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ABSTRACT 

 

In this research, we used Akbari-Ganji’s Method (AGM) to solve the issue of laminar Nano fluid flow in a 

semi-porous channel in the presence of latitudinal magnetic field. The effectual viscosity and thermal 

conductivity of Nano fluid flow are computed by Brinkman and Maxwell–Garnetts (MG) models, 

respectively. Also, the concept of Akbari-Ganji’s Method is briefly employed and introduced to derive 

solutions of nonlinear equations. The received outcomes of AGM are compared with those of acquired from 

Numerical Method (fourth-order Runge–Kutta method), Collocation Method (CM), Homotopy Perturbation 

Method (HPM) and Flex-PDE software to check the precision of the considered manner. In the present 

perusal, the impact of the three dimensionless numbers like the Nano fluid volume fraction, Reynolds number 

and Hartmann number on non-dimensional velocity profiles are examined. Outcomes show when Ha is tiny, 

the impact of Re number is very sensible on the velocity profiles but in Ha large, Re number is less impact. In 

addition, this study shows AGM is strong manner to solve nonlinear differential equations. 

Keywords: Akbari-Ganji’s Method (AGM), semi-porous channel, collocation method (CM), uniform 

magnetic, flex-PDE software, laminar nano fluid flow. 

 

 

1. INTRODUCTION 

 

In fluid mechanics, we study the particles’ behavior at any point within the range of different 

physical conditions. Mathematical models are used to explain physical phenomena in fluid 

mechanics for a variety of fluids. Most engineering problems in heat transfer and fluid mechanics 

problems are inherently nonlinear. For this reason, resolving these difficult problems has been a 
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controversial issue for mathematicians, physicists and engineers. Some equations are solved by 

Numerical solu tions, some are solved using different analytical methods. Methods that can be 

introduced to examine the nonlinear problems such as the Differential Transform Method (DTM) 

[1], Optimal Homotopy Analysis Method (OHAM) [2-3], Homotopy perturbation method (HPM) 

[4-7], Exp-Function Method (EFM) [8-9], Since- Cosine Function Method [10-11], F-Expansion 

Method (FEM) [12-13], Tanh- Coth Method [14-15], many methods are not considered in this 

study because of brevity. Akbari-Ganji’s Method (AGM) is a modern manner that be used for 

research of nonlinear issues. A synopsis of AGM advantages compared to other manners is as 

follows: Boundary conditions are required in accordance with the order of differential equations 

in the resolving manner however when the number of boundary conditions is lesser than the order 

of the differential equation, this approach can engender additional new boundary conditions in 

regard to the own differential equation and its derivatives. Therefore, AGM is a strong manner for 

solving the nonlinear differential equations like presented equation in this perusal. In this paper, 

we have applied AGM to discover the proximate solutions of nonlinear differential equations 

governing the Nano fluid flow in a semi-porous channel in the attendance of latitudinal magnetic 

field. Flow issue in a porous channel or tube received much consideration in recent years due to 

its different applications in medical engineering, for instance in the dialysis of blood in artificial 

kidney [16], in the flow of blood in the capillaries [17], in the flow in blood oxygenators [18], 

also, in most other engineering areas for instance gaseous diffusion [19], in transpiration cooling 

boundary layer control [20] and the sketching of filters [21]. In 1953, Berman [22] explained an 

accurate solution of the Navier–Stokes equation for steady two-dimensional laminar flow of an 

incompressible and viscose fluid in a channel with rigid, parallel, porous walls Steamy by 

uniform, steady injection or suction at the walls. This mass transfer is Prevalent in several 

industrial processes. More recently, Fakour and et al. [23] fastidiousness of underdeveloped heat 

conduction and Nano fluid magneto hydro dynamic (MHD) flow in a channel with porous walls 

investigated. Sheikholeslami et al. [24] analyzed the influence of a magnetic field on the Nano 

fluid flow in a porous channel via weighted residual methods called Galerkin method. As well as, 

impacts of sectional slip and diffusion-thermo and thermal-diffusion on steady magneto hydro 

dynamic (MHD) convective flow owing to a rotating disk studied by Rashidi et al. [25]. Chandran 

and Sacheti [26] analyzed the impact of a magnetic field on the thermodynamic flow bygone a 

continuously moving porous sheet. Hamad et al. [27] investigated the steady magneto hydro 

dynamic free convection boundary layer flow bygone a vertical semi-infinite flat plane embedded 

in water stuffed with a Nano fluid has been theoretically. They found that Ag and Cu 

nanoparticles proved to have the highest cooling efficiency for the sake this issue. The Nano fluid 

flow and heat transfer due to a stretching cylinder in the attendance of magnetic field investigated 

by Ashorynejad et al. [28]. The subject of laminar gooey flow in a semi-porous channel in the 

attendance of latitudinal magnetic field was studied with Sheikholeslami et al. [29]. They showed 

that optimal homotopy asymptotic method (HAM) was a strong approach to solving nonlinear 

differential equations. Sheikholeslami et al. [30] studied the natural convection heat transfer in a 

cavity with sinusoidal wall filled with CuO-water Nano fluid in attendance of magnetic field. In 

addition, the effect of a magnetic field on natural convection in an inclined half-annulus enclosure 

filled with Cu-water Nano fluid using CVFEM studied by Sheikholeslami et al. [31]. Also, 

several authors analyzed about heat transfer and Nano fluid flow [32–35]. The main purpose of 

this work is to present the effects of the three dimensionless numbers: Reynolds number, 

