
441 

 

Sigma J Eng & Nat Sci 36 (2), 2018, 441-457 

 

                                                                                                                                 

 

 

 

 

Research Article 

DESIGNING A RESPONSE APPROACH IN CHAOTIC SYSTEMS 

 

 

Shko Ali TAHIR
1
, Abderrahman BOUHAMIDI

2
, Murat SARI*

3
 
 

 
1Yildiz Technical University, Dep. of Mathematics, Esenler-ISTANBUL; ORCID:0000-0002-6780-7111 
2L.M.P.A, Universite du Littoral, 50 rue F. Buisson BP699, F-62228 Calais-Cedex, FRANCE;  
ORCID:0000-0002-5675-7251 
3Yildiz Technical University, Dep. of Mathematics, Esenler-ISTANBUL; ORCID:0000-0003-0508-2917 

 

Received: 16.01.2018   Accepted: 23.04.2018 

 

  

ABSTRACT 

 

In this paper, we propose a generalized method by designing new response systems for solving 
synchronization problems of coupled chaotic identical and non-identical dynamical systems. We extend our 

study by considering two new techniques for constructing a chaotic synchronization between two identical or 

non-identical dynamical systems. The first one is based on the classical Lyapunov stability theory. The 
proposed method is analyzed by means of equilibrium points, eigenvalue structures, and Lyapunov functions. 

The second one requires the nonlinear part of the response system to be smooth enough and uses the 

expansion of such a function. The designed controller functions enable the state variables of the drive system 
to globally synchronize with the state variables of the response system in both methods. The global 

convergence of the proposed methods have been discussed by giving two theoretical results. To show the 

effectiveness and feasibility of those approaches, various numerical simulations have been carried out. 
Keywords: Dynamical systems, synchronization, chaotic system, stabilization, Lyapunov theory, numerical 

analysis. 

 

 

1. INTRODUCTION 

 

Chaotic synchronization is an interesting phenomenon characterizing many processes in 

natural systems. The original work on synchronization was introduced in coupled pendulum by 

Huygens [6] and has been extensively studied in the last two decades. Pecora and Carroll [12] 

proposed that synchronization can be observed even in chaotic systems and also stated that the 

behavior of synchronization is appearing when the distance between the corresponding states 

converges to zero as time tends to infinity. After this discovery, periodic synchronization has 

attracted attention of many researchers in biological science, chemical reaction, ecological 

systems, secure communication and so on. Several types of synchronization were discovered such 

as: Identical or complete synchronization appears as the coincidence of states of interacting 

systems, phase synchronization which means the phases of chaotic oscillators in a closely 

controlled phase relationship, lag synchronization appears as having a parameter mismatch in 
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mutually coupled chaotic oscillator. This type of lag synchronizations has important technological 

implications in engineering systems. 

The problem of chaotic synchronization is related to trajectories starting arbitrarily and close 

to each other as the time tends to infinity. Identical synchronization of two chaotic systems may 

occur when the systems are coupled or when one chaotic system drives another chaotic system 

[14,13]. However, many real systems are in general non-identical due to the parameters of two 

coupled systems do not match, or the coupled systems belong to different classes. So, the 

possibility of the transformation between drive and response dynamical variables these include 

the generalized synchronization can be very complicated. This issue may pose a trouble in 

practical application of synchronized chaos. In the literature, a large number of researchers have 

extensively concentrated on the identical synchronization, the generalized synchronization [15],  

active control methods such as adaptive control, feedback control, sliding mode control, adaptive 

lag synchronization for chaotic system [20], impulsive control and fuzzy control and so on [19, 

11, 4]. 

In this paper, we propose to analyze a synchronization of a coupled chaotic identical and non-

identical dynamical systems producing generalized synchronization in drive-response systems. 

