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ABSTRACT 

 

In the paper, we consider a linear programming problem with con-straint matrices whose rows are 0, 1 

characteristics vectors of fundamental cuts in a given undirected graph G = (V, E). We prove that the simplex 

algorithm finds an optimal solution in at most m-n+1 (m = |E|, n = |V|) iterations. We also consider the 

question whether a given binary matrix is a 0, 1 characteristic vector of fundamental cuts in the graph G. 
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1. INTRODUCTION 

 

Let G = (V, E) be a connected, simple and undirected graph with node set V and edge set E. 

Throughout the paper, we denote the number of nodes in G by n, that is, n = |V| and denote the 

number of edges in G by m, that is, m = |E|. Let T be a spanning tree of G. We denote the edges of 

T by t1, …, tn-1. Removing any edge tk splits T into two subtrees whose node sets are denoted by 

𝑉𝑘 and  𝑉𝑘
̅̅ ̅ = 𝑉\𝑉𝑘. The cut separating  𝑉𝑘 and  𝑉𝑘

̅̅ ̅ in the graph G is called the fundamental cut 

(FC) corresponding to tk. We use 𝛿(𝑆) to denote the cut separating a subset ∅ ≠ 𝑆 ⊂ 𝑉 and 

𝑆̅ = 𝑉\𝑆 and use 𝑥(𝛿(𝑆)) = ∑{𝑥𝑒; 𝑒 ∈ 𝛿(𝑆)}. The set ℱ(𝑇) = {𝑉1, … , 𝑉𝑛−1} is called 

fundamental cut sets of the spanning tree T. Let A be an (n - 1)  m binary matrix whose columns 

are indexed by the edges of G and rows are 0-1 characteristic vectors of the fundamental cuts of G 

corresponding to edges of T. This matrix is called FC matrix. In this paper, we show that the 

simplex algorithm finds an optimal solution to a linear programming problem with an FC 

constraint matrix and a non-negative right-hand side vector in at most m - n + 1 iterations. We 

also give some characteristics of an FC matrix. 

Despite the many recent approaches, the simplex method still remains to be one of the most 

efficient algorithm in practice. Computational tests show that the expected number of pivot steps 

(simplex algorithm iterations) for solving the majority of practical problems is a linear function of 

the number of variables [2], [10], [13]. However, there are examples (see [7]) for which the 

number of the simplex pivot steps is exponential. Determining whether the number of the simplex 
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method pivot steps can be bounded by a polynomial of the input size is a very difficult problem in 

general. 

The FC matrices defined above are viewed as representations of matroids in combinatorial 

theory. A representation of a matroid M is a matrix A with entries over some field such that there 

is a one-to-one correspondence between the columns of A and the ground set of M, and a set of 

columns in A are linearly independent (as vectors) iff the corresponding set is independent in M. 

If M can be represented by a matrix A with entries over the two-element field, GF(2), then it is 

called a binary matroid. When the matrix A is totally unimodular, M is called a regular matroid. It 

is well known that the graphic matroid M = (E, F) and its dual matroid are regular, where E is the 

edge set of G and F contains any forest, in particular, any spanning tree in G. Any spanning tree T 

in G is a base of the graphic matroid M = (E, F). Thus, an FC matrix is the representation of the 

graphic matroid M = (E, F) over the field GF(2) with respect to its base T. Many other results on 

binary and regular matroids can be found in [9], [12], [14]. Contrary to the regular matrix 

representation of M, its FC matrix is not unimodular, in general. For example, consider the graph 

G in Figure 1, which includes a spanning tree T shown as bold edges. It is easy to see that the 

following matrix 

 
 

is an FC matrix of G, whose columns indexed by edges (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 

4) from left to right, and rows are 0-1 characteristic vectors of the fundamental cuts corresponding 

to edges (1, 2), (2, 3), (2, 4) of the tree T. It is not difficult to see that this matrix is a 

representation of the graphic matroid M = (E, F) of the graph G in Figure 1 with respect to the 

base T. However, it is not a unimodular matrix, since the determinant of the submatrix  
 

 
 

equals to 2  -1, 1. Here, we should mention, as in the case of signed matrices [14], after 

replacing some of 1's with -1 in each column, the matrix above will be totally unimodular. 

However, in this paper, we consider only FC matrices with 0 and 1 entries. 

Now, consider another spanning tree T0 of the graph G in Figure 1 with edges a = (1, 4), b = 

(3, 4) and c = (2, 3). Let eij denote the edge connecting vertices i and j. For the graph G, the 

following FC matrix with respect to the tree T0 
 

 
 

is a totally unimodular matrix, since all 1's in each column are consecutive [10]. It is easy to 

see that the tree T0 is a hamiltonian path between the nodes 1 and 2. In Section 4, we show that an 

FC matrix of some graph with respect to a hamiltonian path (spanning tree) is totally unimodular. 

Special cases of the graph G and the right-hand side vector allow to get an integer solution to 

above mentioned network design problems by solving linear programming problems with FC 

constraint matrices iteratively for different spanning trees. 
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Figure 1. A spanning tree T of graph G. 