Hartmann number and the Nano fluid volume fraction on non-dimensional velocity profiles. The 

comparison of the outcomes of Homotopy Perturbation Method (HPM), AGM, the Numerical 

Method (fourth-order Runge-Kutta), Flex-PDE software and Collocation Method (CM) outcomes 

indicates excellent complying in solving this nonlinear problem. Furthermore, the timings of the 

aforementioned manners are demonstrated in this research for a better use of the methods for 

solving nonlinear issues. 
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2. PROBLEM DESCRIPTION  
 

Consider the laminar two-dimensional stationary flow of an electrical conducting 

incompressible viscous fluid in a semi-porous channel made by a lengthy rectangular plate with a 

length of Lx in uniform translation in x* direction and an infinite porous plate. The interval 

between the two plates is h. We observe a normal velocity q on the porous wall. A monotonic 

magnetic field B is assumed to be applied towards direction y* (Fig. 1) [36]. 

 

 
 

Figure 1. Physical of the issue (Nano fluid in a porous media between parallel sheets and   

magnetic field). 

 

Table 1.  Thermo-physical confidants of water and nanoparticles [39]. 
 

 

In case of a short flow to neglect the electrical field, perturbations to the basic natural field 

and without gravity forces, the governing equations are: 
 

 

 

 
 

 

u v
0,

x y
                                                                                                                       (1) 

 

    
  

    

     
     

      

22 2
nf nf

2 2
nf nf nf

Bu v 1 P u u
u v ( ) u ,

x y x x y
                                  (2) 

 

    
 

    

    
    

     

2 2
nf

2 2
nf nf

v v 1 P v v
u v ( ),

x y y x y
                                                       (3) 

 

The boundary conditions for the velocity are as follows: 
 

     0y 0: u u ,v 0,                                                                                                          (4) 

Material Density (kg/m3) Cp (J/kg.k) K (w/m.k) σ(
Ω−1

k−1
) 

Pure water 997.1 4179 0.613 0.05 

Silver 10500 235 429 6.30 ×107 
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    y h: u 0,v q,                                                                                                           (5) 
 

Calculating a mean velocity 𝑈 with the relation: 
 

     0y 0: u u ,v 0,                                                                                                          (6) 
 

We consider the following transformations: 
 

 

 
x

x y
x ;y ,

L h
                                                                                                                       (7) 

 

  

  


y 2
f

u v P
u ; v , P

U q q
                                                                                                (8) 

 

Afterwards, we can discuss two dimensionless numbers: the Reynolds number 𝑅𝑒 for 

dynamic forces and the Hartman number 𝐻𝑎 for the description of magnetic forces [37]: 
 






f

f f

Ha Bh ,
.v

                                                                                                                    (9) 

 

 


n f

n f

hq
Re .                                                                                                                            (10) 

 

Where the effective density (𝜌𝑛𝑓) is specified as [38]: 
 

    nf f s(1 )                                                                                                                 (11) 
 

Where ∅ is the solid volume fraction of nanoparticles. The dynamic viscosity of the Nano 

fluids given by Brinkman [38] is 
 


 



f
nf 2.5

,
(1 )

                                                                                                                      (12) 

 

The effective thermal conductivity can be modeled via the Maxwell–Garnetts as [39]: 
 

   


  

nf s f f s

f s f f s

k k 2k 2 (k k )
,

k k 2k (k k )
                                                                                            (13) 

 

The effective electrical conductivity of Nano fluid was presented with Maxwell [39] as 

follows: 
 


 

 
 

 
   

 

s

nf f

s sf

f f

3( 1)

1 ,

( 2) ( 1)

                                                                                        (14) 

 

The thermo physical properties of the Nano fluid are given in Table 1[39]. Therefore, we can 

evolve the dimensionless equations: 
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 
 

 

u v
0,

x y
                                                                                                                            (15) 

 





    
     

     

2 2 2
y2 nf

2 2
nf

Pu u 1 u u Ha B
u v ( ) u ,

x y x hp Rex y A
                             (16) 

 

    
     

     

2 2
y 2nf

2 2
nf

Pu 1 v v
u v ( ),

x y x hp x y
                                                               (17) 

 

Where 𝐴∗ and 𝐵∗ are constant parameters: 
 






   




 


 

 
   

 

s

f

s

f

s s

f f

A (1 ) ,

3( 1)

B 1 ,

( 2) ( 1)

                                                                                           (18) 

 

Amount of 𝜀 is defined as the aspect ratio between a characteristic length 𝐿𝑥 and spacing ℎ of 

the slider. This ratio is normally tiny. Berman’s similarity transformation is used to be free from 

the aspect ratio of 𝜀: 
 



    0

u dV
v V(y);u u U(y) x .

