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ABSTRACT 

 

In practice, missing values are widely seen and create serious problems in almost all statistical analysis. In this 

study, to deal with missing values, we propose estimators for missing value in one-way analysis of variance 

(ANOVA) when the distribution of error terms is long-tailed symmetric (LTS). We use methodologies known 

as maximum likelihood (ML), modified maximum likelihood (MML) and least squares (LS) in  estimating 

missing value. Expectation and maximization (EM) algorithm is used for computing ML estimate of missing 

value. We compare the efficiencies of LS, ML and MML estimators of missing value via Monte Carlo 

simulation study. Simulation results show that ML estimator of missing value is the most efficient among the 

others. The usefulness of the proposed estimators is illustrated by peak discharge data example taken from 

civil engineering. 

Keywords: Missing value, one-way ANOVA, LTS distribution, EM algorithm, MML methodology. 

 

 

1. INTRODUCTION 

 

In real life problems, certain observations are sometimes missing due to the various reasons. 

For example, the experimenter fails to record some data, crops are destroyed in some plots, a 

patient withdraws from the treatment, and one or more animals die in the course of the 

experiment. Therefore, the problem of missing value is quite common in almost all type of 

research. In the presence of missing values, their omission naturally affects the method of 

analysis, so they should be estimated before analyzing the data [9, 11].  

Estimation of the missing value was first studied by Allan and Whishart  [1]. They obtained 

the estimate of the missing value by minimizing the error sum of squares (SSE) in randomized 

block design and Latin square design. Their method was extended by Yates [45] to the several 

missing values case. They use iterative methods for estimating the missing values. Bartlett [5] 

proposed a new method to obtain the LS estimates of the missing values by using the non-iterative 

method called as analysis of covariance (ANCOVA). A general non-iterative method was 

proposed by Hartley [16] for estimating the missing value. Healy and Westmacott [17] proposed 

another method based on iterative techniques for estimating more than one missing values. It 

should be noted that LS method based on the idea of minimizing SSE with respect to the unknown 
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parameters and to the missing values was used in these studies. In the estimation procedure, the 

missing values are treated as unknown parameters. Little and Rubin [23] estimated the location 

and the scale pa rameters of the normal distribution in the presence of missing value. They 

obtained ML estimates of the unknown parameters by using the approach where the missing value 

is treated as a parameter, see also [5, 2, 44, 30, 33, 20, 37, 38, 32, 3]. It can be seen from these 

studies that this approach is computationally feasible for many missing data problems. 

In this study, we obtain the estimators of the missing value in one-way ANOVA by using the 

ML and the MML methodologies when the distribution of the error terms is LTS. In the estimation 

procedure, similar to the earlier studies, we use the approach where the missing value is treated as 

parameter. 

In the literature, there are various missing data mechanisms that describe how the probability 

of a missing value relates to the data. Commonly used ones are missing completely at random 

(MCAR), missing at random (MAR) and missing not at random (MNAR), see [13, 34]. The 

missingness mechanism does not depend on the observed or the unobserved data in MCAR. 

Missingness depends only on the observed data in MAR. The missing data mechanism is MNAR 

when neither MAR nor MCAR hold. In this study, we use the missingness mechanism known as 

MCAR, since the reason for the occurrence of missing value in one-way ANOVA does not depend 

on any observed or unobserved data. 

The remaining of the paper is organized as follows. In Section 2, we introduce one-way 

ANOVA model, LTS distribution and their properties. We obtain the ML estimate equation of the 

missing value in Section 3. Section 4 gives MML estimator of the missing value. The results of 

Monte-Carlo simulation study are presented in Section 5. A real data set taken from the literature 

is analyzed to illustrate the performance of the proposed estimators in Section 6. We give 

conclusions at the end of the paper. 

 

2. THE STATISTICAL MODEL 

 

Consider the following one-way ANOVA model 
 

𝑦𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗 , 𝑖 = 1,2, ⋯ , 𝑎; 𝑗 = 1,2, ⋯ , 𝑛                                                                                   (1) 
 

where 𝑦𝑖𝑗 is the jth observation in the ith treatment, 𝜇𝑖 is the mean of the ith treatment, a is the 

number of treatment levels, n is the number of observation in each treatment level and 𝜀𝑖𝑗 are 

independently and identically distributed (iid) random error terms. Here, we assume that the 

model is a fixed-effects model. 

In the context of ANOVA, traditionally, error terms are assumed to be normally distributed. 

However, non-normal distributions are encountered more frequently in practice; see for example 

[28, 15, 39, 12, 19, 42]. When the distribution of the error terms is non-normal, the LS estimators 

lose their efficiency very quickly. Unfortunately, the effect of a violation of the normality 

assumption on the efficiencies of the estimators is frequently overlooked. One-way of handling 

non-normal data is to use Box and Cox [8] normalizing transformation. However, all non-normal 

data cannot be amenable to this transformation. Also, it is often difficult to interpret the 

transformed parameters, see Bickel and Doksum [6]. In this study, we use original data rather 

than the transformed data. 

Different than the earlier studies, we assume that the error terms are iid and have the family of 

distributions represented by LTS. The probability density function (pdf) of the LTS distribution is 

given by 
 

𝑓(𝑥) =
1

𝜎√𝑞𝐵(
1

2
,   𝑝−

1

2
)

(1 +
(𝑥−𝜇)2

𝑞𝜎2
)

−𝑝

, −∞ < 𝑥 < ∞, 𝜇 ∈ ℝ, 𝜎 > 0                                              (2) 
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where p is the shape para meter, 𝑞 = 2𝑝 − 3 for p≥ 2, see Tiku and Kumra [41]. 𝜇 is the 

location parameter, 𝜎 is the scale parameter and 𝐵(∙,∙) is the beta function. Mean, variance and 

kurtosis (𝛽2) of the LTS distribution are given below  
 

𝐸(𝑋) = 𝜇, 𝑉𝑎𝑟(𝑋) = 𝜎2 and 𝛽2 =
3(𝑝−3 2⁄ )

(𝑝−5 2⁄ )
.                                                                                 (3) 

 

In Table 1, kurtosis values of the LTS distribution are also presented for better evaluating the 

shape of the distribution for different 𝑝 values. 

 

Table 1. The kurtosis values for the LTS distribution for certain selected values of 𝑝 
 

  
𝒑: 

   
2.5 

   
3.0  

  
3.5  

  
5.0  

  
10  

  
∞ 

  

  

𝜷𝟐: 

   

∞ 

    

9.0  

  

6.0  

  

4.2  

  

3.4  

  

3.0 

  

 

Note that  𝑇 = √𝜈 𝑞⁄
(𝑋−𝜇)

𝜎
 has the Student-t distribution with degrees of freedom  𝜈 = 2𝑝 −

1. The shape parameter p is assumed to be known throughout the estimation process.  

One of the most frequently used non-normal symmetric distributions is LTS, see [42, 43, 21, 

27, 35, 36]. It is commonly used in modelling the data sets having long tails and outliers. Here, it 

should be noted that outliers exist in the direction of the long tails. 

Plots of the LTS distribution for some representative values of the shape parameter 𝑝 and the 

standard normal distribution are given in Figure 1. In the plots, 𝜇 and 𝜎 were taken to be 0 and 1, 

respectively. 

 

 
 

Figure 1. Plots of the LTS distribution for the different values of the shape parameter 𝑝 and 

standard normal distribution 

 

It is clear from Table 1 and Figure 1 that the LTS distribution is plausible alternative to the 

normal distribution. The kurtosis is always greater than 3; however, LTS distribution reduces to 

the well-known normal distribution as the shape parameter 𝑝 goes to infinity. 

