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ABSTRACT 

 

We introduce and study some equivalence relations on a canonical hypergroup to construct a quotient of such 

hyperstructures. In this regard, we study the relationships among these relations and obtain some conditions 

such that the extracted quotient structures are equal. Finally, the relationship between the heart of a canonical 

hypergroup and its quotient via an equivalence relation is studied and some related basic results are obtained. 
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1. INTRODUCTION  

 

The concept of hyperstructure, especially hypergroup, was introduced by Marty in 1934 

[16]. Hyperstructures have many applications to other areas of various sciences. Many books and 

papers have been published related to the applications of hyperstructures in the fields of 

geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough 

sets, automata, cryptography, combinatorics, codes, artificial intelligence, probabilistic, etc, for 

example, see [1-6, 8, 11, 17]. 

Canonical hypergroup as a special kind of hypergroups is indeed a natural generalization of 

the concept of abelian group. This kind of hypergroup is a basic addidive hyperstructure of many 

hyperstructures, e.g., Krasner hypermodules [19]. As it is well known, after introducing an 

algebraic structure, defining and studying its quotient by some substructure is a natural matter. In 

this regard we chiefly study the concept of quotient of a canonical hypergroup in detail. 

 This paper is organized as follows. In Section 2, we state some basic and fundamental 

concepts of hyperstructures theory. In Section 3, we study some relations on a canonical 

hypergroup, the related quotients and the relationship among them. 

 

2. PRELIMINARIES  
 

Here, we state some requirements. Let 𝑃(𝑋) denote the set of all subsets of 𝑋, 𝑃(𝑋)∗ = 

𝑃(𝑋) ∖ {∅} and let 𝐻 be a non-empty set. Then 𝐻 together with the map 
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∙ :  𝐻 × 𝐻 ⟶ 𝑃(𝐻)∗ 

(𝑎, 𝑏) ⟼ 𝑎 ∙ 𝑏 
 

denoted by (𝐻,∙) is called a hypergroupoid and ∙ is called a hyperproduct or hyperoperation 

on 𝐻. Let 𝐴, 𝐵 ⊆ 𝐻. The hyperproduct 𝐴 ∙ 𝐵 is defined as 𝐴 ∙ 𝐵 =∪(𝑎,𝑏)∈𝐴×𝐵 𝑎 ∙ 𝑏. If there is no 

confusion, then for simplicity {𝑎}, 𝐴 ∙ {𝑏} and {𝑎} ∙ 𝐵 are denoted by 𝑎, 𝐴 ∙ 𝑏 and 𝑎 ∙ 𝐵, 

respectively. Also, we use 𝑎𝑏 instead of 𝑎 ∙ 𝑏 for 𝑎, 𝑏 ∈ 𝐻. 
 

Definition 2.1. A non-empty set 𝑆 together with the hyperoperation ∙, denoted by (𝐻,∙) is called a 

semihypergroup if for all 𝑥, 𝑦, 𝑧 ∈ 𝑆, (𝑥 ∙ 𝑦) ∙ 𝑧 = 𝑥 ∙ (𝑦 ∙ 𝑧). 
 

Definition 2.2. A semihypergroup (𝐻,∙) satisfying 𝑥 ∙ 𝐻 = 𝐻 ∙ 𝑥 = 𝐻 for every 𝑥 ∈ 𝐻, is called a 

hypergroup. 
 

Let 𝐻 be a semihypergroup and 𝒰(𝐻) denote the set of all finite hyperproducts of elements of 

𝐻. Let 𝛽 be the relation ⋃𝑛≥1𝛽𝑛, where 𝛽1 is the diagonal relation and for every integer 𝑛 >
1, 𝛽𝑛 is the relation: 
 

𝑥𝛽𝑛𝑦 ⟺ ∃(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐻𝑛:  𝑥, 𝑦 ∈ ∏ 𝑥𝑖
𝑛
𝑖=1 . 

 

By �̂� we mean the transitive closure of 𝛽. 
 

Remark 2.3. For 𝑥, 𝑦 ∈ 𝐻, 𝑥�̂�𝑦 if and only if there exist 𝑛 ∈ ℕ, 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐻 and 

𝑢1, 𝑢2, … , 𝑢𝑛−1 ∈ 𝒰(𝐻) such that 𝑥 = 𝑥1, 𝑥𝑛 = 𝑦 and 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1, that is 

𝑥 = 𝑥1𝛽𝑥2𝛽𝑥3 … 𝑥𝑛−1𝛽𝑥𝑛 = 𝑦. 
 

In other words, 𝑥�̂�𝑦 if and only if there are 𝑛 ∈ ℕ, 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐻 and 𝑖1, 𝑖2, … , 𝑖𝑛−1 ∈ ℕ 

such that 𝑥 = 𝑥1𝛽𝑖1
𝑥2𝛽𝑖2

𝑥3 … 𝑥𝑛−1𝛽𝑖𝑛−1
𝑥𝑛 = 𝑦. 

The relation 𝛽  was introduced by Koskas [15] and studied mainly by Corsini [7]. Referring to 

[10, 21], there is a relation denoted by 𝛽∗ and called the fundamental relation of 

(semi)hypergroup 𝐻, as the smallest equivalence relation such that (𝐻/𝛽∗,⊗) is a 

(semi)group, where 
 

𝛽∗(𝑥) ⊗ 𝛽∗(𝑦) = 𝛽∗(𝑧)  ∀𝑥, 𝑦 ∈ 𝐻, ∀𝑧 ∈ 𝑥𝑦. 
 

The quotient (𝐻/𝛽∗,⊗) is called the fundamental (semi)group of the (semi)hypergroup (𝐻,∙).  

It is shown that the fundamental relation of a hypergroup 𝛽∗  is indeed �̂� , i.e., �̂� = 𝛽∗ (see [21]). 