Thus, we have investigated general methods to detect the existence of the transformation and 

study this kind of synchronous behavior. In the case of the drive-response methods, efforts to a 

systematic method that guides the development of solutions to synchronization problems, when 

trajectories of driving and response systems are strongly connected, then two close states in the 

state space of the response system correspond to two close states in the space of the driving 

system. Here, we consider two approaches for constructing chaotic unidirectional synchronization 

between the two systems. The systems are either both identical or both non-identical or each one 

different from the other. First, we apply the classical Lyapunov stability theory in synchronization 

of real systems. Secondly, we study a case when the nonlinear part of response system is required 

to be smooth enough. Then, we use the expansion of such a function to establish the global 

synchronization of the chaotic dynamical systems. We present that, these techniques can be 

implemented directly to any experiments and does not require mutual feedback. 

This paper is organized as follows. In Section 2, we give a general approach for a 

synchronization problem. We describe a generalized synchronization for constructing response 

systems. In Section 3, we apply the proposed method to three standard chaotic systems. The first 

one concerns two identical Memristor systems. The second is related to two non-identical systems 

which are Lorenz and Rossler systems. The last one presents the behavior of synchronization in 

biological dynamic systems between two identical neural systems.  

 

2. GENERALIZED SYNCHRONIZATION OF CHAOTIC DYNAMICAL SYSTEMS 

 

Pecora and Carroll [12] introduced a method for studying a chaotic system of oscillators. 

They split the system into two subsystems. The first one is the driver system and the second one is 

the response system and may be given in the following form: 
 

{
ẋ(t) = F(x(t))                                                                 driver,

ẏ(t) = G(y(t)) + u(x(t), y(t))                               response,
                                                         (1) 

 

where the functions  F: ℝn → ℝn and G: ℝm → ℝm are continuous vector valued functions. 

The vector x(t)  ∈  ℝn represents the driving signal and y(t)  ∈  ℝm represents the response 

signal. The functions F and G may be written as sum of linear and nonlinear parts as  
 

F(𝑥(𝑡)) = 𝐴 𝑥(𝑡) + 𝑓(𝑥(𝑡))  and   𝐺(𝑦(𝑡)) = 𝐵 𝑦(𝑡) + 𝑔(𝑦(𝑡)), 
 

where the matrices A and B of size n × n and m ×  m, respectively, are assumed to consist of 

constants and the functions f: ℝn  →  ℝn and g:ℝm  →  ℝm represent the nonlinear parts of F and 

G, respectively. The function u:ℝk  →  ℝm is a controller function, here k = n + m. Some of the 
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outputs from the driver system are used to drive the response system. This means that, there exists 

a relation between the two coupled systems, which could be a smooth function Φ:ℝn  →  ℝm, 

action transforms the trajectories on the attractor of the first system into those on the attractor of 

the second system. We assume that the driver system in (1) is unstable at their equilibrium points. 

It is suitable to introduce the error system 𝑒 given by  
 

𝑒(𝑡) = 𝑦(𝑡) − 𝛷(𝑥(𝑡)). 
 

Definition 2.1: System (1) is generalized synchronous with respect to vector function Φ, if the 

controller function 𝑢 exists and satisfies the following property: 
 

𝑙𝑖𝑚
𝑡→∞

‖𝑒(𝑡)‖ = 𝑙𝑖𝑚
𝑡→∞

‖𝑦(𝑡) − 𝛷(𝑥(𝑡))‖ = 0, 
 

for all initial conditions. 

One can consider the Lyapunov function given by 
 

V(t) =
1

2
 𝑒(𝑡)𝑇𝑃 𝑒(𝑡).                                                                                                                     (3) 

 

The notation ( )T stands for the transpose operator and P is a positive symmetric definite 

matrix and is independent of time. We consider the matrix P as identity matrix in all practical 

examples. We assume that the error system 𝑒(𝑡) is small enough and satisfies a differential 

equation of the form 
 

�̇�(t) = −M(t)𝑒(t),                                                                                                                          (4)  
 

where M is an appropriate matrix. We have 
 

�̇�(t) = ẏ(t) − 𝒥Φ(x(t))ẋ(t) = By(t) + g(y(t)) = u(x(t), y(t)) − 𝒥Φ(x(t))F(x(t)),                 (5) 
 

where 𝒥Φ is the Jacobian matrix of the function Φ. According to condition (4) it follows that 

the corresponding controller function u exists and is given by 
 

u(x(t), y(t)) = −M(t) e(t) + 𝒥Φ(x(t))F(x(t)) − By(t) − g(y(t)).                                             (6) 
 

