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ABSTRACT 

 

Free vibrations of rotating disks are investigated by using the Galerkin method. An approximate function 

which satisfies the boundary conditions and normalizing constraint is chosen. The different boundary 

conditions are also investigated in order to understand the vibrational characteristics of this type of structures. 

The stress distributions on the rotating disk with different boundary conditions are used in the analysis. The 

effects of rotation speed on the natural frequencies are studied. The results are presented in tables and figures 

and also compared with the results given in the literature. 

Keywords: Rotating annular disk, Free vibrations, Galerkin method. 

 

 

1. INTRODUCTION 

 

Studies on stationary and rotating disks date back to the beginning of the twentieth century. 

The advances in technology have led to a vast field of research on vibrations occurring in disks 

rotating at higher speeds. Turbines, high-speed fans, gears, train wheels, saw blades are some 

examples to be given as the application of spinning disks. For example, the problem of noise from 

the brake disk, one of the current topics in the automotive industry, is closely related to the 

vibrations of rotating disks. In recent years, it has been observed that studies related to rotating 

disks are directed towards the information storage industry. Contact between the read/write head 

and the disk can be affected by vibrations due to the disk rotation, especially since the hard disks 

rotate at very high speeds and this interaction can cause a severe failure on the hard disk surface. 

The first studies of the vibrations of rotating disks were performed by Lamb and Southwell [1]. 

Southwell [2] utilized the linear theory and neglected the bending stiffness. The first study on 

nonlinear vibrations of rotating disks is presented by Nowinski [3]. Mote [4] used the Rayleigh-

Ritz method for disks with varying thickness, clamped at inner and free at outer circumferences. 
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Ramaiah [5] and Bashmal [6] used the same method for various boundary conditions. In [6], 

Bashmal et al. benefited from this method to investigate vibrations of stationary disks. In addition, 

Koo [7] also used the Rayleigh-Ritz method to obtain the natural frequencies of composite disks. 

In addition to the Rayleigh-Ritz method, which is a variational approach, the natural frequencies 

of rotating disks were investigated by using the Galerkin method. Pei and Tan [8] used the 

Galerkin method to study the modal interactions in rotating disks. In recent years, Mignolet et al. 

[9] used perturbation techniques to investigate the free vibrations of disks with and without hole 

at the center. Nayfeh et al. [10] investigated both linear and nonlinear vibrations using a multi 

scale approach. 

In this study, the Galerkin method is used to determine the free vibration characteristics of 

rotating disks. In this method, an approximate function which satisfies the boundary conditions of 

the disk is selected and substituted in the differential equation of motion. Free vibrations of 

rotating disks with various boundary conditions are also investigated. The results are compared 

with those given in literature. 

 

2. ANALYSIS 

 

The differential equation of a rotating disk with rotation speed , that is written in the 

coordinates (r,) attached to the disk, has the following form; 
 

𝐷 (
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜑2
)

2

𝑤 + 𝜌ℎ
𝜕2𝑤

𝜕𝑡2
−

ℎ

𝑟
[

𝜕

𝜕𝑟
(𝜎𝑟𝑟

𝜕𝑤

𝜕𝑟
) +

1

𝑟
𝜎𝜑

𝜕2𝑤

𝜕𝜑2
] = 0                                        (1) 

 

Here, 𝑤 is the transverse displacement of the disk, ℎ is the disk thickness, 𝐷 = 𝐸ℎ3/[12(1 −
𝜐2)] is the bending stiffness of the disk, (r,) the coordinates fixed to disk, 𝑡 is the time, 𝜌 is the 

density of the disk material, 𝜎𝑟 and 𝜎𝜑 are the radial and tangential stresses due to the rotation of 

the disk and these stresses depend on the boundary conditions of the disk. 

The transverse displacement function has the form as follows; 
 

𝑤 = ∑ ∑ 𝑎𝑚𝑛𝑅𝑚𝑛(𝑟) sin[𝑛𝜑 + (𝑛Ω − 𝜔)𝑡]𝑀
𝑚=0

𝑁
𝑛=0                                                                      (2) 

 

Galerkin method is used for the solution. The approximate function 𝑅𝑚𝑛(𝑟) which satisfies 

the boundary conditions is chosen as follows; 
 

𝑅𝑚𝑛(𝑟) = 𝑋𝑚𝑛
1 𝑟𝑚 + 𝑋𝑚𝑛

2 𝑟𝑚+1 + 𝑋𝑚𝑛
3 𝑟𝑚+2 + 𝑋𝑚𝑛

4 𝑟𝑚+3 + 𝑋𝑚𝑛
5 𝑟𝑚+4                                       (3) 

 

 

 

 

𝑋𝑚𝑛
1 , 𝑋𝑚𝑛

2 , 𝑋𝑚𝑛
3 , 𝑋𝑚𝑛

4  and 𝑋𝑚𝑛
5  are unknown constants and determined using the boundary 

conditions and the normalizing constraint of the disk. 