As a very important result, Freni [14] proved 𝛽 is transitive on hypergroups, i.e, 𝛽 = �̂�. 
 

Remark 2.4. For every two distinct hypergroups 𝐻 and 𝐾 with K⊆H, we use 𝛽𝐾
∗  and 𝛽𝐻

∗  to 

distinguish their fundamental relations. Note that 𝛽𝐾
∗ ⊆ 𝛽𝐻

∗  for all 𝑥 ∈ 𝐾. 
 

Definition 2.5. [10, Definition 2.5.18] Let (𝐻,∙) is a hypergroup and consider the canonical 

projection 𝜑𝐻: 𝐻 ⟶  𝐻/𝛽∗ with 𝜑𝐻(𝑥) = 𝛽∗(𝑥). The heart of 𝐻 is the set 𝜔𝐻 = {𝑥 ∈
𝐻| 𝜑𝐻(𝑥) = 1}, where 1 is the identity of the group 𝐻/𝛽∗. 
 

Definition 2.6. Let 𝑒 be an element of the semihypergroup (𝐻, +)  such that 𝑒 + 𝑥 = 𝑥 for all 

𝑥 ∈ 𝐻. Then 𝑒 is called a left scalar identity. 
 

Similarly, a right scalar identity is defined. An element 𝑥 of the semihypergroup (𝐻, +) is 

called a scalar identity if it is a left and right scalar identity. Every scalar identity is unique. We 

denote the scalar identity of  𝐻 by 0𝐻. 

Let 0𝐻 be the scalar identity of hypergroup (𝐻, +)  and 𝑥 ∈ 𝐻. An element 𝑥′ ∈ 𝐻 is called an 

inverse of 𝑥 in (𝐻, +) if 0𝐻 ∈ 𝑥 + 𝑥′ ∩ 𝑥′ + 𝑥. 

A semihypergroup with a scalar identity is called a hypermonoid. 
 

Definition 2.7. A non-empty set 𝑀 together with the hyperoperation + is called a canonical 

hypergroup if the following axioms hold: 
 

1. (𝑀, +) is a semihypergroup (associativity); 
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2.  (𝑀, +) is commutative (commutativity); 

3.  there is a scalar identity 0𝑀 (existence of scalar identity); 

4.  for every 𝑥 ∈ 𝑀, there is a unique element denoted by −𝑥 called inverse of 𝑥 such that 

0𝑀 ∈ 𝑥 + (−𝑥), which for simplicity, we write 0𝑀 ∈ 𝑥 − 𝑥 (existence of inverse); 

5. ∀𝑥, 𝑦, 𝑧 ∈ 𝑀:  𝑥 ∈ 𝑦 + 𝑧 ⟹ 𝑦 ∈ 𝑥 − 𝑧 (reversibility). 
 

Sometimes, for simplicity, we use 𝑀 instead of (𝑀, +). 
 

Definition 2.8. A non-empty subset 𝑁 of 𝑀 is called a canonical subhypergroup of 𝑀, denoted by 

𝑁 ≤ 𝑀 if it is a canonical hypergroup itself. 
 

It is easy to verify that 𝑁 ≤ 𝑀 if and only if 𝑁 ≠ ∅ and 𝑥 − 𝑦 ⊆ 𝑁 for all 𝑥, 𝑦 ∈
𝑁. Clearly, always 0𝑀 ∈ 𝑁. 

For more basic concepts and definitions about hyperstructures, we refer the reader to the 

books [7-10] and the papers [12-14, 18]. 

 

3. MAIN RESULTS 

 

3.1.  Structure of 𝑴/𝑵 

 

Here, we plan to study (the structure of ) a quotient of a canonical hypergroup by some its 

canonical subhypergroup. Let (𝑀, +) be a canonical hypergroup, 𝑁 be an arbitrary canonical 

subhypergroup of 𝑀 and set 𝑀/𝑁: = {𝑥 + 𝑁| 𝑥 ∈ 𝑀}. Consider the hyperaddition +′ on 𝑀/𝑁 

defined as 
 

(𝑥 + 𝑁) + ′(𝑦 + 𝑁) = {𝑡 + 𝑁| 𝑡 ∈ 𝑥 + 𝑦}.                                                                                (3.1) 
 

In order to be more ready and familiar with the hyperoperation +′ (or −′ later on) defined on 

𝑀/𝑁 in the next subsections, first we intentionally study the structure of (𝑀/𝑁, +′) in detail. 

In the sequel, −𝑥 denotes the inverse of 𝑥 in 𝑀 and we write 𝑥 − 𝑦 instead of 𝑥 + (−𝑦). Also, for  

convenience, we use �̅� instead of 𝑥 + 𝑁. 
 

Lemma 3.1. �̅� ∩ 𝑥′̅ ≠ ∅ implies �̅� = 𝑥′̅. 
 

Proof. Let 𝑡 ∈ �̅� ∩ 𝑥′̅. Clearly 𝑡 ∈ 𝑥 + 𝑛′ and 𝑡 ∈ 𝑥′ + 𝑛′′ for some 𝑛′, 𝑛′′ ∈ 𝑁. Since 𝑥′ ∈ 𝑡 −
𝑛′′, we have 𝑥′ ∈ 𝑡 − 𝑛′′ ⊆ 𝑥 + 𝑛′ − 𝑛′′ ⊆ 𝑥 + 𝑁. So 𝑥′ + 𝑁 ⊆ 𝑥 + 𝑁 + 𝑁 = 𝑥 + 𝑁 and thus 

�̅� ⊆ 𝑥′̅. Similarly, 𝑥′̅ ⊆ �̅�.  
 