U dy
                                                                                 (19) 

 

Introducing Eq. (19) in the second momentum Eq. (17) shows that amount 𝜕𝑃𝑦/𝜕𝑦 does not 

depend on the longitudinal variable 𝑥. With the first momentum equation, we as well as observe 

that 𝜕2𝑃𝑦/𝜕𝑥2 is independent of 𝑥. We omit star for simplicity. So a separation of variables leads 

to [36]: 
 



 

 
         

 

22
y y2 2 2

2.5 2

P P1 Ha B
V VV V V ,

( x)xReA (1 ) ReA x
                             (20) 

 




     



2 2.5

2.5

1
UV VU [U Ha B (1 ) U],

ReA (1 )
                                                     (21) 

 

The right-hand side of Eq. (20) is constant. Therefore, we derive this equation with respect 

to 𝑥. This gives: 
 

        IV 2 2.5 2.5V Ha B (1 ) V ReA (1 ) [V V VV ].                                               (22) 
 

Where primes denote differentiation with respect to 𝑦 and star have been omitted. The 

dynamic boundary conditions are: 
 

   


   

y 0:U 1; V 0;V 0,

y 1:U 0;V 1;V 0.
                                                                                                    (23) 
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3. MATHEMATICAL PROCEDURES: 

 

In this section three methods have been examined: 

 

3.1.  Akbari-Ganji’s Method (AGM) 

 

Initial conditions and boundary conditions are needed differential equation conforming to the 

physic of the moot point. Therefore, we can solve every differential equation with any degree. In 

order to understand the given manner in this research, two differential equations ruling on 

engineering operations will be solved in this new method. The nonlinear differential equation of 𝑝 

which is a function of 𝑢(which is a function of 𝑥), and their derivatives are considered as follows:   
 

   m
kp :f(u,u ,u ,...u ) 0 ;u u(x),                                                                                  (24) 

 

Boundary conditions: 
 









   


  

(m 1)
0 1 m 1

(m 1)
L0 L1 Lm 1

u(0) u ,u (0) u ,...u (0) u

u(L) u ,u (L) u ,...u (L) u
                                                                   (25) 

 

To solver the first differential equation, with attention to the boundary conditions in 𝑥 =  𝐿 in 

Eq.  (25), the series of letters in the 𝑛 𝑡ℎ order by constant coefficients, which is the reply of the 

first differential equation, is considered as follows: 
 




    
n

i 1 2 n
i 0 1 2 n

n ni 0

u(x) lim a x lim(a a x a x ...a x ),                                                    (26) 

 

Boundary conditions are applied to the function as follows: 
 

a) The use of the boundary conditions for the reply of differential Eq. (26) is in the form of  
 

If 𝑥 = 0 
 

 

  


  




0 0

1 1

2 2

u(0) a u

u (0) a u

u (0) a u
                                                                                                                   (27) 

 

And when 𝑥 =  𝐿 
 







      

      


       




0

1

m 1

2 n
0 1 2 n L

2 n 1
1 2 3 n L

2 n 2
2 3 4 n L

u(0) a a L a L ... a L u

u (0) a 2a L 3a L ... na L u

u (0) 2a 6a L 12a L ... n(n 1)a L u
                                        (28) 

 

b) After substituting Eq. (28) into Eq. (24), the use of the boundary conditions on differential 

Eq. (24) is done according to the following manner: 
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 

 

(m)
0

(m)
1

p : f(u(0),u (0),u (0),...u (0))

p : f(u(L),u (L),u (L),...u (L))                                                                                    (29) 

 

With attention to the selection of n; (n < m) sentences from Eq. (26) and in order to creation a 

collection of equations which is consisted of (𝑛 +  1) equations and (𝑛 +  1) unknowns, we 

confront with a number of extra unknowns which are indeed the same coefficients of Eq. (26). So, 

to delete this issue, we should derive 𝑚 times from Eq. (24) with a view to the extra unknowns in 

the afore-mentioned collection differential equations and then this is the time to apply the 

boundary conditions of Eq. (25) on them. 
 





    

   

(m 1)
k

IV (m 2)
k

p : f (u ,u ,u ,...u )

p : f (u ,u ,u ,...u )                                                                                       (30) 

 

c) Usage of the boundary conditions on the derivatives of the differential equation 𝑃𝑘 in Eq. 

(30) is done in the form of 
 





    
 
    

(m 1)

k

(m 1)

f (u (0),u (0),u (0),...,u (0))

p :

f (u (L),u (L),u (L),...,u (L))

                                                                         (31) 

 





   
 
   

(m 2)

k

(m 2)

f (u (0),u (0),...,u (0))

p :

f (u (L),u (L),...,u (L))

                                                                                (32) 

 

The (𝑛 + 1) equations can be built from Eq. (27) to Eq. (32) so that (𝑛 + 1) unknown 

coefficients of Eq. (26) for instance, 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + ⋯ 𝑎𝑛 can be calculated. The reply of 

the nonlinear differential Eq. (24) will be gained by determining coefficients of Eq. (26). 

 

3.2.  Homotopy Perturbation Method (HPM)  

 

To explain the basic ideas of this manner, we consider the following nonlinear differential 

equation: 
 

  A(u) f(r) 0, r ,                                                                                                       (33) 
 

With the boundary condition of: 
 






u
B(u, ), r ,

n
                                                                                                                (34) 

 

Where 𝑓 (𝑟) a known analytical function, 𝐴 is a general differential operator, 𝐵 a boundary 

operator, (𝜕𝑢/𝜕𝑛) denotes differentiation along the normal drawn outwards from (𝛺) and (𝛤) is 

the boundary of the domain(𝛺). 