If 𝑅𝑚𝑛(𝑟) is substituted in Equation (2) and then Equation (1), the following is obtained. 
 

∑ ∑ {𝐷 (
𝜕4

𝜕𝑟4
+

2

𝑟

𝜕3

𝜕𝑟3
−

2𝑛2+1

𝑟2

𝜕2

𝜕𝑟2
+

2𝑛2+1

𝑟3

𝜕

𝜕𝑟
+

𝑛4−4𝑛2

𝑟4
) 𝑅𝑚𝑛(𝑟) − 𝜌ℎ(𝑛Ω − 𝜔)2𝑅𝑚𝑛(𝑟) −𝑁

𝑚=0
𝑀
𝑛=0

ℎ

𝑟
[

𝑑

𝑑𝑟
(𝜎𝑟𝑟

𝑑𝑅𝑚𝑛(𝑟)

𝑑𝑟
) −

𝑛2

𝑟
𝜎𝜑𝑅𝑚𝑛(𝑟)]} . 𝑎𝑚𝑛. sin[𝑛𝜑 + (𝑛Ω − 𝜔)𝑡] = 0                                       (4) 

 

 

 

 

Here, for each value of 𝑛, the term, sin[𝑛𝜑 + (𝑛Ω− 𝜔)𝑡] does not have to be equal to zero. 

In order to satisfy this equation, the term in the braces has to be equal to zero: 
 

{𝐷 (
𝜕4

𝜕𝑟4
+

2

𝑟

𝜕3

𝜕𝑟3
−

2𝑛2+1

𝑟2

𝜕2

𝜕𝑟2
+

2𝑛2+1

𝑟3

𝜕

𝜕𝑟
+

𝑛4−4𝑛2

𝑟4
) 𝑅𝑚𝑛(𝑟) − 𝜌ℎ(𝑛Ω − 𝜔)2𝑅𝑚𝑛(𝑟) −

ℎ

𝑟
[

𝑑

𝑑𝑟
(𝜎𝑟𝑟

𝑑𝑅𝑚𝑛(𝑟)

𝑑𝑟
) −

𝑛2

𝑟
𝜎𝜑𝑅𝑚𝑛(𝑟)]} . 𝑎𝑚𝑛 = 0                                                                            (5) 

 

This is the residual and the weighted residual has to be equal to zero. 
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∫ ∫ ∑ ∑ {𝐷 (
𝜕4𝑅𝑚𝑛(𝑟)

𝜕𝑟4
+

2

𝑟

𝜕3𝑅𝑚𝑛(𝑟)

𝜕𝑟3
−

2𝑛2+1

𝑟2

𝜕2𝑅𝑚𝑛(𝑟)

𝜕𝑟2
+

2𝑛2+1

𝑟3

𝜕𝑅𝑚𝑛(𝑟)

𝜕𝑟
+𝑀

𝑚=0
𝑁
𝑛=0

𝑅𝑜

𝑅𝑖

2𝜋

0

𝑛4−4𝑛2

𝑟4
𝑅𝑚𝑛(𝑟)) − 𝜌ℎ(𝑛Ω − 𝜔)2𝑅𝑚𝑛(𝑟) −

ℎ

𝑟
[𝜎𝑟𝑟

𝜕2𝑅𝑚𝑛(𝑟)

𝜕𝑟2
+ (

𝜕𝜎𝑟

𝜕𝑟
𝑟 + 𝜎𝑟)

𝜕𝑅𝑚𝑛(𝑟)

𝜕𝑟
−

𝑛2

𝑟
𝜎𝜑𝑅𝑚𝑛(𝑟)]} 𝑎𝑚𝑛 𝑎𝑠𝑛𝑅𝑠𝑛(𝑟) sin[𝑛𝜑 + (𝑛Ω − 𝜔)𝑡] 𝑟𝑑𝑟𝑑𝜑 = 0                                               (6) 

 

where 𝑠 = 0,1,2, … , 𝑀. 