 

3. THE ML ESTIMATOR OF MISSING VALUE 

 

Suppose that the observation 𝑦𝑘𝑙 which is the lth observation in kth treatment is missing. The 

likelihood function (L) can be factorized as a product of two components. The first component is 

for the observed values (𝑦𝑖𝑗; 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑙)
 
and the second component is for the missing value 
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(𝑦𝑘𝑙), see Rao and Toutenburg [31]. Then, log-likelihood function (ln 𝐿)  is written as shown 

below when the distribution of the error terms is LTS. 
 

ln 𝐿 ∝ −𝑁 ln 𝜎 − 𝑝 ∑ ∑ ln (1 +
(𝑦𝑖𝑗−𝜇𝑖)

2

𝑞𝜎2
) − 𝑝 ∑ ln (1 +

(𝑦𝑘𝑗−𝜇𝑘)
2

𝑞𝜎2
) 𝑛

𝑗=1
𝑗≠𝑙

 𝑛
𝑗=1

𝑎
𝑖=1
𝑖≠𝑘

  

          −𝑝 ln (1 +
(𝑚−𝜇𝑘)2

𝑞𝜎2
)                                                                                                             (4) 

 

The ML estimator of the model parameters (𝜇𝑖, 𝜎) and the missing value (m) are the solutions 

of the following likelihood equations 
 

𝜕 ln 𝐿

𝜕𝜇𝑖
=

2𝑝

𝑞𝜎
∑ g(𝑧𝑖𝑗)𝑛

𝑗=1 = 0                                                                                                             (5) 
 

𝜕 ln 𝐿

𝜕𝜇𝑘
=

2𝑝

𝑞𝜎
∑ g(𝑧𝑘𝑗)𝑛

𝑗=1
𝑗≠𝑙

+
2𝑝

𝑞𝜎
g(𝑧𝑘𝑙) = 0                                                                                         (6) 

 

𝜕 ln 𝐿

𝜕𝜎
=

𝑁

𝜎
−

2𝑝

𝑞𝜎
∑ ∑ 𝑧𝑖𝑗g(𝑧𝑖𝑗)𝑛

𝑗=1
𝑎
𝑖=1
𝑖≠𝑘

−
2𝑝

𝑞𝜎
∑ 𝑧𝑘𝑗g(𝑧𝑘𝑗)𝑛

𝑗=1
𝑗≠𝑙

−
2𝑝

𝑞𝜎
𝑧𝑘𝑙g(𝑧𝑘𝑙) = 0                               (7) 

 

𝜕 ln 𝐿

𝜕𝑚
=

2𝑝

𝑞𝜎
g(𝑧𝑘𝑙) = 0 .                                                                                                                    (8) 

 

Here, 𝑔(𝑧𝑖𝑗) =
𝑧𝑖𝑗

(1+
1

𝑞
𝑧𝑖𝑗

2 )
 and 𝑧𝑖𝑗 =

(𝑦𝑖𝑗−𝜇𝑖)

𝜎
. These equations do not have explicit solutions 

because of the nonlinear functions 𝑔(. ). Therefore, we resort to iterative methods, such as 

Newton–Raphson, iteratively reweighting algorithm (IRA) or EM algorithm. In this study, EM 

algorithm is used for computing the ML estimate of the missing value. The EM algorithm has 

reliable global convergence under fairly general conditions; see McLachlan and Krishnan [25] for 

more detailed information. The EM algorithm introduced by Dempster et al. [10] is a very popular 

iterative method for incomplete data problems. It has two steps called as the expectation (E) and 

the maximization (M). Step E is defined as the conditional expectation of the 𝑙𝑛𝐿 for complete 

data given observed incomplete data and the current value of the parameters. Step M is defined as 

the maximization of the conditional expectation obtained in step E with respect to the unknown 

parameters. E and M steps are repeated until the following condition is satisfied,  
 

|𝑚𝑀𝐿
(𝑡)

− 𝑚𝑀𝐿
(𝑡−1)

| ≤ 𝜀, 𝑡 = 1,2, ⋯,. and (𝜀 > 0).                                                                             (9) 
 

Here, 𝑚𝑀𝐿
(𝑡)

 satisfying this condition is the ML estimate of the missing value m. To solve the 

equations in (5)-(8) by using the EM algorithm, we define the complete data vector 𝑿 as 𝑿 =
(𝒀, 𝑼). Here, 𝒀 = (𝒀𝟏, 𝒀𝟐, ⋯ , 𝒀𝒂) is incomplete data vector, 𝒀𝒊 = (𝑌𝑖1, 𝑌𝑖2, ⋯ , 𝑌𝑖𝑛) is the vector 

of observations in ith treatment (𝑖 ≠ 𝑘), 𝒀𝒌 = (𝑌𝑘1, 𝑌𝑘2, ⋯ , 𝑌𝑘𝑙−1, 𝑚, 𝑌𝑘𝑙+1, ⋯ , 𝑌𝑘𝑛) is the vector 

of observations in kth treatment including missing value, 𝑼 = (𝑼𝟏, 𝑼𝟐, ⋯ , 𝑼𝒂) is the missing 

variable vector that would never be observable for complete data vector 𝑿 and 𝑼𝒊 =
(𝑈𝑖1, 𝑈𝑖2, ⋯ , 𝑈𝑖𝑛) is the vector of missing variables corresponding to the ith treatment. Here, it 

should be realized that m is the missing observation while 𝑼 is the vector of missing (or latent) 

variables, therefore it represents an artificial vector of additional missing variables. 

The joint distribution of 𝒀 and 𝑼 can be written as the product of the marginal distribution of 

𝑼 and the conditional distribution of 𝒀 given 𝑼 as shown below  
 

𝑓(𝑦𝑖𝑗 , 𝑢𝑖𝑗) = 𝑓(𝑦𝑖𝑗|𝑢𝑖𝑗)𝑓(𝑦𝑖𝑗).                                                                                                    (10) 
 

It is obvious that assuming non-normal distributions for both 𝒀 and 𝑼 provides great 

flexibility for modeling the bivariate data. Here, we assume that pdf of 𝑌𝑖𝑗  is LTS with parameters 

𝜇𝑖 and 𝜎 and pdf of 𝑈𝑖𝑗 is 𝜒𝜈
2 with degrees of freedom 𝜈 = 2𝑝 − 1. Then the conditional density 

function of 𝑌𝑖𝑗  given 𝑈𝑖𝑗 is obtained to be 𝑁(𝜇𝑖 , 𝑞𝜎2 𝑢𝑖𝑗⁄ ). In the literature, there exists studies 
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assuming the distribution of Y is Student-t, see for example [22, 24, 29]. Then, we define the 

likelihood function for the complete data with one missing value as shown below  
 

𝐿𝑐(𝜽) = 𝐿𝑦|𝑢(𝜽)𝐿𝑢                                                                                                                      (11) 
 

where  
 

𝐿𝑦|𝑢(𝜽) = ∏ ∏
1

√2𝜋(𝑞𝜎2) 𝑢𝑖𝑗⁄

𝑛
𝑗=1

𝑎
𝑖=1 𝑒𝑥𝑝 (−

1

2

(𝑦𝑖𝑗−𝜇𝑖)
2

𝑞𝜎2 𝑢𝑖𝑗⁄
)  

              = ∏ ∏
1

√2𝜋(𝑞𝜎2) 𝑢𝑖𝑗⁄

𝑛
𝑗=1

𝑎
𝑖=1
𝑖≠𝑘

𝑒𝑥𝑝 (−
1

2

(𝑦𝑖𝑗−𝜇𝑖)
2

𝑞𝜎2 𝑢𝑖𝑗⁄
)  

                 . ∏
1

√2𝜋(𝑞𝜎2) 𝑢𝑘𝑗⁄
𝑒𝑥𝑝 (−

1

2

(𝑦𝑘𝑗−𝜇𝑘)
2

𝑞𝜎2 𝑢𝑘𝑗⁄
)𝑛

𝑗=1
𝑗≠𝑙

   

                ∙
1

√2𝜋(𝑞𝜎2) 𝑢𝑘𝑙⁄
𝑒𝑥𝑝 (−

1

2

(𝑚−𝜇𝑘)2

𝑞𝜎2 𝑢𝑘𝑙⁄
)  

 

and 
  

𝐿𝑢 = ∏ ∏
1

Γ(𝜈 2⁄ )2𝜈 2⁄
𝑛
𝑗=1 𝑢𝑖𝑗

(𝜈−2) 2⁄𝑎
𝑖=1 𝑒𝑥𝑝 (−

1

2
𝑢𝑖𝑗)  

     = ∏ ∏
1

Γ(𝜈 2⁄ )2𝜈 2⁄
𝑛
𝑗=1 𝑢𝑖𝑗

(𝜈−2) 2⁄𝑎
𝑖=1
𝑖≠𝑘

𝑒𝑥𝑝 (−
1

2
𝑢𝑖𝑗)  

        .∏
1

Γ(𝜈 2⁄ )2𝜈 2⁄ 𝑢𝑘𝑗
(𝜈−2) 2⁄

𝑒𝑥𝑝 (−
1

2
𝑢𝑘𝑗)𝑛

𝑗=1
𝑗≠𝑙

 

        ∙
1

Γ(𝜈 2⁄ )2𝜈 2⁄ 𝑢𝑘𝑙
(𝜈−2) 2⁄

𝑒𝑥𝑝 (−
1

2
𝑢𝑘𝑙).                                  

 

Here, 𝜽 = (𝜇𝑖 , 𝜇𝑘 , 𝜎, 𝑚)
 
 is the vector of unknown parameters and m. To obtain the solutions 

of the likelihood equations in (5)-(8) with respect to the unknown parameters and m, we apply the 

EM algorithm whose steps are given below. 
 