 A can be divided into two parts which are 𝐿 and 𝑁, where 𝐿 is linear part and 𝑁 is nonlinear 

part. Eq. (33) can therefore be rewritten as follows: 
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  L(u) N(u) f(r) 0,                                                                                                          (35) 
 

Homotopy perturbation structure is shown as follows: 
 

        0 0H( ,p) L( ) L(u ) pL(u ) p(N( ) f(r)) 0,                                                 (36) 
 

Where, 
 

  (r,p): [0,1] R,                                                                                                       (37) 
 

In Eq. (36), 𝑢0 is the first approximation that satisfies the boundary condition and 𝑝 ∈  [0, 1] 
is an embedding parameter. We can assume that the solution of Eq. (36) can be written as a power 

series in 𝑃, as following: 
 

      2
0 1 2p p ...                                                                                                         (38) 

 

and the best approximation for solution is: 
 


     p 1 0 1 2u lim ...                                                                                            (39) 

 

3.3. Collocation Method (CM) 

 

Weighted residual method was first introduced by Ozisk [40] to solve the differential equation 

in heat transfer, Collocation and Galerkin method are analytical methods that are based on the 

weighted residual method [41]. Suppose a differential operator 𝐷, is applied on a function 𝑢 to 

produce a function 𝑃 
 

D(u(x)) p(x),                                                                                                              (40) 
  

basic functions chosen from a linearly independent set. That is: 
 




 
1

n

i i
i

u u c                                                                                                                  (41) 

 

Now, when substituted into the differential operator, 𝐷 the result of the operations is not, in 

general, 𝑃(𝑥). Hence an error or residual will exist as 
 

   ( ) ( ) ( ( )) ( ) 0E x R x D u x p x                                                                             (42) 
 

The main idea of the CM is to force the residual to zero in some average sense over the 

domain. That is: 
 

  i

X

R(x)W (x) 0, i 1,2,3...n                                                                                   (43) 

 

Where the number of weight functions 𝑊𝑖 is exactly equal to the number of unknown 

constants 𝐶𝑖 in 𝑢 ̃function. The result is a set of 𝑛 algebraic equations for the unknown 

constants 𝐶𝑖. For collocation method, the weighting functions are taken from the family of Dirac 𝛿 

functions in the domain. That is, 𝑊𝑖(𝑥) = 𝛿(𝑥 − 𝑥𝑖). The Dirac 𝛿 function has the property of: 
 


   



i

i

1 if x x
(x x )

0 otherwise
 

 

Also, the residual function in Eq. (42) must be forced to be zero at specific points. 
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4. APPLICATION OF DESCRIBED METHODS IN THE PROBLEM 

 

4.1.  Akbari-Ganji’s Method (AGM) 

 

First of all, we rewrite the problem Eqs. (21) – (22) in the following order: 
 

 





         

       


IV 2 2.5 2.5

2 2.5

2.5

K(y) V Ha B (1 ) V ReA (1 ) (V V VV ) 0,

1
M(y) UV VU (U Ha B (1 ) U) 0,

ReA (1 )

                           (44) 

 

In AGM, the answer of the differential equation is considered as a finite series of polynomials 

with constant coefficients, as follows: 
 



        
7

k 2 3 4 5 6 7
k 0 1 2 3 4 5 6 7

k 0

V(y) a y a a y a y a y a y a y a y a y ,                      (45) 

 



      
5

k 2 3 4 5
k 0 1 2 3 4 5

k 0

U(y) d y d d y d y d y d y d y .                                                (46) 

 

The given answer function has the constant coefficients 𝑎0 to 𝑎7 and 𝑑0 to 𝑑5 which can 

easily be computed by applying the initial conditions from Eq. (23). It is notable that the more 

numbers of series sentence of Eqs. (45) - (46), the more precise the answer, and the answer is 

tended to the exact solution [42]. For example, solving to differential Eqs. (21) - (22) by used 

Akbari-Ganji’s Method with (𝑅𝑒 = 1, 𝐻𝑎 = 1, ∅ = 0.04).  

In AGM, the boundary conditions are applied in two ways: 
 

a) Applying the boundary conditions on Eqs. (45) - (46) is expressed as follows: 
 

 V V(BC), U U(BC).                                                                                                 (47) 
 

So the boundary conditions are applied with respect to Eq. (47) as follows: 
 

  

 

  

       

         

         

0

0

1

5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 2 3 4 5 6 7

U(0) 1 d 1  

V(0) 0 a = 0  

V (0) 0 a = 0

U(1) 0 d d d d d d 0

V(1) 1 a a a a a a a a 1

V (1) 0 a 2a 3a 4a 5a 6a 7a 0

                                           (48) 

 

b)  Boundary conditions are applied on Eq. (44), shown by 𝐾 (𝑦) and 𝑀 (𝑦), and also on their 

derivatives as 
 

  

  

K(V(y)) K(V(BC)) 0, K (V(BC)) 0,...