Here, only the sine function is dependent of 𝜑. Therefore, the integral of this expression does 

not have to be equal to zero. Rearranging this expression will give the following; 
 

∑ ∑ {
1

𝜌ℎ
∫ 𝐷 (

𝜕4𝑅𝑚𝑛(𝑟)

𝜕𝑟4
+

2

𝑟

𝜕3𝑅𝑚𝑛(𝑟)

𝜕𝑟3
−

2𝑛2+1

𝑟2

𝜕2𝑅𝑚𝑛(𝑟)

𝜕𝑟2
+

2𝑛2+1

𝑟3

𝜕𝑅𝑚𝑛(𝑟)

𝜕𝑟
+

𝑅𝑜

𝑅𝑖

𝑀
𝑚=0

𝑁
𝑛=0

𝑛4−4𝑛2

𝑟4
𝑅𝑚𝑛(𝑟)) 𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟 −

1

𝜌ℎ
∫ ℎ [𝜎𝑟𝑟

𝜕2𝑅𝑚𝑛(𝑟)

𝜕𝑟2
+ (

𝜕𝜎𝑟

𝜕𝑟
𝑟 + 𝜎𝑟)

𝜕𝑅𝑚𝑛(𝑟)

𝜕𝑟
−

𝑛2

𝑟
𝜎𝜑𝑅𝑚𝑛(𝑟)] 𝑅𝑠𝑛(𝑟)𝑑𝑟

𝑅𝑜

𝑅𝑖
−

(𝑛Ω − 𝜔)2 ∫ 𝑅𝑚𝑛(𝑟)𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟
𝑅𝑜

𝑅𝑖
} 𝑎𝑚𝑛𝑎𝑠𝑛 = 0                                                                          (7) 

 

The following definitions can be used: 
 

𝜙𝑠𝑚𝑛 =

1

𝜌ℎ
∫ 𝐷 (

𝑑4𝑅𝑚𝑛(𝑟)

𝑑𝑟4
+

2

𝑟

𝑑3𝑅𝑚𝑛(𝑟)

𝑑𝑟3
−

2𝑛2+1

𝑟2

𝑑2𝑅𝑚𝑛(𝑟)

𝑑𝑟2
+

2𝑛2+1

𝑟3

𝑑𝑅𝑚𝑛(𝑟)

𝑑𝑟
+

𝑛4−4𝑛2

𝑟4
𝑅𝑚𝑛(𝑟)) 𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟

𝑅𝑜

𝑅𝑖
−

1

𝜌ℎ
∫ ℎ [𝜎𝑟𝑟

𝑑2𝑅𝑚𝑛(𝑟)

𝑑𝑟2
+ (

𝜕𝜎𝑟

𝜕𝑟
𝑟 + 𝜎𝑟)

𝑑𝑅𝑚𝑛(𝑟)

𝑑𝑟
−

𝑛2

𝑟
𝜎𝜑𝑅𝑚𝑛(𝑟)] 𝑅𝑠𝑛(𝑟)𝑑𝑟

𝑅𝑜

𝑅𝑖
                                     (8) 

 

Γ𝑠𝑚𝑛 = ∫ 𝑅𝑚𝑛(𝑟)𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟
𝑅𝑜

𝑅𝑖
                                                                                                       (9) 

 

𝜆𝑚𝑛 = (𝑛Ω − 𝜔)                                                                                                                          (10) 
 

A𝑠𝑚𝑛 = 𝑎𝑚𝑛𝑎𝑠𝑛                                                                                                                            (11) 
 

If the terms, 𝜆𝑚𝑛, 𝜙𝑠𝑚𝑛 and Γ𝑠𝑚𝑛are used, Equation (7) can be rewritten as follows; 
 

∑ ∑ [𝜙𝑠𝑚𝑛 − 𝜆𝑚𝑛
2 Γ𝑠𝑚𝑛]A𝑠𝑚𝑛

𝑀
𝑚=0

𝑁
𝑛=0 = 0                                                                                    (12) 

 

For each value of n, this sum gives a linear system of equations in terms of the unknown 

coefficients Asmn. In order to solve the linear systems of equations, for each value of n, the 

determinant of coefficient matrix in Equation (12) must be zero and this gives a polynomial in 

terms of 𝜆𝑚𝑛
2  . The roots 𝜆𝑚𝑛

2  are obtained then natural frequencies of rotating disks can be 

calculated as follows; 
 

𝜔𝑚𝑛1,2 = 𝑛Ω ± 𝜆𝑚𝑛                                                                                                                     (13) 
 

As can be seen from this equation, there is only one frequency value for a non-rotating disk 

for each (m, n) value. In the case of rotating disk, in all modes, the frequency is divided into two 

different values except for n=0 modes, as frequencies of forward and backward traveling waves. 