Step E: Conditional expectation of the 𝑙𝑛𝐿𝑐(𝜽) given 𝒚 = (𝑦11, 𝑦12, ⋯ , 𝑦1𝑛; ⋯ ; 𝑦𝑎1, 𝑦𝑎2, ⋯ , 𝑦𝑎𝑛) 

is obtained as follows 
 

Φ(𝜽|𝜽(𝑡−1)) = 𝐸𝜽(𝑡−1)(𝑙𝑛𝐿𝑐(𝜽) |𝒚) 

                      = −𝑁𝑙𝑛(Γ(𝜈 2⁄ )2𝜈 2⁄ ) −
(𝑎−1)𝑛

2
𝑙𝑛(𝑞𝜎2 𝑢𝑖𝑗⁄ ) −

(𝑛−1)

2
𝑙𝑛(𝑞𝜎2 𝑢𝑘𝑗⁄ )  

                          −
1

2
𝑙𝑛(𝑞𝜎2 𝑢𝑘𝑙⁄ ) −

1

2𝑞𝜎2
∑ ∑ (𝑦𝑖𝑗 − 𝜇𝑖)

2
𝐸𝜽(𝑡−1)(𝑢𝑖𝑗|𝑦𝑖𝑗)𝑛

𝑗=1
𝑎
𝑖=1
𝑖≠𝑘

   

                          −
1

2𝑞𝜎2
∑ (𝑦𝑘𝑗 − 𝜇𝑘)

2
𝐸𝜽(𝑡−1)(𝑢𝑘𝑗|𝑦𝑘𝑗)𝑛

𝑗=1
𝑗≠𝑙

  

                          −
1

2𝑞𝜎2
(𝑚 − 𝜇𝑘)2𝐸𝜽(𝑡−1)(𝑢𝑘𝑙|𝑚)  

                          −
1

2
(∑ ∑ 𝐸𝜽(𝑡−1)(𝑢𝑖𝑗|𝑦𝑖𝑗)𝑛

𝑗=1 + ∑ 𝐸𝜽(𝑡−1)(𝑢𝑘𝑗|𝑦𝑘𝑗) + 𝐸𝜽(𝑡−1)(𝑢𝑘𝑙|𝑚)𝑛
𝑗=1
𝑗≠𝑙

𝑎
𝑖=1
𝑖≠𝑘

)  

             +
𝜈−2

2
(∑ ∑ 𝐸𝜽(𝑡−1)(𝑙𝑛𝑢𝑖𝑗|𝑦𝑖𝑗)𝑛

𝑗=1 + ∑ 𝐸𝜽(𝑡−1)(𝑙𝑛𝑢𝑘𝑗|𝑦𝑘𝑗)𝑛
𝑗=1
𝑗≠𝑙

𝑎
𝑖=1
𝑖≠𝑘

+𝐸𝜽(𝑡−1)(𝑙𝑛𝑢𝑘𝑙|𝑚) ) (12) 

 

Step M: We take the derivatives of Φ with respect to the unknown parameters and the missing 

value m and equate them to zero. Then we obtain the following likelihood equations  
 

𝜕Φ(𝜽|𝜽(𝑡−1))

𝜕𝜇𝑖
=

1

𝑞𝜎2
∑ (𝑦𝑖𝑗 − 𝜇𝑖)𝐸

𝜇𝑖
(𝑡−1)(𝑢𝑖𝑗|𝑦𝑖𝑗)𝑛

𝑗=1 = 0                                                                 (13) 
 

𝜕Φ(𝜽|𝜽(𝑡−1))

𝜕𝜇𝑘
=

1

𝑞𝜎2
∑ (𝑦𝑘𝑗 − 𝜇𝑘)𝐸

𝜇𝑘
(𝑡−1)(𝑢𝑘𝑗|𝑦𝑘𝑗)𝑛

𝑗=1
𝑗≠𝑙
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               +
1

𝑞𝜎2
(𝑚 − 𝜇𝑘)𝐸

𝜇𝑘
(𝑡−1)(𝑢𝑘𝑙|𝑚) = 0                                                                               (14) 

 

𝜕Φ(𝜽|𝜽(𝑡−1))

𝜕𝜎2
= −

1

𝑞𝜎2
(𝑁 − ∑ ∑

(𝑦𝑖𝑗−𝜇𝑖)
2

𝜎2
𝐸

𝜇𝑖
(𝑡−1)(𝑢𝑖𝑗|𝑦𝑖𝑗)𝑛

𝑗=1
𝑎
𝑖=1
𝑖≠𝑘

)                     

                       +
1

𝑞𝜎2
∑

(𝑦𝑘𝑗−𝜇𝑘)
2

𝜎2
𝐸

𝜇𝑘
(𝑡−1)(𝑢𝑘𝑗|𝑦𝑘𝑗)𝑛

𝑗=1
𝑗≠𝑙

     

                       +
1

𝑞𝜎2

(𝑚−𝜇𝑘)2

𝜎2
𝐸

𝜇𝑘
(𝑡−1)(𝑢𝑘𝑙|𝑚) = 0                                                                          (15) 

 
𝜕Φ(𝜽|𝜽(𝑡−1))

𝜕𝑚
=

1

𝑞𝜎2
(𝑚 − 𝜇𝑘)𝐸

𝜇𝑘
(𝑡−1)(𝑢𝑘𝑙|𝑚) = 0.                                                                          (16) 

 

Now, we need the conditional pdf of 𝑢𝑖𝑗 given 𝑦𝑖𝑗 to obtain the conditional expectations given 

in the equations (13)-(16). Conditional pdf of 𝑢𝑖𝑗 given 𝑦𝑖𝑗 can easily be obtained as shown below 
 

𝑓(𝑢𝑖𝑗|𝑦𝑖𝑗) =

(1+
(𝑦𝑖𝑗−𝜇𝑖)

2

𝑞𝜎2 )

(𝜈+1) 2⁄

Γ((𝜈+1) 2⁄ )2(𝜈+1) 2⁄ 𝑢𝑖𝑗
(𝜈−1) 2⁄

𝑒𝑥𝑝 (−𝑢𝑖𝑗
1

2
(1 +

(𝑦𝑖𝑗−𝜇𝑖)
2

𝑞𝜎2
)).                                       (17) 

 

It is clear from (17) that distribution of 𝑢𝑖𝑗|𝑦𝑖𝑗 is Gamma with 𝛼 = (𝜈 + 1) 2⁄  and 𝛽 =

1

2
(1 +

(𝑦𝑖𝑗−𝜇𝑖)
2

𝑞𝜎2
) then the conditional expectations for 𝑢𝑖𝑗|𝑦𝑖𝑗 and 𝑢𝑘𝑗|𝑦𝑘𝑗  are  

 

𝐸
𝜇𝑖

(𝑡−1)(𝑢𝑖𝑗|𝑦𝑖𝑗) = 𝜛𝑖𝑗
(𝑡−1)

 and 𝐸
𝜇𝑘

(𝑡−1)(𝑢𝑘𝑗|𝑦𝑘𝑗) = 𝜛𝑘𝑗
(𝑡−1)

,                                                         (18) 
 

where  
 

𝜛𝑖𝑗
(𝑡−1)

=
𝜈+1

1+
1

𝑞
𝛿𝑖𝑗

2
, 𝜛𝑘𝑗

(𝑡−1)
=

𝜈+1

1+
1

𝑞
𝛿𝑘𝑗

2
, 𝛿𝑖𝑗 =

𝑦𝑖𝑗−𝜇𝑖
(𝑡−1)

𝜎(𝑡−1)  and 𝛿𝑘𝑗 =
𝑦𝑘𝑗−𝜇𝑘

(𝑡−1)

𝜎(𝑡−1) . 