M(U(y)) M(U(BC)) 0,M (U(BC)) 0,...
                                                                 (49) 

 

Eq. (49) means that the answer functions are substituted into the set of Eq. (44) instead of the 

dependent parameters 𝑈 and 𝑉, and then the boundary conditions are applied on them as follows: 
 

   4 2K(V(0)) 1.203 24a 2.022a 0,                                                                         (50) 
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       7 6 5 4 3 2K(V(1)) 797.523a 329.65a 99.77a 11.86a 6.06a 2.02a 1.203 0, (51) 
 

    0 1 0 1 2 0M(U(0)) d .a a .d 1.66d 0.84d 0,                                                            (52) 
 

          

            



     

5 4 3 2 1 0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0 5 4 3 2 1 5

4 3 2 1 0

(d d d d d d ).(a 2a 3a 4a 5a 6a 7a )

(a a a a a a a a ).(5d 4d 3d 2d d ) 15.77 d

9.129d 4.144d 0.82d 0.84 d 0.84d

M(U(1))

0,

  (53) 

 

Applying the boundary conditions on the derivatives of the set of differential equations is 

done in the following forms: 
 

   5 3K (V(0)) 120a 6.06a 0,                                                                                         (54) 
 

      7 6 5 4 3K (V(1)) 2307.61a 598.63a 59.31a 24.27a 6.06a 0,                  (55) 
 

       1 1 0 2 1 1 0 2 3 1M(U(0)) d .a 2(d .a ) a .d 2(a .d ) 4.98d 0.84d 0,                 (56) 
 

         

         

 

  

             

     

5 4 3 2 1 1 2 3 4 5 6 7

5 4 3 2 1 0 2 3 4 5 6 7 1 2

3 4 5 6 7 5 4 3 2 1 7 6 5 4 3

2 1 0 2 3 4

(5d 4d 3d 2d d ). a 2a 3a 4a 5a 6a 7a

d d d d d d .(2a 6a 12a 20a 30a 42a ) a 2a

3a 4a 5a 6a 7a .(5d 4d 3d 2d d ) (a a a a a

a a a ). 2

M (U(1)) ( )

( )

d 6d 12

)

d

(

( 2      5 5 4 3 2 10d 45.64d 16.57d 2.46d 1.680d 0.84d) 0,

   (57) 

 

By solving a set of algebraic equations which is consisted of fourteen equations with fourteen 

unknowns from Eq. (48) and Eqs. (50)- (57), the constant coefficients of Eqs. (45)- (46) can 

easily be gained. 
 

          

       

0 1 2 3 4 5 6 7

0 1 2 3 4 5

a 0,a 0,a 3.099,a 2.3021,a 0.311,a 0.116,a 0.01,a 0.0024,

d 1,d 1.750,d 0.505,d 0.948,d 0.98,d 0.281
(58) 

 

By substituting the achieved constant coefficients into Eqs. (45) – (46), the solution of the set 

of coupled nonlinear differential equation is gained as follows: 
 

      

     

7 6 5 4 3 2

5 4 3 2

V(y) [ 0.00243y 0.0102y 0.116y 0.311y 2.302y 3.099y ],

U(y) 0.281y 0.985y 0.948y 0.505y 1.75y[ 1].
 (59) 

 

4.2. Homotopy Perturbation Method (HPM) 

 

In this section, we will apply the HPM to nonlinear ordinary differential Eqs. (21)– (22).    

According to the HPM, we construct a homotopy suppose the solution of Eqs. (21)– (22) has the 

form: 
 

      

   

4 4 2
2 2.5

4 4 2

3
2.5

3

d d d
H V,p (1 p)( V(y)) p( V(y) (Ha ).B.((1 ) ).( V(y))

dy dy dy

d d
R.A.((1 ) )(V(y).( V(y)) V(y).( V(y)))) 0,

dy dy

    (60) 
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

   


 

 


2

2

2.5

2
2 2.5

2

2.5

d
(1 p)( U(y))

d ddy
H(U,p) p(U(y).( V(y)) V(y).( U(y))

dy dyR.A.((1 ) )

d
U(y) (Ha ).B.((1 ) ).U(y)

dy
) 0.

R.A.((1 ) )

                 (61) 

 

We consider 𝑉(𝑦) and 𝑈(𝑦) as follows: 
 



     
m

i 2 3
i 0 1 2 3

i 0

V(y) p V (y) V (y) pV (y) p V (y) p f (y) ...                                        (62) 

 



     
m

i 2 3
i 0 1 2 3

i 0

U(y) p U (y) U (y) pU (y) p U (y) p U (y) ...                                     (63) 

 

Substituting Eqs. (62)– (63), into Eqs. (60)– (61), and some simplification and rearranging on 

powers of 𝑃- terms, we have: 
 



 

0

IV
0

0

P :

V 0,

U 0.