 

Let I be an identity square matrix and let N be a binary matrix, where the number of rows of I 

and N are the same. As an inverse question, in Section 4, we will also prove that if each column of 

N has only two nonzero entries, then A = (I, N) is an FC matrix, which is the representation of 

some graphic matroid with respect to a star-spanning tree base. If N has odd number of rows and 

columns (the odd cycle), then A = (I, N) is not a balanced matrix by the definition [1]. As 

characterization of FC matrices, we prove that linear programming problems with an FC 

constraint matrix is strongly polynomial solvable. Thus, determining whether a given matrix in 

the form A = (I, N) is an FC matrix presents some interest. 

The paper is organized as follows. Section 2 includes a brief description of some network 

design problems in solving which linear programing (LP) problems with FC matrices are used as 

subroutine. In Section 3, we show that some linear programming problems can be written as in 

terms of the fundamental cuts. Then, in Section 4, we give the complexity of the simplex 

algorithm for these linear programming problems. We discuss some characterizations of an FC 

matrix in terms of special submatrices in Section 5. Finally, we give some concluding remarks 

and some directions for future work in Section 6. 

 

2. NETWORK DESIGN PROBLEMS: MOTIVATION 

 

In [8] and [11], the authors introduced the following general minimum cost network design 

problem (NDP) on a given graph G = (V, E), 
 

min   ∑ 𝑐𝑒𝑥𝑒 ,

𝑒 ∈𝐸

 

 

subject to 
 

𝑥(𝛿(𝑠))  ≥ 𝑓(𝑆),      ∀ ∅ ≠ 𝑆 ⊂ 𝑉,        
 

𝑥𝑒 ≥ 𝑙𝑒 ≥ 0, ∀ 𝑒 ∈ 𝐸, 
 

𝑥𝑒 ∈  ℤ, ∀ 𝑒 ∈ 𝐸, 
 

where f(S) is a symmetric submodular function defined on the subsets of V .  

The theory of linear programming [10] states that a linear program with exponential number 

of inequalities can be solved in polynomial time if and only if the separation problem associated 

with these inequalities is polynomially solvable. This result has theoretical consequences. For 

solving network design problems, approximation solutions and polyhedral approaches use the 

combination of separation algorithms and linear programming solvers. The difficulty with this 

approach to solve NDP is that the separation problem 
 

∆(𝑥, 𝑓) = min {𝑥(𝛿(𝑠)) − 𝑓(𝑆);  ∅ ≠ 𝑆 ⊂ 𝑉}  
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is NP-hard, for reason that when f(S) is a cut function as a special case of symmetric 

submodular functions, ∆(𝑥, 𝑓) is the well known maximum cut problem. However, ∆(𝑥, 𝑓) is 

reduced to the minimum cut problem when f(S) is a modular function [11]. 

In order to use the same techniques in solving NDP, it is necessary to find the capacity xe of 

edges 𝑒 ∈ 𝐸 and then to test whether the capacities xe satisfy the constraints for any ∅ ≠ 𝑆 ⊂ 𝑉. 

Therefore, we fix some spanning tree T in the graph G and set 𝑏𝑡 = 𝑓(𝑉𝑡) − 𝑙(𝛿(𝑉𝑡)) for each t in 

T, then the capacity 𝑥𝑒 = 𝑦𝑒 + 𝑙𝑒  of edges 𝑒 ∈ 𝐸 can be defined by solution 𝑦 = (𝑦𝑒; 𝑒 ∈ 𝐸) of 

the linear program 𝜑1(𝑇) (see Section 3) with the FC constraint matrix. In order to test whether 

the capacities xe satisfy the constraints for any ∅ ≠ 𝑆 ⊂ 𝑉, one can use a combination of the 

branch and bound techniques and results derived in solving ∆(𝑥, 𝑊) for a modular function W 

approximated f. If the answer is yes and all capacities are integer, then the algorithm terminates. If 

any constraint for the cut (determined by some node subset) is violated, then the algorithm finds a 

new spanning tree T1 whose fundamental cut set contains this subset and again find an optimal 

solution to 𝜑1(𝑇1). This process iterates until all constraints hold. 

Another network design problem is the optimum communication spanning trees (OCST) [5] 

which can be used as subproblem to solve linear programing problem with FC matrices. Let a set 

V of n nodes and a set of requirements rvw for pair of distinct nodes v and w in V be given. The 

OCST problem is to build a spanning tree connecting these n nodes such that the total cost of the 

spanning tree is minimum among of all spanning trees. The cost of communication for a pair of 

nodes v and w is rvw multiplied by the sum of the distances cij of edges on the unique path 

connecting v and w in the spanning tree. The cost of a spanning tree is the sum of communications 

for all pair of nodes in the spanning tree. In [5], it is noted without a proof that the OCST problem 

is hard to solve, in general. 

Let G = (V, E) be a complete graph on n nodes with weight cij of edges and let R = (V, E(R)) 

denote a graph of given requirements, that is, (𝑖, 𝑗) ∈ 𝐸(𝑅) if rij > 0. Let 𝛿𝑅(𝑆) denote a cut in the 

graph R determined by subset  ∅ ≠ 𝑆 ⊂ 𝑉. The OCST problem on graph G can be formulated as 

follow to find a spanning tree  𝑇∗ of minimum cost. 
 