We prove (𝑀/𝑁, +′) is a canonical hypergroup. Indeed, 
 

Proposition 3.2. For every canonical hypergroup 𝑀, if 𝑁 ≤ 𝑀, then (𝑀/𝑁, +′) is a canonical 

hypergroup. 
 

Proof. We first show that +′ is well defined, i.e., if 𝑥1̅̅̅ = 𝑥2̅̅ ̅ and 𝑦1̅̅ ̅ = 𝑦2̅̅ ̅ , then 𝑥1̅̅̅+′ 𝑦1̅̅ ̅ =
𝑥2̅̅ ̅+′ 𝑦2̅̅ ̅.  
 

Let 𝑧̅ ∈ 𝑥1̅̅̅+′ 𝑦1̅̅ ̅. Then there exists some 𝑡 ∈ 𝑥1 + 𝑦1 such that 𝑧̅ = 𝑡̅  or 𝑧 + 𝑁 = 𝑡 + 𝑁. So 

𝑧 ∈ 𝑡 + 𝑛 for some 𝑛 ∈ ℕ. Thus 𝑧 ∈ 𝑡 + 𝑛 ⊆ 𝑥1 + 𝑦1 + 𝑛. On the other hand, 𝑥1̅̅̅ = 𝑥2̅̅ ̅ and 

𝑦1̅̅ ̅ = 𝑦2̅̅ ̅  imply that 𝑥1 ∈ 𝑥2 + 𝑛1 and 𝑦1 ∈ 𝑦2 + 𝑛2 for some 𝑛1, 𝑛2 ∈ ℕ. Thus 𝑧 ∈ 𝑥1 + 𝑦1 +
𝑛 ⊆ 𝑥2 + 𝑦2 + 𝑛1 + 𝑛2 + 𝑛 from commutativity. So 𝑧 ∈ 𝑡′ + 𝑛3 for some t'∈ 𝑥2 + 𝑦2 and some 

𝑛3 ∈ ℕ, and thus 𝑧 ∈ 𝑡′̅ ∩ 𝑧̅. Hence from Lemma 3.1, 𝑡′̅ = 𝑧̅ which 𝑡′̅ ∈ 𝑥2̅̅ ̅+′ 𝑦2̅̅ ̅. Thus 𝑥1̅̅̅+′ 𝑦1̅̅ ̅ ⊆
𝑥2̅̅ ̅+′ 𝑦2̅̅ ̅. Similarly, 𝑥2̅̅ ̅+′ 𝑦2̅̅ ̅ ⊆ 𝑥1̅̅̅+′ 𝑦1̅̅ ̅. Consequently, 𝑥1̅̅̅+′ 𝑦1̅̅ ̅ = 𝑥2̅̅ ̅+′ 𝑦2̅̅ ̅. 
Associative axiom: 
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(�̅� +′ �̅�)+′𝑧̅ = ( ⋃ {�̅�}

𝑤∈𝑥+𝑦

)+′𝑧̅ 

= ( ⋃ (�̅�

𝑤∈𝑥+𝑦

+′𝑧̅)= ⋃ {𝑡̅}
𝑤∈𝑥+𝑦
𝑡∈𝑤+𝑧

 

 

= ⋃ {𝑡̅}

𝑤∈(𝑥+𝑦)+𝑧

= ⋃ {𝑡̅}

𝑤∈𝑥+(𝑦+𝑧)

 

= ⋃ {𝑡̅}
𝑣∈𝑦+𝑧
𝑢∈𝑥+𝑣

= ( ⋃ (�̅�

𝑣∈𝑦+𝑧

+′�̅�) 

= �̅�+′(⋃ {�̅�}𝑣∈𝑦+𝑧 ) = �̅�+′(�̅�+′𝑧̅) 
 

Commutativity axiom: 

Clearly, �̅� + ′�̅� = {𝑡̅| 𝑡 ∈ 𝑥 + 𝑦} = {𝑡̅| 𝑡 ∈ 𝑦 + 𝑥} = �̅� + ′�̅�. 

Existence of (the unique) scalar identity: 

0𝑀
̅̅ ̅̅ = 𝑁 is the identity of (𝑀/𝑁, +′). In fact, 

0𝑀
̅̅ ̅̅ +′�̅� = {𝑡̅ | 𝑡 ∈ 0𝑀 + 𝑥} = {𝑡̅| 𝑡 ∈ {𝑥}} = {�̅�}. Similarly, �̅� + ′0_𝑀̅̅ ̅̅ ̅̅ = {�̅�}. 

Existence of inverse of an element: 

�̅� has an inverse and that is −𝑥̅̅ ̅̅ . Indeed, 
 

�̅� + ′(−𝑥̅̅ ̅̅ ) = { 𝑡̅| 𝑡 ∈ 𝑥 + (−𝑥)} = {𝑡̅| 𝑡 ∈ 𝑥 − 𝑥} ∋ 0𝑀
̅̅ ̅̅ , 

 

since 0𝑀 ∈ 𝑥 − 𝑥. (Also 0𝑀
̅̅ ̅̅ ∈ (−𝑥̅̅ ̅̅ ) + ′�̅� from commutativity.) So −𝑥̅̅ ̅̅  is the inverse of �̅�. In 

order to show the uniqueness of inverse, let �̅� ∈ 𝑀/𝑁 such that 0𝑀
̅̅ ̅̅ ∈ �̅� + ′�̅�. Then 0𝑀

̅̅ ̅̅ ∈ {𝑡̅| 𝑡 ∈
𝑥 + 𝑦} = {𝑡̅| 𝑡 ∈ 𝑥 + 𝑦}. So there exists some 𝑧 ∈ 𝑥 + 𝑦 such that 0𝑀

̅̅ ̅̅ = 𝑧̅ or 𝑁 = 𝑧 + 𝑁. So 

𝑧 = 𝑛 for some 𝑛 ∈ ℕ. From the reversibility axiom we have 𝑦 ∈ −𝑥 + 𝑛 ⊆ −𝑥 +
𝑁. Consequently 𝑦∈ − 𝑥 + 𝑁. Now since 𝑦 ∈ �̅� ∩ −𝑥̅̅ ̅̅ , we get �̅� = −𝑥̅̅ ̅̅  by Lemma 3.1. 