 

It can easily be seen from equation (16) that (𝑚 − 𝜇𝑘) is equal to zero, since 𝑢𝑘𝑗|𝑦𝑘𝑗  is 

distributed as Gamma and this implies that 𝐸
𝜇𝑘

(𝑡−1)(𝑢𝑘𝑙|𝑚) > 0. By inserting (𝑚 − 𝜇𝑘) = 0 in 

equations (13)-(15), then we obtain the following equalities 
 

𝜇𝑖,𝑀𝐿
(𝑡)

=
∑ 𝑦𝑖𝑗𝐸

𝜇
𝑖,𝑀𝐿
(𝑡−1)(𝑢𝑖𝑗|𝑦𝑖𝑗)𝑛

𝑗=1

∑ 𝐸
𝜇

𝑖,𝑀𝐿
(𝑡−1)(𝑢𝑖𝑗|𝑦𝑖𝑗)𝑛

𝑗=1

, (𝑖 = 1,2, ⋯ , 𝑎; 𝑖 ≠ 𝑘)                                                                    (19) 

 

𝜇𝑘,𝑀𝐿
(𝑡)

=

∑ 𝑦𝑘𝑗𝐸
𝜇

𝑘,𝑀𝐿
(𝑡−1)(𝑢𝑘𝑗|𝑦𝑘𝑗)𝑛

𝑗=1

𝑗≠𝑙

∑ 𝐸
𝜇

𝑘,𝑀𝐿
(𝑡−1)(𝑢𝑘𝑗|𝑦𝑘𝑗)𝑛

𝑗=1
𝑗≠𝑙

,                                                                                                      (20) 

 

𝜎𝑀𝐿
(𝑡)

=
√

∑ ∑ (𝑦𝑖𝑗−𝜇𝑖,𝑀𝐿
(𝑡)

)
2

𝐸
𝜇

𝑖,𝑀𝐿
(𝑡−1)(𝑢𝑖𝑗|𝑦𝑖𝑗)+∑ (𝑦𝑘𝑗−𝜇𝑘,𝑀𝐿

(𝑡)
)

2
𝐸

𝜇
𝑘,𝑀𝐿
(𝑡−1)(𝑢𝑘𝑗|𝑦𝑘𝑗)𝑛

𝑗=1

𝑗≠𝑙

𝑛
𝑗=1

𝑎
𝑖=1
𝑖≠𝑘

𝑁−𝑎−1
.                                    (21) 

 

Note that, the dominator of 𝜎 is replaced by 𝑁 − 𝑎 − 1 for bias correction. Substituting (18) 

into (19)-(21), we obtain the following ML estimates at the tth iteration (𝑡 = 1,2, ⋯ , )
  

 

𝜇𝑖,𝑀𝐿
(𝑡)

=
1

𝜔(𝑡−1)
∑ 𝑤𝑖𝑗

(𝑡−1)
𝑦𝑖𝑗

𝑛
𝑗=1                                                                                                        (22) 

 

𝜇𝑘,𝑀𝐿
(𝑡)

=
1

𝜔𝑚
(𝑡−1) ∑ 𝑤𝑘𝑗

(𝑡−1)
𝑦𝑘𝑗

𝑛
𝑗=1
𝑗≠𝑙

                                                                                                      (23) 
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𝜎𝑀𝐿
(𝑡)

=
√

∑ ∑ 𝑤𝑖𝑗
(𝑡−1)

(𝑦𝑖𝑗−𝜇𝑖,𝑀𝐿
(𝑡)

)
2

+∑ 𝑤𝑘𝑗
(𝑡−1)

(𝑦𝑘𝑗−𝜇𝑘,𝑀𝐿
(𝑡)

)
2

𝑛
𝑗=1

𝑗≠𝑙

𝑛
𝑗=1

𝑎
𝑖=1
𝑖≠𝑘

𝑁−𝑎−1
                                                              (24) 

 

where  
 

𝑤𝑖𝑗
(𝑡−1)

=
𝜛𝑖𝑗

(𝑡−1)

𝑞
, 𝑤𝑘𝑗

(𝑡−1)
=

𝜛𝑘𝑗
(𝑡−1)

𝑞
, 𝜔(𝑡−1) = ∑ 𝑤𝑖𝑗

(𝑡−1)𝑛
𝑗=1  and 𝜔𝑚

(𝑡−1)
= ∑ 𝑤𝑘𝑗

(𝑡−1)𝑛
𝑗=1
𝑗≠𝑙

. 

 

As shown before (𝑚 − 𝜇𝑘) = 0, then the ML estimate of m at the tth iteration is given by 
 

𝑚𝑀𝐿
(𝑡)

=
1

𝜔𝑚
(𝑡−1) ∑ 𝑤𝑘𝑗

(𝑡−1)
𝑦𝑘𝑗

𝑛
𝑗=1
𝑗≠𝑙

, (𝑡 = 1,2, ⋯ , ).                                                                              (25) 

 

Estimates in (22)-(25) are called as M estimates with 𝜌 = −𝑙𝑛𝑓(𝑥), see Huber [18]. It is clear 

that the weight function 𝑤𝑖𝑗 decreases as 𝛿𝑖𝑗 increases. 𝑤𝑖𝑗 are nonnegative and this depletes the 

dominant effect of the outliers by giving small weights to them in the direction of the long tails. 

To avoid the difficulties encountered in the iterative methods (such as initial value problem, 

etc.), we can use the methodology known as MML proposed by Tiku [40]. In the next section, we 

give the description of the MML methodology and obtain the explicit estimator of the missing 

value.  

 

4. THE MML ESTIMATOR OF MISSING VALUE 

 

MML methodology is used to obtain the explicit estimators of the model parameters by 

linearizing the nonlinear terms in the likelihood equations.  

To obtain the MML estimator of m, likelihood equations in (6) and (8) are written in terms of 

the order statistics, since complete sums are invariant to ordering (i.e, ∑ 𝑧𝑖 = ∑ 𝑧(𝑖))  
 

𝜕 ln 𝐿

𝜕𝜇𝑘
=

2𝑝

𝑞𝜎
∑ g(𝑧𝑘(𝑗))𝑛

𝑗=1
𝑗≠𝑙

+
2𝑝

𝑞𝜎
g(𝑧𝑘(𝑙)) = 0                                                                                  (26) 

 

𝜕 ln 𝐿

𝜕𝑚
=

2𝑝

𝑞𝜎
g(𝑧𝑘(𝑙)) = 0.                                                                                                                (27) 

 

Incorporating equation (27) into the equation (26), we obtain the likelihood equation for 𝜇𝑘 

(mean of the kth treatment) given below 
 

𝜕 ln 𝐿

𝜕𝜇𝑘
=

2𝑝

𝑞𝜎
∑ g(𝑧𝑘(𝑗))𝑛

𝑗=1
𝑗≠𝑙

= 0                                                                                                        (28) 

 

where 𝑔(𝑧𝑘(𝑗)) =
𝑧𝑘(𝑗)

(1+
1

𝑞
𝑧𝑘(𝑗)

2 )
 and 𝑧𝑘(𝑗) =

(𝑦𝑘(𝑗)−𝜇𝑘)

𝜎
. We then linearize the nonlinear term 

𝑔(𝑧𝑘(𝑗)) in (28) by using the first two terms of the Taylor series expansion around the expected 

values of the order statistics (i.e, 𝐸(𝑧(𝑖)) = 𝑡(𝑖))  
 

g(𝑧𝑘(𝑗)) ≡ 𝛼𝑗 + 𝛽𝑗𝑧𝑘(𝑗)                                                                                                                (29) 
 

where 𝛼𝑗 =
(2 𝑞⁄ )𝑡(𝑗)

3

(1+(1 𝑞⁄ )𝑡(𝑗)
2 )

2 and 𝛽𝑗 =
1−(1 𝑞⁄ )𝑡(𝑗)

2

(1+(1 𝑞⁄ )𝑡(𝑗)
2 )

2.  

 

Here, it should be noted that approximate 𝑡(𝑖) values are obtained from the following equality 
 

𝐹(𝑡(𝑗)) =
1

𝜎√𝑞𝐵(
1

2
,𝑝−

1

2
)

∫ (1 +
𝑧2

𝑞
)

−𝑝

𝑑𝑧 =
𝑗

𝑛

𝑡(𝑗)

−∞
, (𝑗 = 1,2, ⋯ , 𝑛;  𝑗 ≠ 𝑙).                                       (30) 

 

Substituting (29) into (28), we obtain the following modified likelihood equation 
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𝜕 ln 𝐿

𝜕𝜇𝑘
≅

𝜕 ln 𝐿∗

𝜕𝜇𝑘
=

2𝑝

𝑞𝜎
∑ (𝛼𝑗 + 𝛽𝑗𝑧𝑘(𝑗))𝑏

𝑗=1
𝑗≠𝑙

= 0.                                                                                (31) 

 

The solution of this equation is the following MML estimator of the missing value m since 
(𝑚 − 𝜇𝑘) = 0 (see section 3) 

 

�̂�𝑀𝑀𝐿 =
1

𝑤
∑ 𝛽𝑗𝑦𝑘(𝑗)

𝑛
𝑗=1
𝑗≠𝑙

                                                                                                               (32) 

 

where 𝑤 = ∑ 𝛽𝑗
𝑛
𝑗=1
𝑗≠𝑙

, see also Aydin and Senoglu [4]. 

The MML estimators have significant advantages; they are asymptotically equivalent to the 

ML estimators and therefore they are fully efficient under the regularity conditions. They are 

numerically very close in value to the ML estimators even for small samples. They are also robust 

to the outliers and to the non-normality, see Tiku and Akkaya [43]. 