Then, system (1) becomes 
 

{
ẋ(t) = F(x(t))                                                                 driver,

ẏ(t) = −M(t)e(t) + 𝒥Φ(x(t))F(x(t))                 response.
                                                            (7) 

 

Thus, we have the following results: 
 

Theorem 2.1 Assume that 
 

(i) Φ is a continuously differentiable function, 

(ii) The matrix MT(t) P + P M(t) is a positive definite matrix.  
 

Then, system (1) is globally generalized synchronous with respect to the vector function Φ. 
 

Proof 
 

The derivative of the Lyapunov function V is given by 
 

V̇(t) =  
1

2
(ė(t)T P e(t) +   e(t)T P e(t)) =  

−1

2
((M(t)e(t))T P +   eT P M(t)e(t)) 

         =
−1

2
 eT(t)  (MT(t)  P +  P M(t)) e(t)  .                                                                                (8) 

 

     Since MT(t) P + P M(t) is positive definite matrix and from the Lyapunov stability theory, it 

follows that  ‖e(t)‖  → 0  as  t → 0 and system (1) is globally generalized synchronous with 

respect to the vector function  Φ.  ∎  

It is also possible to consider another hypothesis which guarantees the global synchronization 

of chaotic systems. We assume that function g in (1) is sufficiently smooth and ‖e(t)‖ is small 

enough. So, we have the following expansion, 
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g(y(t)) = g (Φ(x(t)) + e(t)) = g (Φ(x(t))) + 𝒥g (Φ(x(t)))  e(t) + o(‖e(t)‖), 
 

where 𝒥g (Φ(x(t))) is the Jacobian matrix of g at point Φ(x(t)). It follows that g(y(t)) may 

be approximated by the sum g (Φ(x(t))) + 𝒥g (Φ(x(t))) e(t). The response system in (1) may 

be approximated by  
 

ẏ(t) = By(t) + g (Φ(x(t))) + Jg (Φ(x(t)))  e(t) + u(x(t), y(t)).   
 

Then, 
 

ė(t) = By(t) + g (Φ(x(t))) + Jg (Φ(x(t)))  e(t) + u(x(t), y(t)) − 𝒥Φ(x(t)) F(x(t))

= −M(t)e(t).    
 

One can thus obtain 
 

u(x(t), y(t)) = −𝒥g (Φ(x(t)) + M(t))  e(t) + 𝒥Φ(x(t)) F(x(t))  − By(t) − g (Φ(x(t))).       (9) 
 

Here, system (1) becomes 
 

{
ẋ(t) = F(x(t))                                                                                                                          driver,   

ẏ(t) = g(y(t)) − g(Φ(x(t)) − 𝒥g (Φ(x(t)) + M(t))  e(t) + 𝒥Φ(x(t)) F(x(t))   response.
                                                                                     

  (10) 

  

Now, if we se E(t) = M(t) − B and if matrix M(t) commutes with B then E(t) commutes 

with B and the solution of the differential equation (4) is given by 
 

𝑒(𝑡) = 𝑒−𝐸(𝑡) 𝑤(𝑡),                                                                                                                      (11) 
 

where w(t) is the solution of the differential system  
 

 ẇ(t) = −Bw(t). 
 