In order to obtain the frequency, 𝑅𝑚𝑛(𝑟) function has to be determined. Therefore, the 

boundary conditions of the disk will be utilized, and the constants 𝑋𝑚𝑛
1 , 𝑋𝑚𝑛

2 , 𝑋𝑚𝑛
3 , 𝑋𝑚𝑛

4 and 𝑋𝑚𝑛
5  

can be determined easily. In this study, clamped-clamped, clamped-free, free-free and free-

clamped boundary conditions are considered. Figure 1 shows all investigated boundary 

conditions. 
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Figure 1.  Investigated boundary conditions. 

 

The stress distributions of clamped-clamped boundary conditions are given as follows: 
 

𝜎𝑟 =
𝜌Ω2

8
[(1 + 𝜈)(𝑅𝑖

2 + 𝑅𝑜
2) −

(1−𝜈)𝑅𝑖
2𝑅𝑜

2

𝑟2
− (1 + 3𝜈)𝑟2]                                                      (14) 

 

𝜎𝜑 =
𝜌Ω2

8
[𝑅𝑜

2 (1 −
𝑅𝑖

2

𝑟2
) + 𝜈𝑅𝑖

2 (1 +
𝑅𝑜

2

𝑟2
) − (1 + 3𝜈)𝑟2]                                                         (15) 

 

Stress distributions in rotating disk with clamped-free boundary conditions are given in the 

following equation; 
 

𝜎𝑟 =
(3+𝜈)

8
𝜌Ω2(𝑅𝑜

2 − 𝑟2) +
𝜌Ω2𝑅𝑖

2(1−𝜐)[𝑅𝑜
2(3+𝜐)−𝑅𝑖

2(1+𝜐)]

8[𝑅𝑖
2(1−𝜐)+𝑅𝑜

2(1+𝜐)]
(

𝑅𝑜
2

𝑟2
− 1)                                       (16) 

 

𝜎𝜑 =
𝜌Ω2

8
[𝑅𝑜

2(3 + 𝜐) − 𝑟2(1 + 3𝜐)] −
𝜌Ω2𝑅𝑖

2(1−𝜐)[𝑅𝑜
2(3+𝜐)−𝑅𝑖

2(1+𝜐)]

8[𝑅𝑖
2(1−𝜐)+𝑅𝑜

2(1+𝜐)]
(

𝑅𝑜
2

𝑟2
+ 1)                      (17) 

 

The stress distributions on the rotating disk with free-free boundary conditions are given in 

the equations below: 
 

𝜎𝑟 =
3+𝜈

8𝑟2
𝜌Ω2[(𝑅𝑖

2 − 𝑟2)(𝑟2 − 𝑅𝑜
2)]                                                                                         (18) 

 

𝜎𝜑 =
3+𝜈

8𝑟2
𝜌Ω2[𝑟2(𝑅𝑖

2 + 𝑅𝑜
2) + 𝑅𝑖

2𝑅𝑜
2] −

1+3𝜈

8
𝜌Ω2𝑟2                                                             (19) 

 

The stress distributions in a rotating disk with free at inner and clamped at outer 

circumferences are given in the following equation. 
 

𝜎𝑟 =
3+𝜈

8
𝜌Ω2(𝑅𝑖

2 − 𝑟2) −
𝜌Ω2(1−𝜈)[(3+𝜈)𝑅𝑖

2−(1+𝜈)𝑅𝑜
2]𝑅𝑜

2

8[(1+𝜈)𝑅𝑖
2+(1−𝜈)𝑅𝑜

2]
[1 −

𝑅𝑖
2

𝑟2
]                                           (20) 

 

𝜎𝜑 =
𝜌Ω2[(3+𝜈)𝑅𝑖

2−(1+3𝜈)𝑟2]

8
−

𝜌Ω2(1−𝜈)[(3+𝜈)𝑅𝑖
2−(1+𝜈)𝑅𝑜

2]𝑅𝑜
2

8[(1+𝜈)𝑅𝑖
2+(1−𝜈)𝑅𝑜

2]
[1 +

𝑅𝑖
2

𝑟2
]                                       (21) 

 

For both clamped inner and outer circumferences, respectively; 
 

𝑤(𝑅𝑖) = 0;   𝑤(𝑅𝑜) = 0;  
𝜕𝑤

𝜕𝑟
|

𝑟=𝑅𝑖

= 0;  
𝜕𝑤

𝜕𝑟
|

𝑟=𝑅𝑜

= 0                                                                (22) 

 

For both free inner and outer circumferences, respectively; 
 