𝑐(𝑇∗) = ∑ 𝑐𝑒𝑥𝑒 ⟶ 𝑚𝑖𝑛

𝑒 ∈𝐸

 , 

 

subject to 
 

𝑥𝑒 = 𝑟(𝛿𝑅(𝑉𝑒)),   𝑉𝑒  ∈  ℱ(𝑇∗). 
 

For graphs G with cyclomatic number 𝜐(𝐺) = 𝑚 − 𝑛 + 1 bounded by some small constant, 

the spanning tree 𝑇∗ can be found by enumerating all spanning trees in G. 

In order to solve the OCST problem in general, one can use the following observations on the 

problem of OCST. The first observation is that, for a spanning tree T0 of the graph G, as a feasible 

solution to the OCST problem, the vector y with components yt = bt for each t  T0 and ye = 0 for 

all 𝑒 ∈ 𝐸\𝑇0 is the initial basic feasible solution to the problem 𝜑1(𝑇0) with the right hand vector 

𝑏 = (𝑏𝑡 = 𝑟(𝛿𝑅(𝑉𝑡));    𝑡 ∈  𝑇0) and y satisfies the above constraints when 𝑇∗ = 𝑇0. 

Let 𝒯(𝑇0) denote the set of spanning trees derived from tree T0 by adding any edge 𝑒 ∈ 𝐸\𝑇0 

to T0 and deleting an edge 𝑡 ∈  𝑇0 on the unique cycle in 𝑇0 ∪ {𝑒}. The second observation is that 

if the basic solution 𝑦 = (𝑦𝑒; 𝑒 ∈ 𝐸) is an optimal solution to 𝜑1(𝑇0), then c(T0)  c(T) for any 

𝑇 ∈ 𝒯(𝑇0). Note that heuristics based on Proposition 2 and 3 (see Section 3) can be used for 

defining the spanning tree T0. 

It easy to see that the inequality 𝑐(𝑇) ≤ 𝜑1(𝑇), as cutting plane, allows to eliminate 

𝑂(𝑛𝜐(𝐺)) spanning trees from the set of feasible solutions. Taking into account 𝜐(𝐺) = 𝑂(𝑛2) 

for a complete graph G, the use of inequality 𝑐(𝑇) ≤ 𝜑1(𝑇) essentially reduces the number of 

branching iterations for solving the OCST problem on G. 
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Due to the second observation, we get a generalization of the following result. For the case 

when 𝑟𝑖𝑗 is any non-negative number and  𝑐𝑖𝑗 = 1 for all edges  (𝑖, 𝑗), it was shown that the well-

known Gomory and Hu algorithm constructed spanning tree T(GH) of the complete graph with 

the capacity  𝑟𝑖𝑗 of edges is an OCST [5]. Indeed, from Proposition 2, it follows that if non-

negative cost of edges satisfy (8) with respect to T(GH), then the above mentioned intial basic 

feasible solution for T(GH) = T0 is the optimal solution to the problem 𝜑1(𝑇(𝐺𝐻)) and 

𝑐(𝑇(𝐺𝐻)) ≤ 𝑐(𝑇) for any spanning tree T in G, that is, 𝑇(𝐺𝐻) = 𝑇∗. 

Moreover, by the first observation, the condition that a spanning tree T itself is an optimal 

solution to 𝜑1(𝑇) as the fixed point mapping  𝜑1(𝑇) T allows to apply the theory of fixed point 

mappings to solve the OCST problem. We leave this future work. 

 

3. LP PROBLEMS WITH AN FC MATRIX 

 

Consider the following linear programming problem  
 

min cx, 
 

subject to 
 

Ax = f, 
 

 x  l  0, 
 

for a given vectors c, l  RE and f  RT , where l  0,  f  0. Let T be a spanning tree with 

edges t1, …, tn-1. This LP problem can be written as the following problem in the terms of the 

fundamental cuts 𝛿(𝑉𝑘) for all 𝑉𝑘 ∈ ℱ(𝑇). 
 

min   ∑ 𝑐𝑒𝑥𝑒 ,

𝑒 ∈𝐸

 

 

subject to 
 

𝑥(𝛿(𝑉𝑘)) = 𝑓𝑘 ,      ∀ 𝑉𝑘 ∈ ℱ(𝑇),        
 

𝑥𝑒 ≥ 𝑙𝑒 ≥ 0, ∀ 𝑒 ∈ 𝐸. 
 

It is convenient to write it in the variables ye = xe - le as follows. 
 