The solution w(t) satisfies the condition   
 

‖𝑒−𝐸(𝑡)‖  ≤  𝐶1 𝑒
𝜆𝐿𝑡,                                                                                                                    (12) 

 

where  λL denotes the maximum Lyapunov exponent of the response system in (1) and C1 is a 

positive constant. Furthermore, we assume that matrix E satisfies the condition  
 

‖𝑒−𝐸(𝑡)‖  ≤  𝐶2 𝑒
𝜓(𝑡),                                                                                                                   (13) 

 

where C2 is a positive constant and the function ψ is assumed to be a non-negative function 

satisfying the following property  
 

limt→+∞
ψ(t)

t
=  ℓ > λL.                                                                                                               (14) 

    

Thus, we reach the following results: 
 

Theorem 2.2: Assume that 
 

(i) Φ and g are continuously differentiable functions, 

(ii) Matrices B and M(t) commute and matrix E(t) = M(t) − B satisfies conditions (13)-(14). 
 

Then, system (10) is globally generalized synchronous with respect to vector function Φ. 
 

Proof 
 

From (11), we have 
 

‖𝑒−𝐸(𝑡)‖  ≤  ‖𝑒−𝐸(𝑡)‖‖  𝑤(𝑡) ‖.  
 

According to (12) and (13) it follows that 
 

‖𝑒−𝐸(𝑡)‖  ≤ 𝐶  𝑒𝜆𝐿𝑡−𝜓(𝑡),                                                                                                              (15) 
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where C is a positive constant. The property (14) gives that ‖e(t)‖  →  0 as t →  0, for any set 

of initial conditions. Hence we have completed the proof of system (10) that it is globally 

generalized synchronous with respect to the vector function Φ. ∎ 
 

Remark.  In a practical example we select matrix E to be independent of time in the form 

E = k Im , where Im is the identity matrix of size m × m and k is a coupling parameter of 

synchronization. So, matrix E commutes with any matrix and we have M = B+ kIm. It follows 

that 
 

𝑒−𝐸𝑡 = 𝑒−𝑘𝑡   𝐼𝑚, 
 

and 
 

‖𝑒−𝐸𝑡‖ =  𝑒−𝑘𝑡. 
 

In this case, we defıne the function  ψ(t) = kt. After, condition (13) is satisfied. Then, we 

obtain the condition (15) as   
 

‖𝑒(𝑡)‖  ≤ 𝐶 𝑒(𝜆𝐿−𝑘)𝑡 . 
 

Condition (14) is satisfied for 
 

k >   λL, 
 

where the maximum Lyapunov exponent is approximately equal to the largest eigenvalue of 

matrix B. To ensure that ‖e(t)‖ is small enough for all t, the value of the parameter k must be 

large enough. 

  

3. NUMERICAL RESULTS 

 

     In this section, we consider three numerical examples from physical and biological problems. 

We demonstrate the effectiveness of the proposed control function. We have addressed the 

problem of synchronization of identical and nonidentical chaotic systems. All computations have 

been carried out using MATLAB 2015 on a workstation with 16 significant decimal digits. We 

solved the drive and response systems (7)-(9) by using the fourth order Runge-Kutta scheme with 

initial conditions  x(0)  and y(0). The interval time [t0, T]  is partitioned into N subintervals 

[tn, tn+1]  with tn = t0 + n Δt for n = 0,… , N, Δt =
T−t0

N
. Let xn and yn denote the 

approximation of the vectors x(tn) and y(tn), respectively. We consider the relative error Re as  
 

2

0

2

0

( )

( )

( )

N

n n

n
n n n N

n

n

y x

t R t

x














a

,                                                                                               (16)  

 

and the partial relative error function re defined by  
 

( )
( )

( )

n n

n e n

n

y x
t r t

x





a  .                                                                                                      (17)  

 

The globally generalized synchronization with respect to function F is also confirmed by the 

simulation results.  

 

3.1. Memristor system 

 

Now, we provide the first experimental example to illustrate the result given in the previous 

section. We show the effectiveness of the proposed control function. We address the problem of 

synchronization of identical systems with n = m = 4 concerning the Memristor chaotic systems. 
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The Memristor was postulated as the fourth nonlinear circuit element by Chua [10]. This 

Memristor system may be described via the following nonlinear differential equations with 

respect to the fundamental basic circuit elements, resistance, capacitance, inductance and 

Memristor [2]. We then have 
 

{
  
 

  
 C1  

dv1

dt
 =  i3 −W(φ)v1

L   
di3

dt
 =        v2 − v1    

C2  
dv2

dt
 =  −i3 + Gv2     

  
dφ

dt
 =         v1,       

                                                                                                        (18) 

 

where the parameters v1,  v2, v3, v4 are the voltages and i1, i2, i3, i4 are the currents. 