𝑚𝑟|𝑟=𝑅𝑖
= 0; 𝑚𝑟|𝑟=𝑅𝑜

= 0; 𝑉𝑟|𝑟=𝑅𝑖
= 0;  𝑉𝑟|𝑟=𝑅𝑜

= 0                                                              (23) 
 

and the normalizing constraint is given for each boundary conditions, clamped-clamped, 

clamped-free, free-free and free-clamped boundary conditions, respectively, below; 
 

𝑅𝑚𝑛 (
𝑅𝑖+𝑅𝑜

𝑚+2
) = 1;     𝑅𝑚𝑛(𝑅𝑜) = 1;     𝑅𝑚𝑛(𝑅𝑖) = 1;     𝑅𝑚𝑛(𝑅𝑖) = 1                                       (24) 

 

 

 

 

The boundary conditions and normalizing constraint give a linear system of equations in 

terms of 𝑋𝑚𝑛
1 , 𝑋𝑚𝑛

2 , 𝑋𝑚𝑛
3 , 𝑋𝑚𝑛

4  and 𝑋𝑚𝑛
5 . The number of linear system of equations for each m and 

n, is 5 and the unknown coefficients are obtained from the equations of 5(M+1) (N+1). Then, the 

natural frequencies are obtained from Equation (12). 
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3. RESULTS AND DISCUSSION 

 

In order to validate the solution method, the natural frequencies of a commercially available 

hard disk are to be calculated. The inner and outer diameters of the hard disk are 32.5 mm and 95 

mm respectively and the thickness of the disk is 1.3 mm. Natural frequencies calculated for the 

hard disk with clamped at inner and free at outer circumferences are given in Table I for m=0. 

Here the abbreviations FTW and BTW stand for forward travelling wave and backward travelling 

wave, respectively. It should be noted that there is only one natural frequency for n=0, while two 

frequencies are obtained for other n values. Since there is no nodal diameter in the n=0 mode, 

there will be no forward or backward traveling wave. For this reason, except for this mode, two 

frequency values of each mode are obtained at each rotation speed value. 

The results are compared with the experimental and finite element analysis (FEA) results 

presented in [11]. It can be seen from Table I that the analytical and numerical results are in 

excellent agreement, for all rotation speeds, with the experimental results. Experimental results of 

the mode m=0, n=0 for each rotation speed are higher than those of this study and numerical 

approach in [11], while the frequency of mode m=0, n=1 is lower than those of this study and 

numerical approach in [11]. This may be due to the driving system rigidity. The rigidity of the 

driving system affects the first and second frequencies of the hard disk. This may cause the 

frequencies of the mode m=0, n=0 to rise while those of the mode m=0, n=1 to fall. As it can be 

seen from Table I, all other frequencies are in excellent agreement with those of this study and 

numerical approach in [11]. 

 

Table I. Natural frequencies for clamped-free boundary condition and m=0. 
 

Rotation 

speed 

[rpm] 

 
Wave 

type 

m=0 

n=0 

[Hz] 

n=1 

[Hz] 

n=2 

[Hz] 

n=3 

[Hz] 

n=4 

[Hz] 

0 

This Study 

- 

1052.17 1044.77 1218.80 1890.44 3056.19 

[11] Num. 1050.37 1041.47 1211.47 1878.12 3035.22 

[11] Exp. 1136.00 955.00 1232.00 1830.00 3009.00 

4000 

This Study 

FTW 

1055.11 1114.92 1356.45 2094.63 3326.61 

[11] Num. 1053.32 1111.62 1349.14 2082.33 3305.67 

[11] Exp. 1148.00 1009.00 1350.00 2032.00 3276.00 

This Study 

BTW 

1055.11 981.58 1089.78 1694.63 2793.27 

[11] Num. 1053.32 978.28 1082.48 1682.33 2772.33 

[11] Exp. 1148.00 880.00 1101.00 1641.00 2741.00 

8000 

This Study 

FTW 

1063.89 1191.96 1502.65 2307.15 3604.51 

[11] Num. 1062.10 1188.67 1495.40 2294.92 3583.62 

[11] Exp. 1160.00 1077.00 1484.00 2245.00 3553.00 

This Study 

BTW 

1063.89 925.29 969.31 1507.15 2537.84 

[11] Num. 1062.10 922.01 962.06 1494.92 2516.96 

[11] Exp. 1160.00 820.00 971.00 1454.00 2500.00 

 

Also, in the work by Bashmal et al. [12], the measured natural frequencies are 7.68 kHz and 

7.73 kHz for an aluminum disk with an inner diameter of 0.02 m and an outer diameter of 0.15 m 

at a rotation speed of 1920 rpm. In order to assess the validity of the method, natural frequencies 

are calculated for the same geometry and material properties in this study as 8290.9 Hz (error: -

%7.94) and 8354.9 Hz (error: -%8.07). The results are in acceptable limits. 