𝜑1(𝑇) = min   ∑ 𝑐𝑒𝑦𝑒 ,𝑒 ∈𝐸                                                                                                              (1) 
 

subject to 
 

𝑦(𝛿(𝑉𝑘)) = 𝑏(𝑡𝑘),      ∀ 𝑘 = 1, … , 𝑛 − 1,                                                                                      (2) 
 

𝑦𝑒 ≥ 0, ∀ 𝑒 ∈ 𝐸,                                                                                                                            (3) 
 

where 𝑏(𝑡𝑘) = 𝑓𝑘 − 𝑙(𝛿(𝑉𝑘)) for all k = 1,...,n-1 and we will denote the vector  (𝑏(𝑡𝑘); 𝑘 =
1, … , 𝑛 − 1) by b for short. Since each edge tk is an edge of the cut 𝛿(𝑉𝑘), then the matrix A can 

be represented in the form (I, N) by permuting columns, where I is (n  1)  (n  1) identity 

matrix whose columns are indexed by edges of the tree T. The rows of the matrix A are 0 or 1 

characteristic vectors of the cuts 𝛿(𝑉𝑘). A column h of N contains 1 in a row 𝛿(𝑉𝑘) if the edge tk 

is an edge of the cycle C(h) obtained by adding the edge h  E \ T to the tree T. Conversely, if t1, 

...,  tp are edges of the cycle C(h), then h is just an edge of the cuts 𝛿(𝑉1), … , 𝛿(𝑉𝑝). So, we have 

the following property; 
 

Property 1 For any edge h  E\T, if t1, ..., tp are edges of a cycle C(h), then the column h has just 

1 in the rows corresponding to cuts 𝛿(𝑉𝑘), 𝑘 = 1, … , 𝑝. This implies the linear dependence of the 

vector columns indexed by t1,..., tp and h. 
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For any e  E, we write e  C(h) if e is an edge of the cycle C(h). For edges e, h  E \ T, if 

the cycle C(e) contains only edges tk  C(h), the cycle C(e) is called a subcycle of C(h), that is the 

edge e is a chord of C(h). Let ae denote the column e of the matrix N for each edge e  E \ T. It 

follows that ah  ae for any chord e of the cycle C(h). We also assume that b(tk)  0 for each 

𝑉𝑘 ∈ ℱ(𝑇), otherwise the problem (1)-(3) is infeasible. Hence, the variables 𝑦𝑡1
, … , 𝑦𝑡𝑛−1

 

corresponding to the columns of I form basis for (1)-(3). The following propositions will be used 

to solve the problem (1)-(3). 
 

Proposition 2 For an edge h  E \ T, if 
 

∑ 𝑐𝑡𝑘
≤ 𝑐ℎ ,𝑡𝑘 ∈𝐶(ℎ)                                                                                                                            (4) 

 

then the edge h can be deleted in the graph G. 
 

Proof. The dual problem of (1)-(3) can be given as 
 

max ∑ 𝑏(𝑡𝑘)𝑢(𝑡𝑘) ,𝑡𝑘 ∈ 𝑇                                                                                                              (5) 
 

subject to  
 

∑ 𝑢(𝑡𝑘) ≤ 𝑐𝑒  ,     𝑒 ∈ 𝐸𝛿(𝑉𝑘)∋ 𝑒                                                                                                        (6) 
 

in which conditions 𝑢(𝑡𝑘) ≤ 𝑐𝑡𝑘
  are associated with the edges tk  T. By Property 1,  

 

∑ 𝑢(𝑡𝑘) = ∑ 𝑢(𝑡𝑘) ≤ ∑ 𝑐𝑡𝑘
≤ 𝑐ℎ,

𝑡𝑘 ∈𝐶(ℎ)

 

𝑡𝑘 ∈𝐶(𝑒)

 

𝛿(𝑉𝑘)∋ 𝑒

 

 

the left side of the constraints (6) for e = h is the sum of those for e = tk  C(h). Therefore, the 

edge h can be deleted in G.                   
     

Proposition 3 Let C(h) be any cycle and let e be a chord of C(h), where e, h  E \ T. If  
 

∑ 𝑐𝑡𝑘
− 𝑐ℎ ≤ 𝑡𝑘 ∈𝐶(ℎ) ∑ 𝑐𝑡𝑘

− 𝑐𝑒 ,𝑡𝑘 ∈𝐶(𝑒)                                                                                           (7) 
 

then the edge h can be deleted in the graph G. 
 

Proof. The dual problem (5)-(6) can also be represented as 
 

max ∑ 𝑏(𝑡𝑘)𝑧(𝑡𝑘) ,

𝑡𝑘 ∈ 𝑇

 

 

subject to  
 

∑ 𝑧(𝑡𝑘) ≥ ∑ 𝑐𝑡𝑘
− 𝑐𝑒 ,     

𝑡𝑘 ∈𝐶(𝑒)

    𝑒 ∈ 𝐸\𝑇

𝛿(𝑉𝑘)∋ 𝑒

 

 

𝑧(𝑡𝑘) ≥ 0,    𝑉𝑘 ∈ ℱ(𝑇) 
 

by setting  
 

𝑧(𝑡𝑘) = 𝑐𝑡𝑘
− 𝑢(𝑡𝑘). 

 

Since the edge e is a chord of C(h), ah  ae, that is, 
 

∑ 𝑧(𝑡𝑘) ≥

𝛿(𝑉𝑘)∋ℎ

∑ 𝑧(𝑡𝑘).