                                                                                                                                     (64) 

 

And boundary conditions are: 
 



 

0 0 0

0 0 0

y 0 : U = 1,  V =V  = 0,

y 1 : U = 0,  V =1, V  = 0.
                                                                             (65) 

 

     

     

         

         

1

2 2.5 IV 2.5 2.5
0 1 0 0 0 0

2 2.5 2.5 2.5
0 1 0 0 0 0

P :

Ha (1 ) B V V ReA (1 ) V V ReA (1 ) V V 0,

Ha (1 ) B U U ReA (1 ) V U ReA (1 ) V U 0,

 (66) 

 

And boundary conditions are: 
 



 

0 0 0

0 0 0

y 0 : U = 0,  V =V  = 0,

y 1 : U = 0,  V =0, V  = 0.
                                                                       (67) 

 

Solving Eqs. (64) and (66) with boundary conditions: 
 

  

  

3 2
0

0

V (y) 2y 3y ,

U (y) y 1,
                                                                                                             (68) 

 

       

     

   

     

     

   

2.5 7 2.5 6 2 2.5 5
1

2.5 4 2.5 3 2 2.5 3

2.5 2 2 2.5 2

V y 0.05714Re A (1 ) y 0.2 Re A (1 ) y 0.1Ha (1 ) B y

0.3Re A (1 ) y 0.3857Re A (1 ) y 0.2Ha (1 ) B y

0.228Re A (1 ) y 0.5Ha (1 ) B y ,

 (69) 
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       

     

 

      

     

 

2.5 5 2.5 4 2 2.5 3
1

2.5 3 2 2.5 2 2.5

2 2.5

U y 0.2Re A (1 ) y 0.7 Re A (1 ) y 0.1666Ha (1 ) B y

0.1Re A (1 ) y 0.5Ha (1 ) B y 0.45Re A (1 ) y

0.3332Ha (1 ) B y

   (70) 

 

In the same method, the rest of components were obtained by using the Maple package, that 

we obtain (Eqs. (62)– (63)) parameters of it. According to HPM, we can conclude: 
 

   

   

0 1 5

0 1 5

V(y) f (y) f (y) .. f (y),

U(y) U (y) U (y) ... U (y).
                                                                                    (71) 

 

4.3. Collocation Method (CM) 

 

Since trial function must satisfy the boundary conditions in Eq. (23), so they will be 

considered as 
 

       

     

2 3
1 2

2 3 2 4 2 5
3 4 5

U(y) 1 y c .( y y) c .( y y),

1 1 1 1 1 1
V(y) c .( y y ) c .( y y ) c .( y y ).

2 3 2 4 2 5

                                (72) 

 

We select the collocation locations 𝑦 = 1/4 to 3/4 which are evenly spaced throughout the 

domain. Introducing these values into the residual Eq. (72).Thus we have five algebraic equations 

for the determination of the five unknown coefficients 𝑐1 to 𝑐5. For example, using collocation 

method with (𝑅𝑒 = 0.5, 𝐻𝑎 = 0.52, ∅ = 0.05), V(y) and U(y) are as follows: 
 

   

   

2 3

2 3 4 5

U(y) [1 1.4274y 0.5097y 0.0822y ],

V(y) [3.284y 2.44y 0.217y 0.023y ].
                                                       (73) 

 

4.4. Solution whit Flex-PDE software: 

  

In this article, we first introduce the Flex-PDE software. Flex-PDE software is simple 

modeling software based on finite element manner for coding.  This software has capability to 

analyze the wide range of engineering issues like chemical reaction kinetic, tension and modeling 

of real mathematical and engineering issues [43]. 

 

4.4.1 Precision control in Flex-PDE Software: 

 

The advantage of this software is its precision control. Flex-PDE applies checking the 

compatibility of PDE equations integrals over the grid cells, thus estimating the relative error in 

the response variables and comparing it with the allowable limits of precision. If any one of the 

grid cells exceeds the allowable limit of error, that cell can be split and the solution process will 

be re-applied. Allowable limit error: This is called ERRLIM in this software and its default value 

is 0.002. This means that Flex-PDE corrects the grid when the estimation error in each variable 

(in ratio to the range of changes of that variable) is less than 0.2 percent per cell. This shows that 

this software has much compatibility with Numerical solutions. This software has rarely been 

used in the field of fluid mechanics and heat transfer so far. On the other hand, as this is an open-

source software, there is easy access to the dominant equations and it is possible to apply the 

desired changes to the equations or the material properties. On the other hand, the main capacity 

of this simple software is solving the complex non-linear equations, which happens abundantly in 

the field of fluid mechanics and heat transfer. In this study, we compare the outcomes of Flex-
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PDE software with acquired outcomes from VIM, CM and AGM by writing Flex-PDE software 

codes for Eqs. (21) - (22).  

 

5. RESULTS AND DISCUSSION 

 

5.1.  Comparison between AGM, CM, HPM methods and Flex-PDE software. 

 

  
 

Figure 2. Comparison of AGM, CM, HPM and Flex-PDE outcomes for dimensionless velocities 

a) U(y) and b) V(y) when 𝑅e=0.5, Ha=0.5 and ∅ =0.04. 

 

   
 

Figure 3. Comparison of AGM, CM, HPM and Flex-PDE results for dimensionless velocities c) 

U(y) and d) V(y) when Re=1, Ha=1 and ∅ =0.05. 

 

5.2.  Results of AGM 
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Figure 4. Impact of nanoparticle volume fraction (∅), on (a) U(y) and (b) V(y), for water with 

silver nanoparticles when Re = 1.5 and Ha = 4. 

 

  
 

Figure 5. Impact of Hartman number (Ha) on dimensionless velocities for water with silver 

nanoparticles a) U(y) and b) V(y) when Re=1.5 and ∅ =0.05. 