Table II presents the results of this study for the modes m=1, n=0, 1, 2, 3, 4. It is obvious that 

the frequencies calculated are considerably higher than the frequencies presented in Table I.  
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Table II. Natural frequencies for clamped-free boundary condition and m=1. 
 

Rotation 

speed 

[rpm] 

Wave 

type 

m=1 

n=0 

[Hz] 

n=1 

[Hz] 

n=2 

[Hz] 

n=3 

[Hz] 

n=4 

[Hz] 

0 - 6755.93 7020.41 7839.05 9264.35 11330.75 

4000 
FTW 6759.11 7090.28 7975.64 9467.66 11600.73 

BTW 6759.11 6956.94 7708.97 9067.66 11067.40 

8000 
FTW 6768.63 7166.54 8118.74 9677.57 11877.35 

BTW 6768.63 6899.88 7585.41 8877.57 10810.68 
 

Figures 2 and 3 present the natural frequencies of this study and [11] versus the rotation speed 

of the disk, which is also known as Campbell diagram. It can be seen from Figure 2 that the 

results of this study and numerical approach given in [11] are in excellent agreement, while the 

experimental results are about 10% different than those of this study and numerical approach 

given in [11]. The rigidity of the driving system may cause this difference. 
 

 
 

Figure 2. The Campbell diagram of the clamped-free rotating disk for m=0 and n=0, 1, 2. 
 

As it can be seen from Figure 3, the frequencies of this study and numerical approach given in 

[11] for all other modes are in excellent agreement with the experimental results in [11]. 
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Figure 3. The Campbell diagram of the clamped-free rotating disk for m=0 and n=3, 4. 

 

The same geometry and material properties given in [11] are used to calculate the natural 

frequencies of the rotating disks with different boundary conditions. The natural frequencies of 

the rotating disk with clamped-clamped boundary condition are given in Table III and IV. As it 

can be seen from Table III and IV, the results are considerably higher than those obtained for the 

clamped-free disk, as it is expected. The main reason for this difference between the natural 

frequencies is the boundary conditions. Clamped-clamped boundary conditions cause a stiffer 

behavior.  

 

Table III. Analytically calculated natural frequencies of the clamped-clamped boundary 

conditions for m=0. 
 

Rotation 

speed 

[rpm] 

Wave 

type 

m=0 

n=0 

[Hz] 

n=1 

[Hz] 

n=2 

[Hz] 

n=3 

[Hz] 

n=4 

[Hz] 

0 - 7150.87 7320.71 7893.05 9005.47 10760.38 

4000 
FTW 7151.07 7387.60 8026.68 9205.83 11027.44 

BTW 7151.07 7254.26 7760.01 8805.83 10494.11 

8000 
FTW 7151.67 7454.94 8160.89 9406.90 11295.29 

BTW 7151.67 7188.28 7627.55 8606.90 10228.63 

 

The natural frequencies of free-clamped rotating disk are also given in Table V and VI. Table 

V displays the natural frequencies for m=0 and n=0, 1, 2, 3, 4 and Table VI shows the natural 
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frequencies for the modes m=1 and n=0, 1, 2, 3, 4. The results are higher than those of the disk 

with clamped-free boundary conditions. This could be explained with the length of fixed 

circumference. Clamped-free boundary conditions have shorter clamped circumference than that 

of free-clamped disk. Therefore, the stiffer behavior is to be expected. It is interesting to note that 

the frequencies for n=0 decreases with the increasing rotation speed (Table V and VI). Since the 

stress distribution caused by the rotation throughout the disk is compression, the frequencies 

decrease slightly when the rotation speed increases. 

 

Table IV. Analytically calculated natural frequencies of the clamped-clamped boundary 

conditions for m=1. 
 

Rotation 

speed 

[rpm] 

Wave 

type 

m=1 

n=0 

[Hz] 

n=1 

[Hz] 

n=2 

[Hz] 

n=3 

[Hz] 

n=4 

[Hz] 

0 - 19761.65 20019.29 20814.76 22206.89 24268.68 

4000 
FTW 19761.85 20086.16 20948.32 22407.15 24535.65 

BTW 19761.85 19952.83 20681.66 22007.15 24002.32 

8000 
FTW 19762.45 20153.46 21082.35 22607.95 24803.23 

BTW 19762.45 19886.79 20549.02 21807.95 23736.56 

 

Table V. Analytically calculated natural frequencies of free-clamped boundary conditions for 

m=0. 
 