𝛿(𝑉𝑘)∋𝑒

 

 

It follows that 
 

∑ 𝑧(𝑡𝑘) ≥

𝛿(𝑉𝑘)∋ℎ

∑ 𝑧(𝑡𝑘) ≥

𝛿(𝑉𝑘)∋𝑒

∑ 𝑐𝑡𝑘
− 𝑐𝑒 ≥ ∑ 𝑐𝑡𝑘

− 𝑐ℎ     

𝑡𝑘 ∈𝐶(ℎ)

     

𝑡𝑘 ∈𝐶(𝑒)

 

 

which is the last inequality (7). Therefore, we can delete the constraints (2) for e = h. In other 

words, the edge h can be deleted in the graph G.                     ∎ 
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By Proposition 3, if (7) holds for one of chords e1, …, ep  E \ T of any cycle C(h), then the 

constraint (2) for e = h can be deleted. Hence, we have 
 

∑ 𝑐𝑡𝑘
− 𝑐ℎ > ∑ 𝑐𝑡𝑘

− 𝑐𝑒𝑖
 𝑡𝑘 ∈𝐶(𝑒𝑖)   𝑡𝑘 ∈𝐶(ℎ)                                                                                        (8) 

 

for any cycle C(h) (h  E \ T) and its chords e1, …, ep  E \ T. 

  

4. THE COMPLEXITY OF PROBLEM (1)-(3) 

 

Using Propositions 2 and 3, we delete the edges e  E \ T in the graph G for which the 

conditions (4) and (7) hold. It is clear that this can be carried out in O(m  n + 1) time. In the 

result, we have 

 

∑ 𝑐𝑡𝑘
> 𝑐ℎ,      ∀ ℎ ∈ 𝐸\𝑇,𝑡𝑘 ∈ 𝐶(ℎ)                                                                                                    (9) 

 

and the condition (8) holds for any cycle C(h) and its chords e  E\T. Although theoretically 

the number of pivot steps of the simplex algorithms is exponential, the following theorem states 

that the number of the classical simplex algorithm with Dantzig's pivot rule is bounded by a linear 

function of the number of edges for solving the linear program (1)-(3). It seems that to find a 

polynomial time simplex method and the closely related Hirsch conjecture proof is a hard 

problem in general. 
 

Theorem 4 The simplex algorithm finds an optimal solution to (1)-(3) in at most m  n + 1 

iterations. 
 

Proof. Without loss of generality, we assume b > 0, since if b(tk) = 0 for some tk, then 𝑥𝑡𝑘

0 = 𝑙𝑡𝑘
 in 

an optimal solution and hence the edges of the cut 𝛿(𝑉𝑘) can be deleted in G and the problem (1)-

(3) can be solved independently for each connected component. Since b > 0, we can take  
 

𝑦𝑡𝑘

0 = 𝑏(𝑡𝑘)  for all  𝑡𝑘 ∈ 𝑇, 

𝑦𝑒
0 = 0  for all  𝑒 ∈ 𝐸\𝑇 

 

as the initial basic feasible solution for the problem (1)-(3). Hence (1)-(3) has an optimal 

solution by the theory of linear programming. According to (9) the reduced cost is 
 

𝑐�̅� = 𝑐𝑒 − ∑ 𝑐𝑡𝑘
< 0,

𝑡𝑘 ∈𝐶(𝑒)

 

 

for each e  E \ T. Because ye can be selected as the entering variable for any e  E \ T. From 

(8) it follows that the classical simplex algorithm selects yh for which 
 

𝑐ℎ̅ = min{𝑐�̅�; 𝑒 ∈ 𝐸\𝑇}, 
 

for entering to the basic 𝑦0 and 𝑦𝑒
0 = 0 for any chord e of the cycle C(h). Moreover 𝑦𝑡𝑞

0 = 0, 

since 𝑦𝑡𝑞
= 0 is a leaving variable for some edge tq  C(h), since columns for edges tq  C(h) and 

h as vectors are linearly dependent by Property 1. 

Let the simplex algorithm proceeds to a basic solution 𝑦1 = (𝑦𝑒
1; 𝑒 ∈ 𝐸) by choosing to bring 

yg into basic �̅� and removing the variable yh from the basic �̅�  for first time. Then the following 

two cases are possible for positions of the edges h and g with respect to fundamental cuts. 
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Figure 2. h = (1, 7), tq = (6, 7), g = (3, 7) 

 

Case 1: In some basis solutions generated before y1, when yh became a basic variable and 𝑦𝑡𝑞
 

non-basic variable, there is a subcycle C(e0) of C(H), such that yt > 0 for edges t in 𝐶(𝑒0) ∩ 𝑇 and 

𝑡𝑞 ∉ 𝐶(𝑒). Since 𝑦𝑡𝑞
= 0 the subcycle C(e0) as cycle C(h), the edge e0 is entering to some basic 

solution and some edge 𝑡1 ∈ 𝐶(𝑒0) ∩ 𝑇 is leaving. This can be repeated for some subcycle of 

C(e1) of C(e0) such that t1  C (e1). We assume that this process is carried out for edges ei, where i 

= 0,1,…,p and g = ep. By Proposition 2 and 
 

∑ 𝑐𝑡𝑘
− 𝑐𝑒𝑖

> 0,

𝑡𝑘 ∈𝐶(𝑒𝑖)

 

 

for edges e = e0, e1,…,ep1, the variables 𝑦𝑒𝑖  were in some basic solutions generated before y1. 