Nonlinear function W is called the Memristance. We set x1 = v1,  x2 = i3, x3 = v2, x4 = φ, 

α =
1

C1
,  β =

1

C2
, γ =

G

C2
 and L = 1.  Then, system (18) can be transformed to a first order 

differential equation system as  
 

{
  
 

  
  
dx1

dt
 =  α(x2 −W(x4))

 
dx2

dt
 =        x3 − x1         

 
dx3

dt
= −β x2 + γx2      

dx4

dt
=      x1,                  

                                                                                                         (19) 

 

where function W(x4)  is defined as 
 

W(x4) = {
a  if  |x4|  < 1

b  if  |x4|  > 1.
                                                                                                             (20) 

 

  From previous observations [10], the state orbits of the Memristor system (19) has a chaotic 

attractor portrayed for the parameter values fixed as α = 4 ,β = 1,γ = 0.65, a = 0.2 and b = 10 , 
as shown in Figure 1. 

 

   
 

Figure 1. Chaotic attractors of system (19) 

 

The same systems, the  Memristor system (19), is taken for the response and given by  
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{
  
 

  
  
dy1

dt
 =  α(y2 −W(y4)) + u1(x(t), y(t))

 
dy2

dt
 =        y3 − y1 + u2(x(t), y(t))        

 
dy3

dt
= −β x2 + γx2 + u3(x(t), y(t))  

dy4

dt
=       y1 + u4(x(t), y(t))                

                                                                                  (21) 

 

One can rewrite system (21) in the form ẏ(t) = B y(t) + g(y(t)) + u(x(t), y(t)), where 
 

B =

0 0 0

1 0 1 0

0 0

1 0 0 0



 

 
 

 
 
 
 

    and  g(y) =

4 1( )

0

0

0

W y y 
 
 
 
 
 

. 

 

The control function u(x, y) can be determined by (6), where Φ(x1; x2; x3; x4) =
(y1; y2; y3; y4) is the identity function. We choose matrix M = kI4. Thus by Theorem 1, systems 

(19)-(21) are globally generalized synchronous with respect to function Φ. We then solved the 

drive-response systems (19)-(21) by using the fourth order Runge-Kutta scheme with the initial 

conditions x(0) = (1; 1; 1; 1)Tand y(0) = (10; 20; 50; 20)T. The interval time is [t0, T] =
[0, 20] with N = 50000.  

Figure 2 shows the shape of relative error given by (16). The shape of the partial relative error 

re given by (17) is shown in Figure 3 and it illustrates the behavior of the error. Figure 4 shows 

the shape between different components of the systems for different values of the parameter k. 

The synchronization is observed when k the becomes larger and larger. We note that the error 

decreases as k increases for the synchronization motion between the systems (19) and (21). 

 

    
 

Figure 2. Behaviour of the relative error Re(tn)       Figure 3. Behaviour of the partial relative error re(tn) 
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Figure 4. Time series for xi(t), yi(t) (i = 1,2,3,4) at versus coupling constant k =0,0.5,1.5 

 

3.2. Lorenz and Rössler systems 

 

Here, we consider two nonidentical chaotic systems in both cases of n < m  and n > m. We 

take the well systems of Lorenz and Rössler [5, pp686-708]. The Lorenz system is defined by the 

three dimensional ordinary differential equations as follows 
 

{
 
 

 
  
dx1

dt
 =  α(x2 − x1) + u1(x(t), y(t))               

dy2

dt
 =     γx1 − x2 + x1x3 + u2(x(t), y(t))

dx3

dt
= −β x3 + x1x2 + u3(x(t), y(t))        

                                                                     (22) 

 

The Rössler system is designed by four nonlinear ordinary differential equations.  