 

5. MONTE CARLO SIMULATION STUDY                 
 

In this section, we present an extensive Monte Carlo simulation study comparing the 

performances of the LS, the ML and the MML estimators of the missing value in one-way 

ANOVA. Suppose that kly  (lth observation in the kth treatment) is missing. It should be 

remembered that the LS estimator of the missing observation m is given by  
 

�̂�𝐿𝑆 =
𝑦𝑘.

∗

𝑛 − 1
  

where 𝑦𝑘.
∗  is the total of the observations in the kth treatment except missing value. We also 

compare the performances of the estimators of the model parameters (�̂�𝑖 , �̂�) based on full data 

with the corresponding performances based on complete data including one imputed missing data 

to see the effect of imputation on the efficiencies of the estimators. 

In the simulations, we take 𝜇𝑖 = 0 (𝑖 = 1,2, ⋯ , 𝑎) and 𝜎 = 1 without loss of generality. We 

use the transformation 𝑇 = √𝜈 𝑞⁄
(𝑋−𝜇)

𝜎
 (𝜈 = 2𝑝 − 1) to generate the random numbers from the 

LTS distribution. In the simulation study, we use the sample sizes 𝑛 = 10, 15 and 20, and the 

shape parameters 𝑝 = 2, 2.5, 3, 3.5, 5 and 10. Number of treatments is taken to be 4 just for an 

illustration.  

The MCAR mechanism is used to create the missing value. We use methodology proposed by 

Brand et al. [7] in generating missing value. Missing value can be created in any treatment but we 

create it in the second one just for an illustration. In this study, simulated values are computed 

based on ⟦100.000/𝑛⟧ Monte Carlo runs. Here, ⟦. ⟧ represents the integer value function. All the 

simulations were conducted in MATLAB 2012b. 

 

5.1. Comparison of the Estimators of Missing Value 

 

Three different criteria are used to compare the efficiencies

 

of the estimators of m

 

similar to 

those given in Engels and Diehr [14]. They are mean deviation (bias), mean absolute deviation 

(MAD) and mean-square deviation (MSD). See the equalities given below 

 

𝐵𝑖𝑎𝑠(�̂�) =
1

𝑟
∑ (𝑚𝑡 − �̂�𝑡)𝑟

𝑡 , 𝑀𝐴𝐷(�̂�) =
1

𝑟
∑ |𝑚𝑡 − �̂�𝑡|𝑟

𝑡  
 

and  
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𝑀𝑆𝐷(�̂�) =
1

𝑟
∑ (𝑚𝑡 − �̂�𝑡)2𝑟

𝑡  . 
 

Here,  

�̂�𝑡: Estimate value of 𝑚 in tth replication  

𝑚𝑡: The true value of missing value in tth replication 

𝑟 : Number of replication.  
 

The mean deviation is used to assess the bias, MAD and MSD criteria are used to measure the 

accuracy of the estimators. Simulation results showing the efficiencies of the estimators of 

missing value are given in Table 2. 

 

Table 2. The bias, MAD and MSD values of LS, ML and MML estimators of m 
 

   Bias    MAD    MSD  

n  �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿  �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿  �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿 

𝑝 = 2 

10  -0.0144 -0.0134 -0.0137  0.6921 0.6696 0.6724  0.9961 0.9548 0.9582 

15  -0.0054 -0.0002 -0.0016  0.6803 0.6598 0.6623  1.0595 1.0237 1.0274 

20  0.0370 0.0342 0.0347  0.6694 0.6561 0.6573  1.0271 1.0063 1.0073 

𝑝 = 2.5 

10  0.0047 0.0039 0.0045  0.7588 0.7460 0.7483  1.1205 1.0929 1.0976 

15  -0.0207 -0.0192 -0.0199  0.7236 0.7142 0.7159  0.9898 0.9698 0.9731 

20  -0.0092 -0.0081 -0.0085  0.7326 0.7259 0.7267  1.0558 1.0426 1.0446 

𝑝 = 3 

10  -0.0102 -0.0101 -0.0103  0.7909 0.7820 0.7824  1.1038 1.0808 1.0823 

15  0.0128 0.0106 0.0112  0.7601 0.7543 0.7550  1.0364 1.0263 1.0269 

20  0.0265 0.0251 0.0255  0.7494 0.7447 0.7457  1.0217 1.0068 1.0109 

𝑝 = 3.5 

10  0.0025 0.0019 0.0022  0.8003 0.7939 0.7942  1.1081 1.1066 1.1068 

15  0.0081 0.0050 0.0054  0.7796 0.7748 0.7753  1.0587 1.0495 1.0503 

20  -0.0133 -0.0121 -0.0122  0.7919 0.7888 0.7888  1.1032 1.0982 1.0982 

𝑝 = 5 

10  -0.0075 -0.0073 -0.0074  0.8104 0.8086 0.8090  1.0887 1.0830 1.0842 

15  0.0030 0.0026 0.0027  0.8007 0.7984 0.7987  1.0761 1.0728 1.0731 

20  0.0079 0.0074 0.0074  0.7927 0.7896 0.7901  1.0419 1.0354 1.0363 

𝑝 = 10 

10  -0.0361 -0.0354 -0.0358  0.8344 0.8337 0.8338  1.1157 1.1136 1.1141 

15  -0.0137 -0.0133 -0.0134  0.8106 0.8098 0.8099  1.0588 1.0575 1.0578 

20  -0.0051 -0.0047 -0.0048  0.8009 0.8006 0.8007  1.0393 1.0384 1.0385 

 

Simulation results given in Table 2 show that the ML estimator of the missing value m has the 

best performance among the others with respect to the bias, MAD and MSD criteria for all cases. 

It is followed by the MML estimator. It should be realized that performances of the ML and the 

MML estimators are very close to each other especially for 𝑝 ≥ 5. LS estimator of m has the 

lowest efficiency for all the sample sizes and the shape parameters as expected. Since, it is well 

known that the LS estimators are optimal if and if only the error terms have normal distribution. 

However, they lose their efficiency when the distribution of the error terms is non-normal or there 

exists outliers in the data.

 

It should be noted that bias, MAD and MSD values are very close to 

each other for all estimators (i.e, LS, ML and MML) when 𝑝 = 10, since 𝐿𝑇𝑆(𝑝 = 10)  is very 

similar to the normal distribution in shape. 

 

5.2. Effect of Imputation on the Performances of the Estimators of the Model Parameters 

 

We compare the performances of the LS, the ML and the MML estimators of the model 

parameters (𝜇𝑖 and 𝜎) given below  
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�̂�𝑖,𝐿𝑆 = �̂�𝑖., 𝜇𝑖,𝑀𝐿
(𝑡)

=
1

𝜔(𝑡−1)
∑ 𝑤𝑖𝑗

(𝑡−1)
𝑦𝑖𝑗

𝑛
𝑗=1 , �̂�𝑖,𝑀𝑀𝐿 =

1

𝑤
∑ 𝛽𝑗𝑦𝑖(𝑗)

𝑛
𝑗=1  

 

and 
  

�̂�𝐿𝑆 = √∑ ∑ (𝑦𝑖𝑗−�̂�𝑖,𝐿𝑆)
2𝑛

𝑗=1
𝑎
𝑖=1

𝑁−𝑎
, 𝜎𝑀𝐿

(𝑡)
= √∑ ∑ 𝑤𝑖𝑗

(𝑡−1)
(𝑦𝑖𝑗−𝜇𝑖,𝑀𝐿

(𝑡)
)

2
𝑛
𝑗=1

𝑎
𝑖=1

𝑁−𝑎
, �̂�𝑀𝑀𝐿 =

𝐵+√𝐵2+4𝑁𝐶

2√𝑁(𝑁−𝑎)
 

 

where 𝑤 = ∑ 𝛽𝑗
𝑛
𝑗=1 , 𝐵𝑖 =

2𝑝

𝑞
∑ 𝛼𝑗

𝑛
𝑗=1 𝑦𝑖(𝑗), 𝐶𝑖 =

2𝑝

𝑞
∑ 𝛽𝑗(𝑦𝑖(𝑗) − �̂�𝑖,𝑀𝑀𝐿)

2𝑛
𝑗=1 , 𝐵 = ∑ 𝐵𝑖

𝑎
𝑖=1 , 

𝐶 = ∑ 𝐶𝑖
𝑎
𝑖=1  and 𝑁 = 𝑎𝑛, see Tiku and Akkaya [43]. Definitions of 𝛼𝑗, 𝛽𝑗 and 𝑡(𝑗) are given in 

section 4. 

