absolute maximum bending moment, Mx, at the center of the thick clamped plates resting 

on Winkler foundation increases with increasing aspect ratio and thickness/span ratio.  

The changes in the aspect ratios are generally more effective on the absolute maximum 

bending moment, Mx, of the thick clamped plates resting on Winkler foundation than the changes 

in the thickness/span ratios. 

The absolute maximum bending moment, My, at the center of the thick simply supported 

plates resting on Winkler foundation decreases as the aspect ratio increases and increases as the 

thickness/span ratio increases.  

The changes in the thickness/span ratios are generally more effective on the absolute 

maximum bending moment, My, of the thick simply supported plates resting on Winkler 

foundation larger than the changes in the aspect ratios. 

The absolute maximum bending moment, My, at the center of the thick clamped plates resting 

on Winkler foundation decreases with increasing aspect ratio and increases with increasing 

thickness/span ratio.  

The changes in the thickness/span ratios are generally more effective on the absolute 

maximum bending moment, My, of the thick clamped plates resting on Winkler foundation than 

the changes in the aspect ratios. 

In general, degrees of decreases and increases depend on the changes in the aspect and 

thickness/span ratios, and the changes in the thickness/span ratio are more effective on the 

maximum responses considered in this study than the changes in the aspect ratio. 
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