One can see that the Lyapunov exponents are positive, and showing that the famous Lorenz 

and Rössler systems exhibit the chaotic attractor as seen in Figuer 5,  for the parameter 

values  α = 10, β = 8/3, γ = 28, a = 0.25, b = 3, c = 0.5 and d = 0.05. The initial conditions 
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are x(0) = (10; 10; 10)T and y(0) = (1; 1; 1; 1)T, respectively; in the interval time [t0, T] =
[0, 20]. 
 

 

{
  
 

  
  
dy1

dt
 =  −y2 − y3 + u1(x(t), y(t))             

 
dy2

dt
 =        y1 + αy2 + y4+u2(x(t), y(t))

 
dy3

dt
= y1y3 + b + u3(x(t), y(t))              

dy4

dt
=     −cy3 + dy4 + u4(x(t), y(t))  

                                                                           (23) 

 

 
 
 

Figure 5. The chaotic attractor of the Lorenz and Rössler systems 

 

        To illustrate Theorem 2 for the first case n < m, the Lorenz system is chosen as the drive 

system and the Rössler as the response system which can be redefined as 
 

ẏ(t) = g(y(t) − g(Φ(x(t)) − (𝒥g (Φ(x(t))) + M(t)) e(t) + 𝒥Φ(x(t)) f(x(t)), 
 

where   
 

B =

0 1 1 0

1 0 1

0 0 0 0

0 0

a

c d

  
 
 
 
 

 

    and  g(y) =

1 3

0

0

0

y y b

 
 
 
 
 
 

. 

 

The control function u(x,y) can be determined by (9). The vector function is given by 

Φ(x1; x2; x3) = (y1; y2; y3; y1 + y2 + y3)
T which is the nonidentity function. We choose the 

matrix to be M = B + E, where E = kI4. To produce simulation results, the fourth order Runge 

Kutta scheme is also used to solve the drive-response systems with the time step Δt =
T−t0

N
  and 

N = 50000.  Notice that the theoretical results of Theorem 2 is also confirmed by the numerical 

results, and we obtain the behaviour of synchronization by using the large value of coupling 

strength k. In Figure 6, we observe that the drive system is synchronized with the response system 

for the coupling k ≥ 7.6. The graph of the relative error r𝑒 given by (17) is illustrated in Figure 7 

and it figures out the convergence of the results currently computed. The same systems were 

studied also in references [1,16,9,17] 
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Figure 6. Time series for xi(t),yi(t)(i = 1,2,3,4) at various coupling constant k =7.58, 10, 20 

 

 
 

Figure 7. Behaviour of partial relative error re(tn) 

 

In the second case for n > m, we adopt the Rössler system as the drive, and making the 

Lorenz system as the response. Then, we rewrite the system in the form  
 

ẏ(t) =  −M(t)e(t) + 𝒥Φ(x(t))f(x(t)), 
 

0

1 0

0 0

B

 





 
 

 
 
  

and  1 3

1 3

0

( )g y y y

y y

 
 

 
 
  

. 

 

The control function u(x; y) can be calculated by (6), and 𝑀 = 𝑘I3. Here, we consider the 

nonidentity vector function given by Φ(x1; x2; x3; x4) = (x1 + x3; x2 + x3; x1 + x4)
T. In our 

simulation, we set the coupling k = 0.5, while the initial conditions are chosen to be x(0) =
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(−5;−5; 10; 10)Tand y(0) = (10; 10; 10)T and the time interval is taken to be [t0, T] =
[0, 2500]. Figure 8 shows that the error state converges to zero, in this case; we extend the 

analysis to Theorem 1 to estimate the small coupling strength. The designed controller, the drive 

and response system are synchronized. 