Rotation 

speed 

[rpm] 

Wave 

type 

m=0 

n=0 

[Hz] 

n=1 

[Hz] 

n=2 

[Hz] 

n=3 

[Hz] 

n=4 

[Hz] 

0 - 1679.91 2667.67 4448.18 6706.77 9424.54 

4000 
FTW 1679.03 2734.18 4581.89 6907.28 9691.21 

BTW 1679.03 2600.84 4315.22 6507.28 9158.28 

8000 
FTW 1676.39 2800.38 4716.36 7108.79 9959.50 

BTW 1676.39 2533.71 4183.02 6308.79 8892.83 

 

Table VI. Analytically calculated natural frequencies of free-clamped boundary conditions for 

m=1. 
 

Rotation 

speed 

[rpm] 

Wave 

type 

m=1 

n=0 

[Hz] 

n=1 

[Hz] 

n=2 

[Hz] 

n=3 

[Hz] 

n=4 

[Hz] 

0 - 7932.72 8817.06 11125.77 14324.42 18259.52 

4000 
FTW 7931.95 8883.14 11258.91 14524.62 18526.64 

BTW 7931.95 8749.80 10992.24 14124.62 17993.30 

8000 
FTW 7929.63 8948.04 11391.68 14725.20 18794.64 

BTW 7929.63 8681.37 10858.35 13925.20 17727.98 

 

Table VII and VIII present the natural frequencies of the rotating disk with free-free boundary 

conditions for m=0, n=0, 1, 2, 3, 4 and m=1, n=0, 1, 2, 3, 4 respectively. As it can be seen from 

Table VII, the modes m=0, n=0 and m=0, n=1 are the rigid body modes for a non-rotating disk 

with free-free boundary conditions. For the mode m=0, n=0, the frequencies for all rotation speeds 

are equal to zero, while the frequencies are small for the mode m=0 and n=1. For this mode shape, 

the frequency is zero for the stationary case, while the frequencies are small for all rotation speed. 
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Table VII. Analytically calculated natural frequencies obtained analytically for free-free 

boundary conditions. 
 

Rotation 

speed 

[rpm] 

Wave 

type 

m=0 

n=0 

[Hz] 

n=1 

[Hz] 

n=2 

[Hz] 

n=3 

[Hz] 

n=4 

[Hz] 

0 - 0 0 654.43 1663.49 2975.62 

4000 
FTW 0 133.33 797.72 1870.78 3248.63 

BTW 0 0 531.05 1470.78 2715.29 

8000 
FTW 0 266.66 960.06 2092.43 3534.22 

BTW 0 0 426.72 1292.43 2467.55 

 

Table VIII. Analytically calculated natural frequencies obtained analytically for free-free 

boundary conditions. 
 

Rotation 

speed 

[rpm] 

Wave 

type 

m=1 

n=0 

[Hz] 

n=1 

[Hz] 

n=2 

[Hz] 

n=3 

[Hz] 

n=4 

[Hz] 

0 - 1164.09 2447.73 4484.42 6958.46 9915.65 

4000 
FTW 1170.71 2519.54 4623.50 7164.59 10188.35 

BTW 1170.71 2386.21 4356.84 6764.59 9655.02 

8000 
FTW 1190.36 2601.58 4774.04 7382.94 10473.10 

BTW 1190.36 2334.91 4240.71 6582.94 9406.44 

 

At this stage of the study, the natural frequencies of the disks with different boundary 

conditions are calculated for the rotation speed up to 30000 rpm and the diagrams of the 

frequencies are plotted versus the rotation speed. 

 

 
 

Figure 5. Campbell diagram of clamped-free disk for m=0 and n=0, 1, 2, 3 

 

Figures 5 and 6 presents the change of the natural frequencies of a clamped-free disk against 

the rotation speed. As it is presented in Figure 2, the natural frequencies for the mode m=0, n=0 

increase slightly with the increasing the rotation speed. As it is expected, all the modes except for 

n=0 have two different natural frequencies, forward and backward travelling waves. The natural 

frequency of the stationary disk for the mode m=0, n=0 is slightly higher than that of the mode 
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m=0, n=1. For larger n values, the differences between the natural frequencies of the stationary 

disk become larger. It is obvious that the frequencies for higher modes become more important 

for the resonance, if the disk rotates at very high speed. Natural frequencies of the BTW for n≠0 

decrease until zero with the decreasing rotation speed. This rotation speed is called a “critical 

speed”. Any outer effect can easily initiate the resonance in the disk and lead to disk fatigue 

failure. Then, the frequency increases with the increasing rotation speed. In Figure 6, the 

Campbell diagram is given for a clamped-free disk for the modes m=1 and n=0, 1, 2, 3. The 

natural frequencies are considerably higher than those for the modes m=0. The frequency of the 

stationary disk for the mode m=1 and n=0 is lower than that for m=1 and n=1, on the contrary to 

the modes m=0, n=0 and m=0, n=1 in Figure 5. For the stationary case, difference between the 

natural frequencies are higher than those for the modes m=0. 