Sometimes we may use 0M/N and −′�̅� to denote 0𝑀 and −𝑥̅̅ ̅̅  (the inverse of 

�̅�), respectively. So we can speak of hyperoperation −′ on 𝑀/𝑁 and write �̅� − ′�̅� instead of 

�̅� + ′(−′�̅�). 
 

 Reversibility axiom: 
 

�̅� ∈ �̅�+′𝑧̅ ⟹ ∃𝑡 ∈ 𝑦 + 𝑧, �̅� = 𝑡̅ 
⟹ 𝑦 ∈ 𝑡 − 𝑧,  �̅� = 𝑡̅ 

⟹  �̅� ∈ 𝑡̅−′  �̅�,  �̅� = 𝑡̅ 
 

So �̅� ∈ �̅� + ’(−𝑧̅̅ ̅̅ ). 

Hence (𝑀/𝑁, +′) is a canonical hypergroup. 

The  following result states another way to present the hyperoperation +′ in (3.1). 
 

Proposition 3.3. The hyperoperation +′ on 𝑀/𝑁 is the same as +′′ defined by: 
 

�̅�+′′�̅�: = {𝑡̅| 𝑡 ∈ �̅� + �̅�}. 
 

Proof. Let 𝐴 = {𝑡 + 𝑁| 𝑡 ∈  𝑥 + 𝑦} and 𝐵 = {𝑡 + 𝑁| 𝑡 ∈ 𝑥 + 𝑁 + 𝑦 + 𝑁}. We show 𝐴 = 𝐵. Let 

𝑡 + 𝑁 ∈ 𝐴. Then clearly, 𝑡 ∈  𝑥 + 𝑦 ⊆ 𝑥 + 𝑁 + 𝑦 + 𝑁 implies 𝑡 + 𝑁 ∈ 𝐵. So 𝐴 ⊆
𝐵. Conversely, suppose 𝑡 + 𝑁 ∈ 𝐵. So there exists 𝑝 ∈ 𝑥 + 𝑦 and 𝑛 ∈ 𝑁 + 𝑁 ⊆ 𝑁 such that 

𝑡 ∈ 𝑝 + 𝑛. Clearly, 𝑡 ∈ 𝑡̅ ∩ �̅�. Hence 𝑡̅ = �̅� by Lemma 3.1. On the other hand, 𝑝 ∈ 𝑥 + 𝑦 implies 

�̅� ∈ 𝐴. So 𝑡̅ ∈ 𝐴. Consequently, 𝐵 ⊆ 𝐴. 
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3.2.  Equivalent quotients to 𝑴/𝑵 

 

Let (𝑀, +) be a canonical hypergroup and 𝑁 ≤ 𝑀. In this section, we investigate some 

relations 𝜌 on a canonical hypergroup 𝑀 and conditions such that 𝑀/𝜌 is the same as 𝑀/𝑁. 

We begin with the following result: 
 

Lemma 3.4.In any canonical hypergroup 𝐴 for all 𝑥, 𝑦 ∈ 𝐴, 𝑥 = 𝑦 if and only if 0𝐴 ∈ 𝑥 − 𝑦. 
 

Proof. Let 𝑥 = 𝑦 ∈ 𝐴. Then we have 𝑥 − 𝑦 = 𝑦 − 𝑦 ∋ 0𝐴. Conversely, let 0𝐴 ∈ 𝑥 − 𝑦 = 𝑥 +
(−𝑦) and thus 0𝐴 ∈ (−𝑦) + 𝑥. On the other hand, it is clear that always 0𝐴 ∈ 𝑦 + (−𝑦) =
(−𝑦) + 𝑦. So 𝑥 and 𝑦 are inverses of −𝑦. For the uniqueness of inverse (of −𝑦), we have 𝑥 = 𝑦. 
 
 

Remark 3.5. Note that by reversibility axiom, we can also prove that 0𝐴 ∈ 𝑥 − 𝑦 implies 𝑥 = 𝑦. 
If we apply Lemma 3.4 for 𝑀/𝑁, then we have 
 

�̅� = �̅� ⟹  𝑁 = 0𝑀
𝑁

∈ �̅� − ′�̅� = �̅� + ′−𝑦̅̅ ̅̅  

⟹ ∃𝑡 ∈  𝑥 − 𝑦, 0𝑀/𝑁 = 𝑁 = 𝑡̅ 

⟹ ∃𝑡 ∈  𝑥 − 𝑦, 𝑁 = 𝑡 + 𝑁 

⟹ ∃𝑡 ∈  𝑥 − 𝑦, 𝑡 ∈ 𝑁 

⟹ 𝑡 ∈  𝑥 − 𝑦 ∩ 𝑁 ≠ ∅ 
 

On the other hand, 
 

𝑡 ∈  𝑥 − 𝑦 ∩ 𝑁 ≠ ∅⟹ 𝑡 ∈  𝑥 + (−𝑦), 𝑡 ∈ 𝑁 

⟹ 𝑡 + 𝑁 ∈  �̅�+′(−𝑦̅̅ ̅̅ ) = �̅� − ′�̅�, 𝑡 ∈ 𝑁 

⟹ 0𝑀/𝑁 = 𝑁 = 𝑡 + 𝑁 ∈ �̅� − ′�̅� 
 

Hence from Lemma 3.4, we have �̅� = �̅�. Thus 
 

Proposition 3.6. �̅� = �̅� if and only if 𝑥 − 𝑦 ∩ 𝑁 ≠ ∅. 
 