Since yh is leaving basic variable from the basic solution �̅� and yg is entering basic variable to  �̅�, 

C(g) = C(ep) is the last of such subcycles that the following inequality 
 

∑( ∑ 𝑐𝑡𝑘
− 𝑐𝑒𝑖

)

𝑡𝑘 ∈𝐶(𝑒𝑖)𝑒𝑖

 > ∑ 𝑐𝑡𝑘
− 𝑐ℎ

𝑡𝑘 ∈𝐶(ℎ)

 

 

holds. 

Figures 2 displays a piece of T whose edges are bold lines, where 𝑦𝑡
1

 for bold edges are in the 

basic solution y1 except tq = (6,7). When yh = y17 entered to the basic solution, 𝑦𝑡𝑞
 became a non-

basic variable. In some solutions generated before y1, for edges e and t on the subcycles C(3,6) 

and C(3,5) of the cycle C(1,7), the variables ye and yt became a basic and a non-basic variable, 

respectively, in the following order; 
 

 the y36 became a basic variable and t56 became non-basic variable on the subcycle 

C(3,6) of C(1,7); 

 the y35 became a basic variable and t45 became non-basic variable on the subcycle 

C(3,5) of C(1,7); 
 

After y36 and y35 became basic variables, yg = y37 is entering variable to the basic solution y1 

and yh = y17 is a leaving variable from y1 with respect to the cycle with edges g = (3,7), h = (1,7), t 

= (1,2), t = (2, 3). 
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Figure 3. h = (1, 5), tq = (3, 4), g = (4, 7) 

 

Case 2: The edge tq is on the cycles C(h) and C(g) that are not subcycles of C(h). As in Case 

1, in some basic solutions generated before y1, for some edges t in 𝑇 ∩ 𝐶(ℎ), the variable yt and ye 

became a non-basic and a basic variable, respectively, for some subcycles C(e) of C(h). 

Differently from Case 1, there is a cycle C in G such that the edges h, g and edges e of these 

subcycles are on C. Figure 3 indicates that the cycle C with edges h, (1, 3), (3, 7), g, (4, 5) for 

which 𝑦𝑒
1 (e = (1,3), (4,5), h) and  𝑦𝑡

1 =  𝑦37
1  (t = (3,7)  T) are basic variables. 

Now, from that yg is an entering basic variable to �̅� implies 
 

∑ 𝑢(𝑡𝑘) > 𝑐𝑔

𝛿(𝑉𝑘)∋𝑔

, 

 

for the simplex multipliers {u(tk)} as trial solution to the dual of (1)-(3) which means that the 

dual constraint associated with the variable yg is violated. To enter yg to the basic solution, the 

simplex algorithm defines new multipliers {u(tk)} satisfying the following equation 
 

∑ 𝑢(𝑡𝑘) = 𝑐𝑔.

𝛿(𝑉𝑘)∋𝑔

 

 

This means that in both cases, 
 

∑{𝑢(𝑡𝑘);  for edges 𝑡𝑘 on 𝐶(ℎ)  and 𝐶(𝑔)}  
 

is decreasing after the simplex algorithm defined the basic y1. Therefore, each yh can be a 

basic variable only once and hence the simplex algorithm finds an optimal solution to the problem 

(1)-(3) in at most m  n + 1 iterations.                         ∎ 

Consider the problem (1)-(3) on the graph G in Figure 2. Let T be a spanning tree with bold 

edges (1,4), (2,5), (3,6), (4,5), (5,6) and then 
 

ℱ(𝑇) = {V14 = {1}, V25 = {2}, V36 = {3}, V45 = {1,4}, V56 = {3,6}}. 
 

The edges crossing with the dashed lines represent edges of corresponding fundamental cuts 

whose numbers are shown in rectangles at the end of the dashed lines. Let b(14) = 5, b(25) = 6, 

b(36) = 6, b(45) = 7 and b(56) = 8 for the fundamental cut sets in ℱ(𝑇). The number next to each 

edge e indicates its cost ce. Since conditions (4) and (8) do not hold at any edge of the cycles 

C(12), C(13), C(23), C(46), any edge cannot be deleted in G. In this example, y14 = 5, y25 = 6, y36 

= 6, y45=7 and y56 = 8 are initial basic variables corresponding to the edges in T. In the first 

iteration, the variables y13 and y14 are entering and leaving basic variables, respectively. In the 

next three iterations, y23 and y36, y46 and y56, y12 and y25 become basic and non-basic variables, 

respectively. The optimal solution is 𝑦13
∗ = 2.5, 𝑦32

∗ = 3.5, 𝑦12
∗ = 2.5, 𝑦46

∗ = 2 and 𝑦𝑒
∗ = 0 for the 

other edges. 
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As a conclusion of Section 2, let P(T) be a polytope defined by (2) and (3) and let its vertices 

vT and vop be an initial and an optimal basic solutions, respectively. By Theorem 4, it follows that 

the minimum distance between the vertices vT and vop is not greater than m  n + 1 in P(T). 