In this section, our aim is to evaluate the effect of “imputation” on the efficiencies of the 

estimators of the model parameters. For this purpose, we obtain the simulated mean and MSD 

values for the LS, the ML and the MML estimators of the model parameters. Simulation results are 

given in Table 3.  

In Table 3, “full” line represents that there is no missing value. Similarly, “�̂�𝐿𝑆”, “�̂�𝑀𝐿” and 

“�̂�𝑀𝑀𝐿” lines show that estimators of the model parameters (𝜇𝑖 , 𝜎) are computed by imputing the 

estimate of missing value instead of the true value of it. Last column of Table 3 shows the Total 

MSD (TMSD) values. TMSD criterion is used to compare the joint efficiencies of �̂�𝑖 and �̂�. It is 

defined as shown below 
 

𝑇𝑀𝑆𝐷(�̂�𝑖 , �̂�) = 𝑀𝑆𝐷(�̂�𝑖 , ) + 𝑀𝑆𝐷( �̂�). 
 

It should be noted that small values of 𝑇𝑀𝑆𝐷(�̂�𝑖 , �̂�) implies the joint efficiency of (�̂�𝑖 , �̂�). 

According to the results given in Table 3, we can make the following comments about the 

efficiencies of �̂�𝑖 and �̂�, and also the joint efficiency of (�̂�𝑖 , �̂�). 
 

i. Comparisons for �̂�𝑖: It should be realized from Table 3 that efficiencies of �̂�𝑖,𝐿𝑆, �̂�𝑖,𝑀𝐿 and 

�̂�𝑖,𝑀𝑀𝐿 are maximized when we impute the �̂�𝑀𝐿 instead of the missing value for all cases. Since, 

its MSD values are the closest to the MSD values corresponding to the full data. However, when 

𝑝 ≥ 5, using �̂�𝐿𝑆, �̂�𝑀𝐿 or �̂�𝑀𝑀𝐿 do not make any difference in terms of the efficiencies of the 

estimators of 𝜇𝑖. It should also be realized that MSD values obtained from ML and MML based 

imputations are very close to each other when p is large. However, their values are much different 

than the MSD values obtained from the LS based imputation when p is small. 

ii. Comparisons for �̂�: Efficiencies of �̂�𝐿𝑆, �̂�𝑀𝐿 and �̂�𝑀𝑀𝐿 are more or less the same for each 

imputed value of m except that 𝑝 = 2, 2.5 and 𝑛 = 10. In these cases, �̂�𝐿𝑆 based on �̂�𝐿𝑆 gives 

MSD values close to the MSD values given in the “full” line. Similar statements can also be made 

for the �̂�𝑀𝐿 based on �̂�𝑀𝐿 and �̂�𝑀𝑀𝐿 based on �̂�𝑀𝑀𝐿.  

iii. Comparisons about the joint efficiencies of (�̂�𝑖 , �̂�): Simulation results show that �̂�𝑖 and �̂� 

are jointly most efficient estimators when we impute �̂�𝑀𝐿 in the computation of them, especially 

for small values of p. Using �̂�𝑀𝐿 or �̂�𝑀𝑀𝐿 does not make any difference on the joint efficiency of 

�̂�𝑖 and �̂� when p gets larger. �̂�𝐿𝑆 can also be used when 𝑝 = 10, since TMSD values of �̂�𝑖 and �̂� 

are very close to each other regardless of looking which imputed value (�̂�𝐿𝑆, �̂�𝑀𝐿 or �̂�𝑀𝑀𝐿) 

instead of m. 
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Table 3. Simulated values of Mean, MSD and TMSD of the LS, ML and MML estimators of the 

parameters 𝜇𝑖 and 𝜎 
𝑝 = 2 �̂�𝑖  n=10    n=15    n=20   

  full �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿 full �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿 full �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿 

Mean 𝐿𝑆 -0.0043 -0.0057 -0.0056 -0.0057 -0.0037 -0.0041 -0.0037 -0.0038 0.0012 0.0031 0.0029 0.0030 

 𝑀𝐿 -0.0029 -0.0047 -0.0047 -0.0048 0.0019 0.0005 0.0011 0.0009 -0.0004 0.0004 0.0002 0.0003 

 𝑀𝑀𝐿 -0.0033 -0.0051 -0.0050 -0.0051 0.0003 -0.0005 -0.0001 -0.0002 -0.0003 0.0009 0.0007 0.0007 

MSD 𝐿𝑆 0.0954 0.1064 0.0975 0.1004 0.0657 0.0711 0.0667 0.0679 0.0504 0.0533 0.0509 0.0515 

 𝑀𝐿 0.0530 0.0606 0.0595 0.0597 0.0352 0.0380 0.0377 0.0377 0.0262 0.0281 0.0278 0.0278 

 𝑀𝑀𝐿 0.0577 0.0675 0.0631 0.0647 0.0375 0.0415 0.0397 0.0403 0.0282 0.0307 0.0296 0.0299 

              

Mean 𝐿𝑆 0.9335 0.9332 0.9337 0.9335 0.9460 0.9453 0.9456 0.9455 0.9470 0.9466 0.9467 0.9466 

 𝑀𝐿 1.0496 1.0549 1.0508 1.0518 1.0318 1.0345 1.0324 1.0328 1.0207 1.0221 1.0209 1.0211 

 𝑀𝑀𝐿 1.1764 1.1707 1.1700 1.1698 1.1246 1.1202 1.1198 1.1197 1.0929 1.0892 1.0889 1.0888 

MSD 𝐿𝑆 0.1298 0.1331 0.1334 0.1333 0.0911 0.0923 0.0924 0.0924 0.0806 0.0814 0.0814 0.0814 

 𝑀𝐿 0.0323 0.0341 0.0334 0.0335 0.0203 0.0209 0.0207 0.0207 0.0144 0.0146 0.0145 0.0146 

 𝑀𝑀𝐿 0.1236 0.1246 0.1239 0.1238 0.0595 0.0593 0.0589 0.0589 0.0373 0.0371 0.0369 0.0369 

 (�̂�𝑖 , �̂�)             

TMSD 𝐿𝑆 0.2252 0.2395 0.2309 0.2337 0.1568 0.1634 0.1591 0.1603 0.1310 0.1347 0.1323 0.1329 

 𝑀𝐿 0.0853 0.0947 0.0929 0.0932 0.0555 0.0589 0.0584 0.0584 0.0406 0.0427 0.0423 0.0424 

 𝑀𝑀𝐿 0.1813 0.1921 0.1870 0.1885 0.0970 0.1008 0.0986 0.0992 0.0655 0.0678 0.0665 0.0668 

p=2.5 �̂�𝑖  n=10    n=15    n=20   

Mean 𝐿𝑆 0.0022 0.0027 0.0026 0.0027 0.0004 0.0019 0.0018 0.0018 0.0016 0.0011 0.0012 0.0012 

 𝑀𝐿 0.0019 0.0021 0.0019 0.0021 0.0002 0.0005 0.0003 0.0004 0.0023 0.0021 0.0022 0.0022 

 𝑀𝑀𝐿 0.0023 0.0026 0.0024 0.0025 0.0001 0.0011 0.0009 0.0010 0.0021 0.0018 0.0019 0.0018 

MSD 𝐿𝑆 0.0980 0.1085 0.1033 0.1054 0.0653 0.0706 0.0681 0.0690 0.0499 0.0526 0.0512 0.0516 

 𝑀𝐿 0.0734 0.0821 0.0815 0.0816 0.0477 0.0516 0.0513 0.0514 0.0362 0.0385 0.0384 0.0384 

 𝑀𝑀𝐿 0.0775 0.0878 0.0848 0.0861 0.0500 0.0547 0.0535 0.0539 0.0378 0.0405 0.0398 0.0401 

 �̂�             

Mean 𝐿𝑆 0.9701 0.9693 0.9696 0.9694 0.9814 0.9818 0.9820 0.9819 0.9851 0.9849 0.9850 0.9849 

 𝑀𝐿 1.0306 1.0335 1.0316 1.0321 1.0219 1.0235 1.0227 1.0229 1.0182 1.0190 1.0185 1.0186 

 𝑀𝑀𝐿 1.1267 1.1221 1.1220 1.1218 1.0962 1.0934 1.0933 1.0933 1.0779 1.0753 1.0752 1.0752 

MSD 𝐿𝑆 0.0489 0.0498 0.0499 0.0499 0.0421 0.0427 0.0428 0.0427 0.0294 0.0297 0.0297 0.0297 

 𝑀𝐿 0.0256 0.0268 0.0266 0.0267 0.0159 0.0163 0.0162 0.0162 0.0119 0.0122 0.0122 0.0122 

 𝑀𝑀𝐿 0.0603 0.0603 0.0602 0.0601 0.0376 0.0375 0.0374 0.0374 0.0237 0.0236 0.0235 0.0235 

 (�̂�𝑖 , �̂�)             