 

   
 

Figure 6. Effect of Hartman number (Ha) on dimensionless velocities for water with silver 

nanoparticles c) U(y) and d) V(y) when Re=4 and ∅ =0.04. 
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Figure 7. Impact of Reynolds number (Re) on dimensionless velocities for water with silver 

nanoparticles a) U(y) and b) V(y) when Ha=1 and ∅ =0.05. 

 

   
 

Figure 8. Impact of Reynolds number (Re) on dimensionless velocities for water with silver 

nanoparticles c) U(y) and d) V(y) when Ha=8 and ∅ =0.04. 

 

Table 2. Comparison between the AGM solution and Numerical outcomes for V (y). 
 

          Ha = 0.5, Re= 0.5,∅=0.04           Ha = 1, Re= 1, ,∅=0.05 

𝒚 NUM AGM Error NUM                  AGM Error 

0.0 0.000000 0.000000 0.000000 0.000000             0.000000 0.000000 

0.2 0.104855 0.104883 -2.800e-05 0.106128             0.106125 3.00e-06 

0.4 0.353633 0.353694 -6.100e-05 3.556199             0.355613 6.90e-06 

0.6 0.649341 0.649402 -6.100e-05 0.650461             0.650455 6.00e-06 

0.8 0.896466 0.896493 -2.700e-05 0.896581             0.896579 2.00e-06 

1 1.000000 1.000000 0.000000 1.000000             0.999999 1.00e-06 
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Table 3. Comparison between the AGM solution and Numerical outcomes for U (y). 
 

         Ha = 0.5, Re= 0.5,∅=0.04           Ha = 1, Re= 1, ,∅=0.05 

𝒚 NUM AGM Error NUM                  AGM Error 

0.0 1.000000 1.000000 0.000000 1.000000             1.000000 0.00000 

0.2 0.742490 0.739230 0.003260 0.676900             0.670410 0.006490 

0.4 0.512451 0.507217 0.005234 0.421168             0.410414 0.010754 

0.6 0.314786 0.309633 0.005153 0.233245             0.222850 0.010395 

0.8 0.146110 0.142992 0.003118 0.098688             0.092921 0.005767 

1 0.000000 0.000000 0.000000 0.000000            4.000e-10 -4.000e-10 

 

Table 4. Comparison between the HPM solution and Numerical outcomes for V (left) and U 

(Right) 
 

          Ha = 0.5, Re= 0.5,∅=0.04           Ha = 1, Re= 1, ,∅=0.05 

𝒚 NUM HPM Error NUM                  HPM Error 

0.0 0.000000 0.000000 0.000000 1.000000             1.000000 0.000000 

0.2 0.104855 0.104735 0.000120 0.676900             0.661324 0.015576 

0.4 0.353633 0.353422 0.000211 0.421168             0.421434 -0.000266 

0.6 0.649341 0.640251 0.009090 0.233245             0.234861 -0.001616 

0.8 0.896466 0.895436 0.001030 0.098688             0.098410 0.000278 

1 1.000000 1.000000 0.000000 0.000000             0.000000 0.000000 

 

  
 

Figure A. Comparison between the timing of the AGM outcomes, HPM and DTM [44] solution. 
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Figure 9. Contour plots of V (y) for Hartman number (Left) and nanoparticles fraction (Right). 

 

   
 

Figure 10. Contour plots of V (left) and U (Right) for Reynolds number (Re). 
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Figure (B). The comparison between Errors of AGM, HPM and DTM [44] for V (y) and U (y) 

when  Ha = 0.7, Re= 1.5,∅=0.06 

 

In this article, Akbari-Ganji’s Method (AGM), Collocation Method (CM) and Homotopy 

Perturbation Method (HPM) are applied to acquire a clear analytic solution of the laminar Nano 

fluid flow in a semi-porous channel in the attendance of monotone magnetic field (Fig. 1). In 

order to verify the precision of the present outcomes, we have compared AGM outcomes with 

Flex-PDE software, CM method, HPM method and Numerical Method (NUM). Comparison 

between the AGM, HPM outcomes with Numerical Method for different amounts of energetic 

parameters are shown in Tables (1-3) and Fig. (B). In these tables, for different amounts of 𝑦 in 

the range of [0, 1] error rate is very low, which indicates the good complying between the two 

methods. Plus, Fig(A) is shown the timings of the solution methods. fig (A) indicates that AGM 

and HPM are high accuracy manners to solve these issues. Figs. (2-3) the comparison between 

AGM, CM, HPM methods and Flex-PDE software to solve this problem for silver–water Nano 

fluid has been shown. As seen in this figs, for different amounts of active parameter error rate is 

very small, the slight error in results indicates that AGM is a high precision method to solve these 

issues. As well as, in this research the efficacy of the three dimensionless numbers such as the 

Hartmann number, Reynolds number and Nano fluid volume fraction on non-dimensional 

velocity profiles are studied. Fig. 4 shows the impact of nanoparticle volume fraction (∅) on V(y) 

and U(y) for water with silver nanoparticles when Ha = 4 and Re = 1.5. For both cases, velocity 

profiles thickness declines with the increment of nanoparticle volume fraction. Figs. (5-6) show 

the impact of Hartman number (Ha) on dimensionless velocities for water with silver. Generally, 

when the magnetic field is imposed on the enclosure, the velocity field repressed owing to the 

retarding influence of the Lorenz force. For down Reynolds number (Re), as Hartmann number 

(Ha) increases V(y) increases for 𝑦 < 𝑦𝑚 but opposite trend is observed for          𝑦 >  𝑦𝑚, 𝑦𝑚 is 

a meeting dot that all curves common simultaneously at this dot. Also, when Re increases this 

meeting point small shifts to the solid wall. Figs. (7-8) show the influence of Reynolds number 

(Re) on dimensionless velocities for water with silver nanoparticles when Ha = 1 and Ha = 8. 