 

 
 

Figure 6. Campbell diagram of clamped-free disk for m=1 and n=0, 1, 2, 3 

 

 
 

Figure 7. Campbell diagram of a clamped-clamped disk for m=0 and n=0, 1, 2, 3. 

 

Figure 7 gives the natural frequencies of a disk with clamped-clamped boundary conditions 

for n=0, 1, 2, 3 and m=0. Since this type of boundary condition has much higher stiffness than the 
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clamped-free one, the frequencies are considerably higher than those obtained for the clamped-

free boundary condition (See Figure 5). The critical speeds for this boundary condition are 

considerably higher than those for clamped-free boundary condition. On the contrary to the 

clamped-free boundary conditions, the frequency of the mode m=0, n=0 is lower than that of the 

mode m=0, n=1. The differences between the natural frequencies without rotation are higher than 

those of the clamped-free boundary conditions. 

 

 
 

Figure 8. Campbell diagram of free-free disk for m=0 and n=0, 1, 2, 3 

 

 
 

Figure 9. Campbell diagram of free-clamped disk for m=0 and n=0, 1, 2, 3 

 

Free-free boundary condition is another important case than the clamped-free boundary 

conditions, since this kind of disks are widely used as splined circular saw blades in the wood 

cutting machines. The splined circular saw blades are also guided against excessive vibrations. In 

Figure 8, the natural frequencies of a disk with free-free boundary condition for m=0 and n=0, 1, 

2, 3 are plotted versus the rotation speed. The frequencies are considerably lower than those of the 

disk with clamped-free boundary conditions, since this boundary conditions cause much less 

rigidity than that of the clamped-free boundary conditions. Also the differences between the 
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natural frequencies for stationary case are noticeably larger. All of modes of m=0, n=0 and the 

stationary case of m=0, n=1 are the rigid body modes. The rotation speed affects the mode m=0, 

n=1, so the frequencies for the forward and backward travelling waves are observed. It can be 

seen from the figure that the critical speed for the mode m=0, n=2 is just around the 30000 rpm. 

The frequency change of a free-clamped disk with the rotation speed is given in Figure 9. For 

stationary case, the frequencies of free-clamped disk are considerably higher than those of 

clamped-free disk. The frequency of the mode m=0, n=0 decreases slightly with the increasing 

rotation speed. This is due to the stress distribution caused by the rotation throughout the disk. 

The stress distribution is compression, contrary to the case for the clamped-free boundary 

condition. The compression increases when the rotation speed increases. So, the frequency 

decreases slightly with the increasing rotation speed. The critical rotation speed is much higher 

than that of clamped-free disk. 

 

4. CONCLUSIONS 

 

In this paper, free transverse vibrations of rotating annular disks with different boundary 

conditions are investigated analytically. To obtain dynamical response of structure, the Galerkin 

method is used by proposing a 5th order polynomial as an approximation function. 

As boundary conditions, clamped-clamped, free-clamped and free-free cases are also 

investigated, besides clamped-free boundary condition. The natural frequencies of the rotating 

disk are calculated from 0 to 3000 rpm and these values are given in tables and plotted versus the 

rotational speed as Campbell diagrams. 

The obtained results of clamped-free boundary conditions are validated with experimental and 

numerical ones for m=0 given in [11]. Also, in order to show their consistency, the analytical, 

numerical and experimental results are presented together in Campbell diagrams. The natural 

frequencies of clamped-clamped disk are higher than those for other boundary conditions, due to 

being much stiffer than the other boundary conditions. Similarly, because of having no constraint, 

the natural frequencies for free-free case are the lowest ones and under these boundary conditions, 

rotating disk has rigid body modes which are m=0, n=0 for all rotational speeds and mode m=0, 

n=1 for stationary case. For free-clamped case, natural frequencies of mode m=0, n=0, which is 

known as umbrella mode and does not have any nodal diameter, decrease due to rotation induced 

compressive stress. When compressive stress increases, the natural frequencies decreases, as it is 

expected. 
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