TMSD 𝐿𝑆 0.1469 0.1583 0.1532 0.1553 0.1074 0.1133 0.1109 0.1117 0.0793 0.0823 0.0809 0.0813 

 𝑀𝐿 0.0990 0.1089 0.1081 0.1083 0.0636 0.0679 0.0675 0.0676 0.0481 0.0507 0.0506 0.0506 

 𝑀𝑀𝐿 0.1378 0.1481 0.1450 0.1462 0.0876 0.0922 0.0909 0.0913 0.0615 0.0641 0.0633 0.0636 

p=3 �̂�𝑖  n=10    n=15    n=20   

Mean 𝐿𝑆 0.0021 0.0011 0.0011 0.0010 0.0039 0.0047 0.0046 0.0046 0.0003 0.0017 0.0016 0.0016 

 𝑀𝐿 0.0019 0.0011 0.0011 0.0011 0.0025 0.0027 0.0025 0.0025 -0.0004 0.0003 0.0002 0.0002 

 𝑀𝑀𝐿 0.0015 0.0008 0.0008 0.0008 0.0027 0.0032 0.0030 0.0031 -0.0002 0.0007 0.0006 0.0006 

MSD 𝐿𝑆 0.0975 0.1089 0.1054 0.1060 0.0664 0.0709 0.0692 0.0699 0.0516 0.0549 0.0539 0.0543 

 𝑀𝐿 0.0814 0.0910 0.0905 0.0905 0.0540 0.0579 0.0577 0.0578 0.0424 0.0450 0.0449 0.0449 

 𝑀𝑀𝐿 0.0823 0.0922 0.0911 0.0914 0.0563 0.0606 0.0597 0.0601 0.0438 0.0468 0.0463 0.0465 

 �̂�             

Mean 𝐿𝑆 0.9825 0.9821 0.9823 0.9823 0.9878 0.9879 0.9880 0.9879 0.9905 0.9906 0.9907 0.9906 

 𝑀𝐿 1.0262 1.0279 1.0268 1.0269 1.0164 1.0174 1.0169 1.0170 1.0131 1.0138 1.0135 1.0136 

 𝑀𝑀𝐿 1.0667 1.0613 1.0609 1.0609 1.0768 1.0744 1.0744 1.0743 1.0620 1.0601 1.0601 1.0601 

MSD 𝐿𝑆 0.0352 0.0361 0.0361 0.0361 0.0243 0.0248 0.0248 0.0248 0.0184 0.0186 0.0186 0.0186 

 𝑀𝐿 0.0240 0.0249 0.0248 0.0248 0.0149 0.0152 0.0152 0.0152 0.0113 0.0114 0.0114 0.0114 

 𝑀𝑀𝐿 0.0323 0.0323 0.0322 0.0321 0.0267 0.0267 0.0267 0.0266 0.0185 0.0184 0.0184 0.0184 

 (�̂�𝑖 , �̂�)             

TMSD 𝐿𝑆 0.1327 0.1450 0.1415 0.1421 0.0907 0.0957 0.0940 0.0947 0.0700 0.0735 0.0725 0.0729 

 𝑀𝐿 0.1054 0.1159 0.1153 0.1153 0.0689 0.0731 0.0729 0.0730 0.0537 0.0564 0.0563 0.0563 

 𝑀𝑀𝐿 0.1146 0.1245 0.1233 0.1235 0.0830 0.0873 0.0864 0.0867 0.0623 0.0652 0.0647 0.0649 

p=3.5 �̂�𝑖  n=10    n=15    n=20   

Mean 𝐿𝑆 0.0002 0.0005 0.0004 0.0005 0.0048 0.0053 0.0051 0.0051 -0.0060 -0.0067 -0.0066 -0.0066 

 𝑀𝐿 -0.0001 0.0000 -0.0004 -0.0004 0.0021 0.0025 0.0022 0.0022 -0.0044 -0.0056 -0.0055 -0.0055 

 𝑀𝑀𝐿 0.0004 0.0002 0.0002 0.0002 0.0023 0.0028 0.0025 0.0025 -0.0045 -0.0057 -0.0056 -0.0056 

MSD 𝐿𝑆 0.0970 0.1084 0.1061 0.1066 0.0663 0.0717 0.0706 0.0707 0.0493 0.0516 0.0509 0.0510 

 𝑀𝐿 0.0862 0.0967 0.0964 0.0964 0.0581 0.0629 0.0628 0.0628 0.0424 0.0444 0.0444 0.0444 

 𝑀𝑀𝐿 0.0872 0.0978 0.0971 0.0974 0.0584 0.0683 0.0630 0.0631 0.0426 0.0447 0.0446 0.0447 

 �̂�             

Mean 𝐿𝑆 0.9868 0.9865 0.9867 0.9866 0.9908 0.9907 0.9908 0.9908 0.9914 0.9910 0.9910 0.9910 

 𝑀𝐿 1.0238 1.0251 1.0244 1.0245 1.0152 1.0158 1.0155 1.0155 1.0107 1.0106 1.0104 1.0105 

 𝑀𝑀𝐿 1.0597 1.0555 1.0553 1.0552 1.0423 1.0392 1.0390 1.0390 1.0316 1.0286 1.0286 1.0286 

MSD 𝐿𝑆 0.0267 0.0273 0.0273 0.0273 0.0192 0.0196 0.0197 0.0197 0.0129 0.0130 0.0130 0.0130 

 𝑀𝐿 0.0221 0.0228 0.0227 0.0227 0.0141 0.0144 0.0144 0.0144 0.0101 0.0102 0.0102 0.0102 

 𝑀𝑀𝐿 0.0248 0.0283 0.0283 0.0283 0.0173 0.0173 0.0173 0.0173 0.0115 0.0114 0.0114 0.0114 

 (�̂�𝑖 , �̂�)             

TMSD 𝐿𝑆 0.1237 0.1357 0.1334 0.1339 0.0855 0.0913 0.0903 0.0904 0.0622 0.0646 0.0639 0.0640 

 𝑀𝐿 0.1083 0.1195 0.1191 0.1191 0.0722 0.0773 0.0772 0.0772 0.0525 0.0546 0.0546 0.0546 

 𝑀𝑀𝐿 0.1120 0.1261 0.1254 0.1257 0.0757 0.0856 0.0803 0.0804 0.0541 0.0561 0.0560 0.0561 
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Table 3 (continued)  
 

p=5 �̂�𝑖  n=10    n=15    n=20   

  full �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿 full �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿 full �̂�𝐿𝑆 �̂�𝑀𝐿 �̂�𝑀𝑀𝐿 

Mean 𝐿𝑆 0.0091 0.0084 0.0084 0.0084 -0.0008 -0.0006 -0.0006 -0.0006 -0.0037 -0.0033 -0.0033 -0.0033 

 𝑀𝐿 0.0093 0.0085 0.0085 0.0085 -0.0012 -0.0010 -0.0011 -0.0010 -0.0040 -0.0037 -0.0037 -0.0037 

 𝑀𝑀𝐿 0.0094 0.0085 0.0085 0.0085 -0.0011 -0.0009 -0.0009 -0.0009 -0.0041 -0.0037 -0.0037 -0.0037 

MSD 𝐿𝑆 0.0997 0.1120 0.1109 0.1112 0.0665 0.0716 0.0711 0.0712 0.0502 0.0531 0.0528 0.0529 

 𝑀𝐿 0.0942 0.1064 0.1063 0.1063 0.0627 0.0677 0.0677 0.0677 0.0470 0.0496 0.0495 0.0495 

 𝑀𝑀𝐿 0.0949 0.1073 0.1069 0.1071 0.0631 0.0682 0.0681 0.0682 0.0473 0.0499 0.0498 0.0499 

 �̂�             

Mean 𝐿𝑆 0.9879 0.9878 0.9879 0.9879 0.9934 0.9933 0.9933 0.9933 0.9951 0.9951 0.9951 0.9951 

 𝑀𝐿 1.0117 1.0125 1.0122 1.0123 1.0088 1.0091 1.0091 1.0090 1.0070 1.0072 1.0072 1.0072 

 𝑀𝑀𝐿 1.0367 1.0341 1.0341 1.0341 1.0292 1.0271 1.0271 1.0271 1.0238 1.0222 1.0222 1.0222 

MSD 𝐿𝑆 0.0205 0.0212 0.0212 0.0212 0.0136 0.0138 0.0138 0.0138 0.0097 0.0099 0.0099 0.0099 

 𝑀𝐿 0.0191 0.0199 0.0198 0.0198 0.0121 0.0123 0.0123 0.0123 0.0087 0.0089 0.0089 0.0089 

 𝑀𝑀𝐿 0.0221 0.0226 0.0226 0.0226 0.0139 0.0140 0.0140 0.0140 0.0097 0.0098 0.0098 0.0098 

 (�̂�𝑖 , �̂�)             