Proposition 3.7. {𝑁} = �̅� − ′�̅� if and only if 𝑥 − 𝑦 ⊆ 𝑁. 
 

Proof. 
 

{𝑁} = �̅�−′ �̅� ⟺ {𝑁} = �̅�+′ −𝑦̅̅ ̅̅ = {𝑡 + 𝑁| 𝑡 ∈ 𝑥 + (−𝑦)} 
⟺ 𝑁 = 𝑡 + 𝑁, ∀𝑡 ∈ 𝑥 − 𝑦 

⟺ ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑥 − 𝑦:  𝑡 + 𝑛 ⊆ 𝑁 

⟺ {𝑡} = 𝑡 + 0𝑁 ⊆ 𝑁, ∀𝑡 ∈ 𝑥 − 𝑦 
⟺ 𝑥 − 𝑦 ⊆ 𝑁. 

 

Lemma 3.8. Let 𝑁 be a canonical subhypergroup of 𝑀 such that �̅� − ′�̅� is a singleton. Then 
 

𝑥 − 𝑦 ∩ 𝑁 ≠ ∅ ⟺ �̅� = �̅� 

⟺ 𝑁 ∈ �̅� − ′�̅� 
⟺ �̅� − ′�̅� = {𝑁} 

⟺ 𝑥 − 𝑦 ⊆ 𝑁.  
 

Proof. From Proposition 3.6,  𝑥 − 𝑦 ∩ 𝑁 ≠ ∅ if and only if �̅� = �̅�. a  ht  Bssumption and 

applying Lemma 3.4 for 𝐴 = 𝑀/𝑁, we have �̅� = �̅� if and only if {𝑁} = �̅� − ′�̅�. Finally, use 

Proposition 3.7. 
 

 The next result is just for clarifying the likelihood of confusion may be caused by + or +′ in 

the study of the quotient 𝑀/𝑁. 
 

Proposition 3.9. �̅� + �̅� = 𝑁 if and only if 𝑥 + 𝑦 ⊆ 𝑁, i.e., 
 

𝑥 + 𝑁 + 𝑦 + 𝑁 = 𝑁 ⟺ 𝑥 + 𝑦 ⊆ 𝑁. 
 

Proof. From commutativity and since 𝑁 + 𝑁 = 𝑁, we have 
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𝑥 + 𝑁 + 𝑦 + 𝑁 = 𝑁 ⟹ 𝑥 + 𝑦 + 𝑁 = 𝑁. 
 

So for every 𝑡 ∈ 𝑥 + 𝑦, we have 𝑡 + 𝑁 ⊆ 𝑁. Thus for every 𝑡 ∈ 𝑥 + 𝑦, and for all 𝑛 ∈ ℕ, 

𝑡 + 𝑛 ⊆ 𝑁. In particular {𝑡} = 𝑡 + 0𝑁 ⊆ 𝑁 and consequently, 𝑥 + 𝑦 ⊆ 𝑁. Conversely, suppose 

𝑥 + 𝑦 ⊆ 𝑁. So for every 𝑡 ∈ 𝑥 + 𝑦, from the reproductivity axiom 𝑡 + 𝑁 = 𝑁. Thus 𝑥 + 𝑦 + 𝑁 =
𝑁. Now from commutativity and since 𝑁 + 𝑁 = 𝑁 we have 𝑁 = 𝑥 + 𝑦 + 𝑁 = 𝑥 + 𝑦 + 𝑁 + 𝑁 =
𝑥 + 𝑁 + 𝑦 + 𝑁. 

Now let 𝑀 be a canonical hypergroup and 𝑁 be a canonical subhypergroup of 𝑀. Consider 

the following relations on 𝑀: 

for all 𝑥, 𝑦 ∈ 𝑀, 
 

𝑥𝜌1𝑦 ⟺ 𝑥 + 𝑁 = 𝑦 + 𝑁 

𝑥𝜌2𝑦 ⟺ 𝑥 ∈ 𝑦 + 𝑁 

𝑥𝜌3𝑦 ⟺ 𝑥 − 𝑦 ⊆ 𝑁 

𝑥𝜌4𝑦 ⟺ 𝑥 − 𝑦 ∩ 𝑁 ≠ ∅. 
 

In the sequel, our aim is to study the relationship among these relations. 
 

Proposition 3.10. Let 𝑁 be a canonical subhypergroup of 𝑀. Then 
 

1. 𝑥𝜌1𝑦 ⟺ 𝑥𝜌2𝑦, 
2. 𝑥𝜌2𝑦 ⟺ 𝑥𝜌4𝑦. 

 

Proof. 1. Let 𝜌1𝑦  , i.e., �̅� = �̅�. So 𝑥 + 𝑁 = 𝑦 + 𝑁 implies that 𝑥 ∈ 𝑦 + 𝑁. Thus 

𝑥𝜌2𝑦. Conversely, let 𝑥𝜌2𝑦, i.e, 𝑥 ∈ �̅�. Since 𝑥 ∈ �̅� ∩ �̅�, we have �̅� = �̅� from Lemma 3.1. Thus 

the result is true. 
 

2. Let 𝜌2𝑦 . So 𝑥 ∈ 𝑦 + 𝑁 and thus 𝑥 ∈ 𝑦 + 𝑛 for some 𝑛 ∈ ℕ. The reversibility axiom 

implies 𝑛 ∈ −𝑦 + 𝑥 ∩ 𝑁 ≠ ∅. From the commutativity axiom 𝑥 − 𝑦 ∩ 𝑁 ≠ ∅. Thus 𝑥𝜌4𝑦. If 

𝑥𝜌4𝑦, then 𝑥 − 𝑦 ∩ 𝑁 ≠ ∅ and thus there exists some 𝑛 ∈ 𝑥 − 𝑦 ∩ 𝑁. So 𝑥 ∈ 𝑛 + 𝑦 or 𝑥 ∈ 𝑦 + 𝑛 

by the commutativity axiom. Therefore 𝑥 ∈ 𝑦 + 𝑁. This implies 𝑥𝜌2𝑦. Hence 𝑥𝜌2𝑦 if and only if 

𝑥𝜌4𝑦. 
 