 

 

 
 

Figure 8. Error states (𝑒1,𝑒2,𝑒3) 

 

3.3. Hindmarsh-Rose neuronal system 

 

In this example, we mainly study the role of neural synchronization in physical diseases, and 

particularly in the case of heart attack, where the neural activity takes place in many parts of 

human body, such as the heart muscles. The problem of chaos in the heart muscles will decrease 

when neurons begin to convince to fire in synchronous with them. The dynamic variables during 

this process are the neurons membrane potential, which are changed and control a vast number of 

ionic channels. In general, it describes three different states of the membrane potential which can 

be Resting, Spiking and Bursting. Some papers investigated synchronization of two HR neurons 

[3, 18]. Hereafter, some information about neural activity and synchronization, we present the 

dynamics of the membrane potential in the axon of neuron with a three dimensional system which 

is known as the HR model 
 

{
 
 

 
 
dx1

dt
 =  x2 +  α x1

2 − x1
3 − x3 + I(t)

dx2

dt
 =  1 − βx1

2 − x2                             

dx3

dt
=  η(γ( x1 − C) − x3),                   

                                                                                       (24) 

 

where 𝑥1, 𝑥2 and 𝑥3 represent the membrane potential, the recovery variable and the 

exchange of ions through slow ionic channels respectively. Here 𝐼(𝑡)  is the externally applied 

current at time 𝑡, ℎ is a recovery variable, which is very small. The parameter 𝐶 is the x-

coordinate of the left most equilibrium point of the model without adaptation. Parameters a,b, h 

and g are given in biological phenomena. The chaotic Bursting system (24) exhibits a chaotic 
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attractor with parameter values as carried out in reference [8] for 𝛼 = 3, 𝛽 = 5, 𝛾 = 4, C= −8/5, 

𝐼 = 3.25,  and 𝜂 = 0.005, and the initial conditions  𝑥(0) = (−0.54,−1, 3)𝑇 and 𝑦(0) =
(0.54, 1,−3)𝑇 of the drive and response systems respectively as shown in Figure 9. 

 

  
 

Figure 9. Chaotic bursting of neuronal system 

 

To study synchronization motions of the two identity coupled HR neuronal systems, it 

is assumed that system (24) is considered to be the drive system, and the response system is 

given by 
 

{
 
 

 
 
dy1

dt
 =  y2 +  α y1

2 − y1
3 − y3 + I(t) + u1(x(t), y(t))

dy2

dt
 =  1 − βy1

2 − y2 + +u2(x(t), y(t))                         

dy3

dt
=  η(γ( y1 − C) − y3) + +u3(x(t), y(t)).               

                                                            (25) 

 

System (25) can then be rewritten as 
 

�̇�(𝑡) =  −𝑀(𝑡)𝑒(𝑡) + 𝒥Φ(𝑥(𝑡))𝑓(𝑥(𝑡)), 
 

0 1 1

0 1 0

0

B

 

 
 

 
 
  

  and  

2 3

2 2

2

2( ) 1

0

y y I

g y y





  
 

  
 
 

. 

 

The control function u(x, y) is given by (6), where Φ(x1; x2; x3) = (y1; y2; y3))
T is the 

identity function. We produce numerical results using the fourth order Runge-kutta method for 

the drive-response system, after 𝑀 = 𝑘 𝐼3 has been substituted. The time interval is taken to be 
[t0, T] = [0, 200]. The hypothesis of Theorem 1 are satisfied and we have the synchronization 

analysis between the drive and response systems. The results are also confirmed by simulations 

for a coupling strength k which is small enough. Figure 10 shows the time series of  x1 

component from drive system and y1 component from the response system. The partial relative 

error 𝑟𝑒is presented in Figure 11. We observe that convergence of the relative error converge to 

zero. 
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Figure 10. The synchronization between two identical HR neurons systems: plots of amplitudes 

y1 according x1 at various coupling strength k = 0, 0.1, 0.2 

 

 

Figure 11. Behaviour of the partial relative error re(tn) 

 

3.4. Modeling Belousov-Zhabotinsky Reaction 

 