Theorem 4 states that the Hirsch conjecture [3] holds for the facet containing vertices vT , vop, if m 

 3(n  1) in a graph G. 

 

 
 

Figure 4. A graph G, a spanning tree T and five fundamental cuts. 

 

It is not difficult to give some examples to show that (1)-(3) has no integer-valued optimal 

solutions for ℱ(𝑇) with respect to some spanning tree T. When T is a Hamiltonian path, all 1’s are 

consecutive in each column of the matrix A (see Proposition 6) from which it follows that the 

matrix A is unimodular [10]. This means that the problem (1)-(3) has an integer valued solution 

for an integer vector b, when T is any Hamiltonian path. The problem (1)-(3) with the vector b = 1 

is the LP relaxation of the ℱ(𝑇)Constrained Forest Problem (CFP) [4] when the proper function 

𝑓(𝑆) = 1 (𝑓: 2𝑉 → {0,1} for the fundamental cut sets  𝑆 ∈ ℱ(𝑇)). Hence, if the tree T is any 

Hamiltonian path, then the LP relaxation of CFP has an integer-valued optimal solution. 

 

5. CHARACTERIZATION OF THE FC MATRICES 

 

Let A = (I,N) be a given binary matrix. Is there an undirected simple graph G = (V,E) for 

which the columns of A can be indexed by edges in E, so that the rows of A are 0, 1 characteristics 

vectors of fundamental cuts corresponding to the edges of some spanning tree in G? In other 

words, whether the matrix A represents a graphic matroid with respect to some its base. The 

following lemma allows to construct a graph for some particular cases of the matrix A = (I,N). 
 

Lemma 5 If a binary matrix A = (I,N) has n - 1 rows and m  (n - 1)n/2 columns, and each 

column of N contains two 1's and no identical columns in N, then it can be represented by graph a 

G = (V,E) with n nodes and m edges with respect to (n - 1) star-spanning tree T in G. 
 

Proof. Let T be a star with n - 1 edges and n nodes. First we index rows of A and columns of I by 

edges of the tree T. Then we construct the graph G = (V,E) by adding edges to T: for any column j 

of N containing 1’s in rows t and h, we add an edge j to the tree T so that it connects leaves of 

edges t and h. 
 

Since there is no any identical columns in N, the graph G has no parallel edges. m  (n - 1)n/2 

can be written as m - (n - 1)  (n - 1)(n - 2)/2 which means that the columns of N can be indexed 

by no tree edges of a simple undirected graph G. Suppose that a row t in A has 1's in columns j1, 

j2,..., jp. In G, since edges j1, j2,..., jp connect the leaf of the edge t to the leaves of the other edges 
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in T, then the cut corresponding to the edge t contains all those edges. So, the row t is the 

characteristic vectors of the fundamental cut corresponding to the edge t in T and the proof is 

complete.                                                                                                                                          ∎ 
 

Proposition 6 Let T = (V,E(T)) be a Hamiltonian path connecting some two nodes v,w  V in a 

graph G = (V,E). The FC matrix of the graph G with respect to the tree T is totally unimodular. 
 

Proof. Without loss of generality, we may assume that the Hamiltonian path T = ((v = 1, 2), (2, 3), 

…, (n-1, n = w)) connects the nodes v and w. Consider an FC matrix whose ith row is indexed by 

the edge (i, i + 1) in T for i =1, …, n - 1 and the columns are indexed as follows: the first n - 1 

columns are indexed by the edges in T and then the other m - n + 1 columns are indexed by the 

edges (1, i), for 3  i  n, the edges (2, i), for 4  i  n and so on. 
 

Thus, the row of the FC matrix corresponding to the cut determined by deleting the edge (1, 

2) contains 1's in the columns (1, 2) and (1, i) for 3  i  n. The row (2, 3) corresponding to the 

cut determined by deleting the edge (2, 3) contains 1's in all columns (1, i) for 3  i  n, since 

nodes 1 and 2 are on the same side of the cut. Similarly, the row (3, 4) corresponding to the cut 

determined by deleting the edge (3, 4) contains 1's in all columns (1, i) for 4  i  n and so on. 

That is, the columns (1, i) (3  i  n) of the FC matrix contain the 1's consecutively. Since the first 

(n - 1) columns are unit vectors, this FC matrix is in the form A = (I,N). By Heller and Hoffman, 

the FC is a totally unimodular matrix [10].                                                                                      ∎ 

Let A = (I,N) be an FC matrix whose columns are indexed by 1,…,m and rows are indexed by 

1,…, p, where p = n - 1. Suppose that a column k in N contains 1's in rows k1, …, kq in N. In other 

words, the column k induces a q x (m - p) submatrix A(k) of N with the rows k1, …, kq. If there 

exist a reordering of the rows of A(k) such that the permuted submatrix has no column containing 

0's between 1's, then we call it an HP (Hamiltonian path) matrix. 