Remark 3.11. Clearly, 𝜌1 is an equivalence relation on 𝑀. 
 

Theorem 3.12. Let 𝑁 be a canonical subhypergroup of 𝑀. Then 𝜌1 = 𝜌2 = 𝜌4 as equivalence 

relations and 𝜌1(𝑥) = 𝜌2(𝑥) = 𝜌4 (x)=x+N. 
 

Proof. From Proposition 3.10 and Remark 3.11, 𝜌1 = 𝜌2 = 𝜌4. The latter statement is followed 

from 𝜌1 (x)=x+N. 
 

In this section, we give a condition that implies 𝜌1 = 𝜌2 = 𝜌3 = 𝜌4 and then obtain some 

results. 
 

Lemma 3.13. Let 𝑁 be a canonical subhypergroup of 𝑀 such that �̅� − ′�̅� is a singleton. Then 
 

𝑥𝜌4𝑦 ⟺ 𝑥𝜌1𝑦 ⟺ 𝑥𝜌3𝑦. 
 

Proof. According to Lemma 3.8, it is clear. 
 

Proposition 3.14. Let 𝑁 be a canonical subhypergroup of 𝑀 such that �̅� − ′�̅� is a singleton for all 

𝑥, 𝑦 ∈ 𝑀. Then 𝜌1 = 𝜌2 = 𝜌3 = 𝜌4. 
 

Proof. From Proposition 3.10 and Lemma 3.13, 𝜌1 = 𝜌2 = 𝜌3 = 𝜌4. 
 

Corollary 3.15. Let 𝑁 be a canonical subhypergroup of 𝑀 such that (𝑀/𝑁, +′) is a 

(commutative) group. Then 𝜌1 = 𝜌2 = 𝜌3 = 𝜌4. as equivalence relations. 
 

Proof. From Proposition 3.14, the result is clear. 
 

Proposition 3.16. Let 𝑁 be a canonical subhypergroup of 𝑀 such that (𝑀/𝑁, +′) is a 

(commutative) group. Then for every 𝑥 ∈ 𝑀, 
 

𝛽∗(𝑥) ⊆ 𝜌1(𝑥) = 𝜌2(𝑥) = 𝜌3(𝑥) = 𝜌4(x). 
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Proof. Since 𝛽∗ is the smallest equivalence such that 𝑀/𝛽∗ is a group, the result is clear. 
 

In the sequel, we need another definition of heart as follows: 
 

Definition 3.17. [20, Definition 2.5] The heart of a canonical hypergroup 𝑀 is 
 

𝜔𝑀 = {𝑡 ∈ ∑ (𝑥𝑖 − 𝑥𝑖)𝑛
𝑖=1 | 𝑛 ∈ ℕ,  𝑥𝑖 ∈ 𝑀}. 

 

Remark 3.18. By definition of ⊗ and since 𝑥 + 0𝑀 = 𝑥 = 0𝑀 + 𝑥, it is easily seen that 𝛽∗(𝑥) ⊗
𝛽∗(0𝑀) = 𝛽∗(𝑥) = 𝛽∗(0𝑀) ⊗ 𝛽∗(𝑥). So 𝛽∗(0𝑀) is the identity of the group 𝑀/𝛽∗. By 

Definition 2.5,  
 

𝜔𝑀 = {𝑥 ∈ 𝑀| 𝜑𝑀(𝑥) = 𝛽∗(0𝑀)} = {𝑥 ∈ 𝑀| 𝛽∗(𝑥) = 𝛽∗(0𝑀)}. 
 

So 𝜔𝑀 = 𝛽∗(0𝑀). 
 

Proposition 3.19. Let 𝑁 be a canonical subhypergroup of 𝑀 such that �̅� − ′�̅� is a singleton for 

each 𝑥 ∈ 𝑀. Then 𝜔𝑀 ⊆ 𝑁. 
 

Proof. Since 0𝑀 ∈ 𝑥 − 𝑥 ∩ 𝑁, from Lemma 3.8, we have 𝑥 − 𝑥 ⊆ 𝑁. So 𝜔𝑀 ⊆ 𝑁. 
 

When 𝑀/𝑁 is a (commutative) group, we have 
 

𝜔𝑀 = 𝛽∗(0𝑀) ⊆ 𝜌1(0𝑀) = 𝜌2(0𝑀) = 𝜌3(0𝑀) = 𝜌4(0𝑀) = 0𝑀 + 𝑁, 
 

i.e., 𝜔𝑀 ⊆ 𝑁 (see Proposition 3.19). 

Now let 𝒮 denote the set of all canonical subhypergroups 𝑁 of 𝑀 such that (𝑀/𝑁, +′) is a 

(commutative) group. Then we have the following result: 
 

Corollary 3.20. For every canonical hypergroup 𝑀, 𝜔𝑀 ⊆∩𝑁∈𝒮 𝑁. 
 

 In the following, for completeness, we state a direct proof of being an equivalence relation for 

𝜌2. 
 

Proposition 3.21. Let 𝑁 be a canonical subhypergroup of 𝑀. Then 𝜌2 is an equivalence relation 

on 𝑀. 
 