In this example, we consider modeling of the Belousov-Zhabotinskii (BZ) reaction in 

chemistry. The reaction is mathematically important because it exhibits many characteristics of 

chaos. Considering the reaction rates and flow rate, the simple mathematical model consisting of 

two rate equations can be written as [7] 
 

{

dx1

dt
= (−x1

3 −  μ x1 + γ) − λx2
dx2

dt
=

(x1−x2)

τ
,                                  

                                                                                                 (26) 
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where x1 = [HBrO2] and  x2 = [Br
2]. The characterization of chaos in the BZ reaction relied 

on the rate of  parameters which are fed into the system. The chaotic attractor (26) exhibits with 

parameter values: μ = 0.000005; γ = 0.000009; λ = 10000 and  τ = 0.5, and the initial 

condition x(0) = (0; 0) as shown in Figure 12. In this figure, we obtain the chaotic attractors by 

choosing the sufficiently best parameter values in the model system (26). 

 

   
 

Figure 12. Chaotic modeling of the BZ reaction 

 

Here, to study synchronization motions of the two identical systems of the BZ reaction 

system, it is assumed that system (26) is considered to be the drive system, and thus the response 

system is given by 
  

{

dy1

dt
= (−y1

3 −  μ y1 + γ) − λy2 + u1(x(t), y(t))

dy2

dt
=

(y1−y2)

τ
+ u2(x(t), y(t)).                                   

                                                                    (27) 

 

Then, system (27) can then be rewritten as   
 

ẏ(t) =  −M(t)e(t) + 𝒥Φ(x(t))f(x(t)), 
 

where  
 

1/ 1/
B

 

 

  
  

 
  and 

3

1( )
0

y
g y

  
  
 

. 

 

The control function u(x, y) is given by (6), where F(x1 , x2) = (y1; y2)  is the identity 

function. We have produced numerical results using the Runge-Kutta method for the drive-

response system, after M = KI2 has been substituted. The time interval is taken to be [t0, T] =
[0, 1.5]. Notice that, the advantages of the Theorem 1 are : the theoretical results are confirmed by 

the numerical results,  the behaviour of synchronization are seen by using the small value of 

coupling strength k. And also, it is successful in designing of coupled functions which represent 

the fast synchronization in the mechanistic understanding of these complex reactions. In Figure 

13, we observe that the drive system is synchronized with the response system for the coupling 

k ≥ 0.013. The graph of the relative error re(tn) given by (17) is illustrated in Figure 14 and it 

figures out the convergence of the results have currently computed. 
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Figure 13. The synchronization between two identical systems BZ reaction systems: plots of 

amplitudes y1 according to x1 at various coupling strength k = 0.001,0.01,0.013 

 

 
 

Figure 14. Behaviour of the partial relative error re(t) 

 

4. CONCLUSION AND RECOMMANDATIONS 

 

In this work, we have investigated the synchronization and stabilization of physical, 

biological and chemical problems which are well-intended chaotic systems. We have studied 

coupled systems that do not have mutual feedback but they were organized as a drive system and 

a response system through some communication channels between them. We have also discussed 

the asymptotic stability of the zero solutions of synchronization error system. A new response 

system proposed in each case of the presently generalized methods are given as: first, we have 

proposed that this phenomenon of chaotic synchronism may construct a response system via the 

Lyapunov stability theory to carry out the generalized synchronization with the derive system for 

a given smooth invertible function. We then considered a new hypothesis from the nonlinear part 

of the response system under some sufficient conditions which showed that the global generalized 

synchronization between chaotic systems. In this paper, we proved that analytic methods and 

theoretical results are effectively guaranteed for the stability of generalized chaotic 

synchronization. The methods may be implemented directly in any numerical simulations for 
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synchronization of chaotic systems in various dimensions and have the fast synchronization 

speed. Numerical results also illustrated the effectiveness of the proposed approaches. For future 

research, while the theory of synchronization stays a challenging problem for networks of chaotic 

systems, and the phenomena of synchronization in coupled partial differential equations will be 

our focus. 
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