Since A is an FC matrix, there is a graph G = (V,E) with |E| = m and |V | = n such that the 

rows of A are 0, 1 characteristics vectors of fundamental cuts corresponding to some spanning 

tree of G. Now, let A(k) and A(h) be HP matrices induced by the columns k and h of N and let 

(kh)1, …, (kh)t be common rows of A(k) and A(h). This means that the edges corresponding to the 

rows (kh)1, …, (kh)t are on the cycles C(k) and C(h) created by adding the edges ek and eh to the 

spanning tree. Suppose that these rows were reordered as (kh)1, …, (kh)t to transform A(k) and 

A(h) to HP matrices. If the common rows can be reordered as (kh)1, …, (kh)t or (kh)t, …, (kh)1 to 

transform A(h) and A(k) to HP matrices, we call k and h tree-common columns. 
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Figure 5. A graph G (bold and dashed lines) and a spanning tree T (bold lines). 

 

In order to explain the key moments of the tree-common columns, first consider the graph of 

Figure 3, where the bold lines represent the edges of the spanning tree. To make a distinction 

between the edges of T and the others, we denote the edges of T by a = (1, 2), b = (2, 3), c = (3, 

4), d = (4, 5), k = (6, 7), h = (3, 7), f = (3, 8), e = (8, 9) and denote the other edges (dashed lines) 

with end nodes i and j by eij in G. The matrix N is as follows: 
 

 
 

 

If the rows of the submatrix induced by the column e16 are reordered as abhk, then it becomes 

an HP matrix. The submatrix induced by the column e68 is an HP matrix with the reordering khf 

of its rows. The column e56 induces a submatrix which is an HP matrix after reordering its rows as 

dchk. Thus, the columns e16 and e56 are tree-common columns. 
 

Theorem 7 An FC matrix satisfies the following conditions:  
 

1. Its columns induce an HP matrix. 

2. If submatrices induced by any pair of distinct columns have common rows, then these 

columns are tree-common. 
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Proof. Let A = (I,N) be an FC matrix. There exist unknown undirected graph G = (V,E): the 

columns of A can be indexed by edges of G and the rows are 0, 1 characteristics vectors of the 

fundamental cuts corresponding to the edges of some spanning tree T in G. Let k be the first 

column in N with the maximum number of ones. Then the edge k cannot be a chord of any cycle 

and the nodes of the cycle C(k) induce the subgraph Gk in which the edges t  C(k) are on a 

Hamiltonian path Pk. Because the submatrix A(k) induced by the column k is an HP matrix by 

Proposition 6. Now, let h be the second column in N (if exists) with the maximum number of ones 

such that no all rows of the submatrix A(h) are the rows of A(k). Similarly, it can be shown that 

A(h) is an HP matrix, too. Therefore, by iterating this, it can be shown that the selected columns 

induce HP submatrices. Since the edges for any non-selected columns are chords of cycles 

created by edges for the selected columns, the submatrices induced by the first type columns are 

HP. 

Suppose that submatrices A(h) and A(k) have common rows (kh)1, …, (kh)q  T. This means 

that these edges are on a subpath Pkh in the tree T, since Pk and Ph are paths in T. The subpath Pkh 

is in T, hence, k and h are tree-common columns that complete the proof.                                     ∎ 

Note that the converse of Theorem 7 is not true, for example, the well known dual Fano 

matrix [9] satisfies the conditions 1 and 2 of Theorem 7, however, it is not an FC matrix. The well 

known Seymour's matrices 𝑅10 and 𝑅10
′  [12] are not an FC matrix, since they contain rows which 

do not induce an HP matrix. Any FC matrix can be regarded as the representation of a graphic 

matroid as binary matroid. An FC matrix is not generally a totally unimodular matrix. Therefore, 

this representation is not always regular for a graphic matroid. 

 

6. CONCLUSION 

 

The problem of graph visualization is important in computer science [6]. The proof of 

Theorem 7 can be used to design an algorithm for drawing graphs represented by FC matrices. 

We observed that when the matrix A is an FC-matrix of the Hamiltonian-spanning tree, 
 

𝑃 = {𝑥 ∈ 𝑅𝑚; 𝐴𝑥 = 𝑓, 𝑥 ≥ 𝑙 ≥ 0} 
 

is an integral polytope [10] by Proposition 6. In terms of the linear complexity of the simplex 

algorithm for the problem 
 

min{𝑐𝑥; 𝑥 ∈ 𝑃},                                                                                                                             (10) 
 

it appears that one of the most promising approaches for network design problems [8], [11] is 

to find an integer solution of (10) in each iteration of the branch and cut algorithm. Therefore, 

characterization of all spanning trees of the graph G, for which P is an integral polytope, can be 

used to get new polyhedral results for reducing subproblems encountered in solution of the above-

mentioned network design problems. 

Another suggested direction for future investigation is to strength Theorem 4, i.e., to prove 

that the simplex algorithm finds a solution to the problem (10) in almost linear time for a binary 

matroid matrix A and a given non-negative vectors c and f. 
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