Proof. Let 𝑥 ∈ 𝑀. Since {𝑥} = 𝑥 + 0𝑀 ⊆ 𝑥 + 𝑁. So the relation 𝜌2 is reflexive. Let 𝑥, 𝑦 ∈ 𝑀. If 

𝑥 ∈ 𝑦 + 𝑁, then 𝑥 ∈ 𝑦 + 𝑛 for some 𝑛 ∈ ℕ. That is, 𝑦 ∈  𝑥 − 𝑛 ⊆ 𝑥 + 𝑁. So, 𝜌2  is a symmetric 

relation. Suppose that 𝑥, 𝑦, 𝑧 ∈ 𝑀 such that 𝑥𝜌2𝑦 and 𝑦𝜌2𝑧, then 𝑥 ∈ 𝑦 + 𝑁 and 𝑦 ∈ 𝑧 +
𝑁. Therefore, 𝑥 ∈  
 

𝑦 + 𝑛, and 𝑦 ∈  𝑧 + 𝑛′, for some 𝑛, 𝑛′ ∈ ℕ. So, 𝑥 ∈ 𝑦 + 𝑛 ⊆ (𝑧 + 𝑛) + 𝑛′ = 𝑧 + (𝑛 + 𝑛′) ⊆
𝑧 + 𝑁. Hence 𝑥𝜌2𝑧. Therefore, the relation 𝜌2 is transitive. 

 

3.3.  Quotient by normal canonical subhypergroup 

 

A canonical subhypergroup 𝑁 of 𝑀 is said to be normal if for all 𝑥 ∈ 𝑀, 𝑥 + 𝑁 − 𝑥 ⊆ 𝑁. 
 

Proposition 3.22. If 𝑁 is a normal canonical subhypergroup of 𝑀, then 
 

𝑥𝜌1𝑦 ⟺ 𝑥𝜌2𝑦 ⟺ 𝑥𝜌3𝑦 ⟺ 𝑥𝜌4𝑦. 
 

Proof.  
 

𝑥𝜌1𝑦 ⟹ �̅� = �̅� ⟹ 𝑥 ∈ �̅� ⟹ 𝑥𝜌2𝑦 

⟹ 𝑥 ∈ 𝑦 + 𝑁 ⟹ 𝑥 − 𝑦 ⊆ 𝑦 + 𝑁 − 𝑦 ⊆ 𝑁 ⟹ 𝑥𝜌3𝑦 

⟹ 𝑥 − 𝑦 ∩ 𝑁 ⟹ 𝑥𝜌4𝑦 

⟹ ∃𝑡 ∈ 𝑥 − 𝑦:  𝑡 + 𝑁 = 𝑁 ⟹ 𝑡̅ = 𝑁 = 0𝑀
𝑁

∈ �̅� − ′�̅� 

⟹ �̅� = �̅� ⟹ 𝑥𝜌1𝑦. 
 

So 
 

𝑥𝜌1𝑦 ⟹ 𝑥𝜌2𝑦 ⟹ 𝑥𝜌3𝑦 ⟹ 𝑥𝜌4𝑦 ⟹ 𝑥𝜌1𝑦 
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Now by Theorem 3.12, the result is followed. 

According to Proposition 3.22, 𝜌3 is an equivalence relation for every canonical 

subhypergroup 𝑁 of 𝑀, since 𝜌1 is an equivalence relation. Moreover, 
 

Theorem 3.23. If 𝑁 is a normal canonical subhypergroup. Then 𝜌1 = 𝜌2 = 𝜌3 = 𝜌4 as 

equivalence relations. 
 

Proof. Since 𝜌1 is an equivalence relation, from Proposition 3.22, the result is followed. 

Although we proved 𝜌3 is an equivalence relation by 𝜌1 when 𝑁 is normal, we can prove this fact 

independent of 𝜌1 as follows: 
 

Proposition 3.24. 𝜌3 is an equivalence relation if 𝑁 is a normal canonical subhypergroup of 𝑀. 
 

Proof. Clearly, 𝑥 ∈ 𝑥 + 0𝑀 implies 𝑥 − 𝑥 ⊆ 𝑥 + 0𝑀 − 𝑥 ⊆ 𝑥 + 𝑁 − 𝑥 ⊆ 𝑁. So 𝜌3 is reflexive. 
 

Also, 𝑥 − 𝑦 ⊆ 𝑁 if and only if 𝑦 − 𝑥 ⊆ 𝑁. So 𝜌3 is symmetric. For transitivity, let 𝑥 − 𝑦 ⊆ 𝑁 

and 𝑦 − 𝑧 ⊆ 𝑁. So by normality of 𝑁, we have 
 

𝑥 − 𝑦 + 𝑦 − 𝑧 = 𝑥 − 𝑦 + 0𝑀 + 𝑦 − 𝑧 ⊆ 𝑥 + 𝑁 + −𝑧 ⊆ 𝑥 − 𝑧 + 𝑁 ⊆ 𝑁. 
 

Remark 3.25. According to the proof of Proposition 3.22, if 𝑁 is a normal canonical 

subhypergroup, then �̅� = �̅� if and only if �̅�−′�̅� = {𝑡̅| 𝑡 ∈ 𝑥 − 𝑦} = {𝑁} = {0𝑀/𝑁}, i.e., �̅�−′�̅� is 

the singleton {0𝑀/𝑁}. 
 

Lemma 3.26. Let 𝑁 be a normal canonical subhypergroup of a canonical hypergroup 𝑀. Then 

𝜔𝑀 ⊆ 𝑁.  
 

Proof. Clearly for every 𝑥 ∈ 𝑀, 0𝑀 ∈ 𝑥 − 𝑥 ∩ 𝑁 ≠ ∅. So by the proof of Proposition 3.22, 

𝑥 − 𝑥 ⊆ 𝑁. Since 𝑁 is a canonical subhypergroup of 𝑀, we have ∑ (𝑥𝑖 − 𝑥𝑖)𝑛
𝑖=1 ⊆ 𝑁 for all 

𝑛 ∈ ℕ (which 𝑥𝑖 ∈ 𝑀). Thus 𝜔𝑀 ⊆ 𝑁. 
 