According to the figs. (7-8), by increasing of Re the value of dimensionless velocities decline. 

Also in this figs, when Ha is small, the impact of Re number is very perceptible but in Ha large, 

Re number is less impact on the velocity profiles. In addition, it is noteworthy that the Re shows 

the relative importance of the inertia impact compared to the viscous influence. Plus, 

increasing Re leads to an increase in the amount of the skin friction factor. Furthermore, Contour 

plots of the impact of nanoparticle volume fraction (∅), Hartmann number (Ha) and Reynolds 

number (Re) in wide range of data are depicted in Figs. (9-10). 
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6. CONCLUSION 

 

In the present study, laminar Nano fluid flow in a semi-porous channel in the attendance of 

uniform magnetic field has been solved using Akbari-Ganji’s Method (AGM). The concept of 

Akbari-Ganji’s Method (AGM) is briefly introduced and employed to derive solutions of 

nonlinear equations. The comparison of the outcomes of AGM with the outcomes of the CM, the 

Numerical Method (fourth-order Runge-Kutta), HPM method and Flex-PDE software outcomes 

was conducted. This research shows that AGM is a strong method to solve nonlinear differential 

equations. Also, the impact of the three dimensionless numbers like the Nano fluid volume 

fraction, Reynolds number and Hartmann number on non-dimensional velocity profiles are 

studied. Outcomes show when 𝐻𝑎 is small, the impact of Re number is very perceptible on the 

velocity profiles but in Ha large, Re number is less impact. Also, velocity profiles thickness 

decreases with the increase of nanoparticle volume fraction (∅). 

 

Appendix A. 
Parts of Flex-PDE software codes: 

Title' Nano fluid Flow in a Semi-Porous Channel'        Coordinates      cartesian1        Variables       

Definitions     𝑅𝑒 = 1     𝐻𝑎 = 1    𝑝ℎ𝑖 = 0.04    𝜌𝑜𝑓 = 997.1     𝜌𝑜𝑠 = 8933    𝛿𝑓 = 0.05    

𝛿𝑠 = 5.69 × 10(−7)  
𝐴 =  (1 − ∅) + (𝜌𝑜𝑠/𝜌𝑜𝑓)  × ∅  𝐵=1 +  (3 × ∅ ×  ((𝛿𝑠/𝛿𝑓) − 1))/ ((𝛿𝑠/𝛿𝑓)  + 2)  +

 (((𝛿𝑠/𝛿𝑓) − 1)  × ∅)           Equations       𝐻:    𝐻 = 𝑑𝑥𝑥 (𝑉)          

𝑉:       𝑑𝑥𝑥 (𝐻) − 𝐻𝑎2 × 𝐵 ×  (1 − ∅) 2.5 × 𝑑𝑥𝑥 (𝑉) − 𝑅𝑒 ×  𝐴 ×  (1 − ∅) 2.5 × (𝑑𝑥 (𝑉)  ×
𝑑𝑥𝑥 (𝑉) − 𝑉 ×  𝑑𝑥 (𝐻))  = 0         

𝑈:        𝑈 ×  𝑑𝑥 (𝑉) − 𝑉 ×  𝑑𝑥 (𝑈) − (1/𝑅𝑒)  ×  (1/ (𝐴 ×  (1 − ∅) 2.5))  × (𝑑𝑥𝑥 (𝑈) − 𝐻𝑎2 ×
𝐵 ×  (1 − ∅) 2.5 × 𝑈)  = 0          

Boundaries          Region 1          Start (0)     Point value (𝑉) =0    Point load (𝐻) =0    Point value 

(𝑈) =1        Line to (1)        Point value (𝑉) =1          Point load (𝐻) =0        Point value (𝑈) =0   

 Plots   

Elevation (𝑉) from (0) to (1)            Elevation (𝑈) from (0) to (1)        

 End.  

   

Appendix B. 

Nomenclature 

𝑨∗, 𝑩∗ Constant parameter  Greek symbols 

𝑷 Fluid pressure 𝝊 Kinematic viscosity 

𝒒 Mass transfer parameter 𝝈    Electrical conductivity 

𝒙𝐤 General coordinates 𝜺   Aspect ratio h/Lx 

𝒇    Velocity function 𝝁   Dynamic viscosity 

�̅� Fluid thermal conductivity 𝝆   Fluid density 

𝒏 Power law index in temperature distribution   

𝒖, 𝒗 
Dimensionless components velocity in x and y 

directions, respectively 
  

𝒖∗, 𝒗∗ 
Velocity components in x and y directions 

respectively 
  

𝒙, 𝒚 
Dimensionless horizontal, vertical coordinates 

respectively 
  

𝒙∗, 𝒚∗ Distance in x, y directions parallel to the plates   
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