TMSD 𝐿𝑆 0.1202 0.1332 0.1321 0.1324 0.0801 0.0854 0.0849 0.0850 0.0599 0.0630 0.0627 0.0628 

 𝑀𝐿 0.1133 0.1263 0.1261 0.1261 0.0748 0.0800 0.0800 0.0800 0.0557 0.0585 0.0584 0.0584 

 𝑀𝑀𝐿 0.1170 0.1299 0.1295 0.1297 0.0770 0.0822 0.0821 0.0822 0.0570 0.0597 0.0596 0.0597 

p=10 �̂�𝑖  n=10    n=15    n=20   

Mean 𝐿𝑆 0.0014 -0.0023 -0.0022 -0.0022 0.0010 0.0001 0.0001 0.0001 -0.0006 -0.0008 -0.0008 -0.0008 

 𝑀𝐿 0.0021 -0.0016 -0.0015 -0.0016 0.0014 0.0004 0.0005 0.0005 -0.0003 -0.0005 -0.0005 -0.0005 

 𝑀𝑀𝐿 0.0017 -0.0019 -0.0018 -0.0019 0.0014 0.0004 0.0004 0.0004 -0.0003 -0.0005 -0.0005 -0.0005 

MSD 𝐿𝑆 0.0997 0.1109 0.1107 0.1107 0.0666 0.0718 0.0717 0.0718 0.0506 0.0536 0.0535 0.0535 

 𝑀𝐿 0.0989 0.1098 0.1098 0.1098 0.0659 0.0711 0.0711 0.0711 0.0501 0.0529 0.0529 0.0529 

 𝑀𝑀𝐿 0.0989 0.1099 0.1098 0.1099 0.0660 0.0711 0.0711 0.0711 0.0501 0.0530 0.0530 0.0530 

 �̂�             

Mean 𝐿𝑆 0.9912 0.9909 0.9909 0.9909 0.9953 0.9953 0.9953 0.9953 0.9967 0.9967 0.9967 0.9967 

 𝑀𝐿 1.0021 1.0022 1.0021 1.0021 1.0028 1.0029 1.0029 1.0029 1.0022 1.0023 1.0023 1.0023 

 𝑀𝑀𝐿 1.0138 1.0125 1.0125 1.0125 1.0126 1.0118 1.0118 1.0118 1.0107 1.0101 1.0100 1.0100 

MSD 𝐿𝑆 0.0162 0.0167 0.0167 0.0167 0.0103 0.0106 0.0106 0.0106 0.0079 0.0080 0.0080 0.0080 

 𝑀𝐿 0.0161 0.0166 0.0166 0.0166 0.0102 0.0104 0.0104 0.0104 0.0077 0.0079 0.0079 0.0079 

 𝑀𝑀𝐿 0.0169 0.0172 0.0172 0.0172 0.0106 0.0108 0.0108 0.0108 0.0081 0.0082 0.0082 0.0082 

 (�̂�𝑖 , �̂�)             

TMSD 𝐿𝑆 0.1159 0.1276 0.1274 0.1274 0.0769 0.0824 0.0823 0.0824 0.0585 0.0616 0.0615 0.0615 

 𝑀𝐿 0.1150 0.1264 0.1264 0.1264 0.0761 0.0815 0.0815 0.0815 0.0578 0.0608 0.0608 0.0608 

 𝑀𝑀𝐿 0.1158 0.1271 0.1270 0.1271 0.0766 0.0819 0.0819 0.0819 0.0582 0.0612 0.0612 0.0612 

 

6. AN APPLICATION: PEAK DISCHARGE DATA 
 

In this section, we use the data set to illustrate and compare the performances of the 

estimators of the missing value. The data set was taken from Montgomery [26]. In the data set, 

four different methods of estimating flood flow frequency are used to determine whether they 

produce equivalent estimates of peak discharge in case of application to the same watershed. Each 

procedure is used six times on the watershed, and the resulting discharge data (in cubic feet per 

second) are given in the Table 4. 
 

Table 4. The peak discharge data 
 

Treatments 

I   II   III   IV 

0.34   0.91   6.31   17.15 

0.12   2.94   8.37   11.82 

1.23   2.14   9.75   10.95 

0.70   2.36   6.09   17.20 

1.75   2.86   9.82   14.35 

0.12   4.55   7.24   16.82 
 

To model peak discharge data, we use one-way ANOVA given below 
 

𝑦𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗 , 𝑖 = 1,2,3,4; 𝑗 = 1,2, ⋯ ,6 
 

Before analyzing the data set, we identify the shape parameter p by using the Quantile-

Quantile (Q-Q) plot which is the graphical technique to check the validity of a distributional 

assumption for the peak discharge data. We plot the order statistics of  
 

𝜀�̂�𝑗 = 𝑦𝑖𝑗 − �̂�𝑖, 𝑖 = 1,2,3,4; 𝑗 = 1,2, ⋯ ,6 
 

against the quantiles of the normal distribution, see Figure 2. We obtain the Q-Q plot of the 

peak discharge data for various different values of the shape parameter p of LTS distribution. It is 
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seen that 𝐿𝑇𝑆(𝑝 = 2.3) provides better fitting to the peak discharge data than the normal 

distribution, since the data points in the 𝐿𝑇𝑆(𝑝 = 2.3) Q-Q plot do not deviate too much from a 

straight line, see Figure 3. 

 

  
 

     Figure 2. Normal distribution Q-Q plot of          Figure 3. 𝐿𝑇𝑆(𝑝 = 2.3) distribution Q-Q plot 

                       the peak discharge data                                   of the peak discharge data 

 

The Akaike Information Criterion (AIC) values based on ML estimates are also calculated for 

the LTS (when 𝑝 = 2.3) and the normal distribution. The AIC values are obtained as follows 
 

𝐴𝐼𝐶𝐿𝑇𝑆 = 52.3080 and 𝐴𝐼𝐶𝑁 = 53.8291, 
 

respectively. It is clear that LTS distribution provides better fitting to the data than the normal 

distribution according to the AIC value. 

In this example, there is no missing value in the data, therefore we create a missing value in 

the second treatment (i.e, 𝑚 = 𝑦23) according to the MCAR mechanism by using the methodology 

proposed by Brand et al.  [7]. Then, we obtain the estimates of m based on LS, ML and MML 

methodologies. Bias values corresponding to them, are also given in Table 5. 

The results given in Table 5 show that the ML estimator of missing value has the smallest bias 

among the others. This result is consistent with the simulation results given in Table 2.  

 

Table 5. The LS, the ML and the MML estimates of the missing value for the data 
 

  𝑚 = 𝑦23   �̂�𝐿𝑆   �̂�𝑀𝐿   �̂�𝑀𝑀𝐿   BiasLS   BiasML   BiasMML  
2.1400   2.5640   2.5050   2.5110   0.1798   0.1333   0.1377  

 

7. CONCLUSIONS 

 

In this paper, we consider the problem of estimating the missing value in one-way ANOVA 

when the error terms have LTS distribution. Estimates of missing value are obtained by using the 

LS, the ML and the MML methodologies. The EM algorithm is used for the ML estimate of the 

missing value. The performances of the estimates are compared according to the three different 

criteria. The results of simulation study show that the ML and the MML estimators of the missing 

value are more efficient than the corresponding LS estimator with respect to the bias, MAD and 

the MSD criteria. It should also be noted that the LS estimator did not perform well in accordance 

with all comparison measures for all the sample sizes and the shape parameters, because it is very 

sensitive to the deviations from the normal distribution. We also examined how estimates of the 

missing value affect the performances of the estimators of the model parameters. Estimates of 

missing value are used to fill in the missing value, so that incomplete data becomes complete and 

then we obtain the estimates of the model parameters 𝜇𝑖 and 𝜎 by using the LS, the ML and the 
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MML methodologies. Finally, we compare the efficiencies of the estimators of the model 

parameters based on “full data” and “imputed missing data”. The ML estimate of missing value in 

one-way ANOVA is the best among the others since the estimates of the model parameters based 

on ML estimate of the missing value are numerically very close to the estimates of the model 

parameters based on full data. It should be noted that the MML estimator is non-iterative and 

numerically very close to the ML estimator for estimating the missing value. The results given in 

this paper can easily be extended to more than one missing value case and to the hypothesis 

testing problems. 
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