Let 𝒩 denote the set of all normal canonical subhypergroups of 𝑀. Then 
 

Theorem 3.27. For every canonical hypergroup 𝑀, 𝜔𝑀 ⊆∩𝑁∈𝒮 𝑁 ⊆∩𝑁∈𝒩 𝑁. 
 

Proof. According to Remark 3.25, 𝒮 ⊇ 𝒩. Hence the result is followed by Corollary 3.20. 
 

Corollary 3.28. Let 𝑀 be a canonical hypergroup. If 𝑁 = {0𝑀} is a normal canonical 

subhypergroup of 𝑀, then 𝜔𝑀 = {0𝑀}. 
 

Proof. From Lemma 3.26, it is clear. 
 

We say a canonical hypergroup 𝑀 has the trivial fundamental group if 𝑀 = 𝜔𝑀 (see [18]). 
 

Proposition 3.29. Let 𝑀 be a canonical hypergroup with the trivial fundamental (commutative) 

group. Then the canonical subhypergroup {0𝑀} is normal if and only if 𝑀 = {0𝑀}. 
 

Proof. According to Lemma 3.26, since 𝑀 = 𝜔𝑀, normality of {0𝑀} implies 𝑀 = {0𝑀}. The 

converse is clear. 

 

Acknowledgement 
 

The authors are extremely grateful to the anonymous referees for their valuable comments to 

improve the paper. 

 

REFERENCES 
 

[1] Ameri R., Amiri-Bideshki M., Hoskova-Mayerova S.  and Saeid A. B., (2017) 

Distributive and Dual Distributive Elements in Hyperlattices, Analele Stiintifice ale Univ. 

Ovidius Constanta, Ser. Matematica 25(3), 25-36.  

[2] Ameri R., Amiri-Bideshki, M., Saeid A. B. and Hoskova-Mayerova S., (2016) Prime 

filters of hyperlattices, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 24(2), 15-26. 

H. Shojaeijeshvaghani, R. Ameri  / Sigma J Eng & Nat Sci 9 (1), 133-141, 2018 



141 

 

[3] Ameri R., Kordi A. and Hoskova-Mayerova S., (2017) Multiplicative hyperring of 

fractions and coprime hyperideals, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 25(1), 5-

23. 

[4] Chvalina J. and Hoskova-Mayerova S., (2014) On certain proximities and preorderings on 

the transposition hypergroups of linear first-order partial differential operators, An. Stiint. 

Univ. Ovidius Constanta Ser. Mat. 22(1), 85-103. 

[5] Chvalina J., Hoskova-Mayerova S. and Deghan Nezhad, A., (2013) General actions of 

hypergroups and some applications, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 21(1), 

59-82. 

[6] Cristea I. and Hoskova-Mayerova S., (2009) Fuzzy topological hypergroupoids, Iranian 

Journal of Fuzzy Systems 6(4), 11-19. 

[7] Corsini P., (1993) Prolegomena of Hypergroup Theory. Second edition, Aviani editore, 

Tricesimo. 

[8] Corsini P. and Leoreanu, V., (2003) Applications of Hyperstructures Theory. Advanced in 

Mathematics, Kluwer Academic Publisher, Dordrecht. 

[9] Davvaz B., (2013) Polygroup Theory and Related Systems, World Scientific Publishing 

Co. Pte. Ltd., Hackensack, NJ. 

[10] Davvaz B. and Leoreanu, V., (2007) Hyperring Theory and Applications. International 

Academic Press, USA. 

[11] Hoskova-Mayerova S., (2012) Topological hypergroupoids, Computers and Mathematics 

with Applications 64(9), 2845-2849. 

[12] Freni D., (2002) A new characterization of the derived hypergroup via strongly regular 

equivalences, Comm. Algebra 30, 3977-3989. 

[13] Freni D., (2004) Strongly transitive geometric spaces: applications to hypergroups and 

semigroups theory, Comm. Algebra 32, 969-988. 

[14] Freni D., (1991) Une note sur le cur d'un hypergroupe et sur la cloture transitive β^* de β, 

Riv. Mat. Pura Appl. 8, 153-156. 

[15] Koskas M., (1970) Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures Appl. 

49, 155-192. 

[16] Marty F., (1934) Sur une generalization de la notion de groupe, 8th Congress Math. 

Scandenaves, Stockholm, 45-49. 

[17] Saeid A. B., Flaut C., Hoskova-Mayerova S., Afshar M., Cristea R. L. and Rafsanjani 

Kuchaki M., (2018) Some connections between BCK-algebras and n-ary block codes. 

Soft Computing 22, 41–46. 

[18] Shojaei H. and Ameri R., (2015) On hypergroups with trivial fundamental group, 46th  

Annual Iranian Mathematics Conference (AIMC46), 25-28 August 2015, Yazd 

University, Yazd, Iran, 238-241. 

[19] Shojaei H. and Ameri R., (2016) Some results on categories of Krasner Hypermodules, 

Journal of Fundamental and Applied Sciences 8(3S), 2298-2306. 

[20] Velrajan M. and  Arjunan A., (2010) Note on isomorphism theorems of hyperrings, Int. J. 

Math. And Math. Sci., Article ID 376985. 

[21] Vougiouklis T., (1994) Hyperstructures and their Representations, Hadronic Press, Inc., 

Palm Harber, USA.  

 

 

 

 

 

Various Kinds of Quotient of a Canonical Hypergroup     /   Sigma J Eng & Nat Sci 9 (1), 133-141, 2018 


