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ABSTRACT 
 
Toric Bezier patches generalize the classical tensor-product triangular and rectangular Bezier surfaces, 
extensively used in CAGD. The construction of toric Bezier surfaces corresponding to multi-sided convex 
hulls for known boundary mass-points with integer coordinates (in particular for trapezoidal and hexagonal 
convex hulls) is given. For these toric Bezier surfaces, we find approximate minimal surfaces obtained by 
extremizing the quasi-harmonic energy functional. We call these approximate minimal surfaces as the quasi-
harmonic toric Bezier surfaces. This is achieved by imposing the vanishing condition of gradient of the quasi-
harmonic functional and obtaining a set of linear constraints on the unknown inner mass-points of the toric 
Bezier patch for the above mentioned convex hull domains, under which they are quasi-harmonic toric Bezier 
patches. This gives us the solution of the Plateau toric Bezier problem for these illustrative instances for 
known convex hull domains.  
Keywords: Harmonicity, minimal surfaces, toric bezier patches. 
 
 
1. INTRODUCTION 
 

The theory of minimal surfaces has its roots in the optimization problems of calculus of 
variations, based on the famous Euler- Lagrange equation which is a second order partial 
differential equation (pde). The solution of the Euler-Lagrange equation targets to find a function 
that extremizes a given functional and has many applications in the optimization theory. Many 
mathematicians have contributed to the subject of optimization theory and it has become a widely 
accepted discipline of Mathematics and Physics. A minimal surface is a surface which locally 
minimizes its area or equivalently a surface whose mean curvature vanishes everywhere on the 
surface. In the similar context, a problem known as the Plateau problem [1, 2] consists of finding 
the surface with least surface area bounded by a given boundary curve. It is named after Belgian 
physicist Joseph. A. Plateau [3] who experimentally demonstrated in 1849 that minimal surfaces 
can be associated to the soap films spanned by wire frames of different shapes. In the meantime, 
many mathematicians developed their interest in finding a minimal surface spanned by a fixed 
boundary curve such as Schwarz [4] (who studied the triply periodic surfaces namely the CLP 
(crossed layers of parallels), D (diamond), P (primitive), H (hexagonal) and T (tetragonal) 
surfaces, Weierstrass [1], Riemann [1] and R. Garnier [5] in the late 19th century. However, these 
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were minimal surfaces for particular boundaries, until in 1931, American mathematician J. 
Douglas [6] and in 1933 Hungarian Tibor Rado [7] independently proved the existence of a 
minimal surface spanned by a closed curve by replacing the area functional by rather a simpler 
integral, now known as the Douglas-Dirichlet functional. The Douglus-Dirichlet functional does 
not have square root in its integrand as is the case with the area functional which makes it a 
suitable choice as an alternative to the area functional.  

Exact mathematical solutions are known only for some specific boundaries. It is possible to 
find numerically the solution of a wide variety of problems giving rise to approximate minimal 
surfaces. Coppin and Greenspan [8] used a computer model of molecular structure and forces to 
approximate a minimal surface. K. Koohestani [9] also suggested the method involving non-linear 
force density to find minimal surfaces for membrane structures. Brakke [10] used the finite 
element method to approximate parameterized minimal surfaces. Level set method was proposed 
by Chopp [11] to cope with topological variations of a surface under linear convergence, whereas 
a variational approach to minimize the area of triply periodic surfaces was proposed by Jung et al. 
[12]. Ronquiust and Trasdahl [13] introduced an iterative scheme which involves 
parameterization of higher order polynomials to achieve a numerical approximation of a minimal 
surface with fixed boundaries. Similarly, Li et al. [14] numerically approximated the minimal 
surfaces with geodesic constraints over boundary curves. Kassabov [15] derived an equation of a 
canonical parameterized minimal surface and also pointed out its application. Xu et al. [16] 
proposed a parametric form of polynomial minimal surface with varying degrees which possess 
interesting properties helpful for geometric modeling in CAD. 

Alternative energy functionals for minimization may be used to find an approximate minimal 
surface of a certain restricted class of surfaces. One of the widely used restriction is to find a 
minimal Bezier surface among all the Bezier surfaces 
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are the Bernstein polynomials of degree n with 
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 as the binomial coeffcients. 

An extremal of discrete version of Dirichlet functional giving minimal Bezier surfaces can be 
seen in the Monterde work [17]. X. D. Chen, G. Xu, and Y.Wang. [18] found approximate 
minimal surfaces as the solution of Plateau-Bezier problem using extended Dirichlet functional 
and the extended bending energy functional, the surfaces depend on the parameters  and α (as 
they appear in eqs. (4) and (5) of the ref.[18]) for simple estimates of these parameters. Hao et al. 
[19] investigated the Plateau-quasi-Bezier problem, minimizing thereby the Dirichlet functional 
of surfaces for more generalized borders including the boundary curves like polynomial curves, 
catenaries and circular arcs. Another restriction could be to find a parametric polynomial minimal 
surface as has been proposed by Xu and Wang [20] to obtain a minimal surface for quintic 
parametric polynomial surface having the prescribed borders as polynomial curves. Ahmad and 
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Masud [21-23] gave an algorithm to find a quasi-minimal surface, variationally improving the 
non-minimal initial surface spanned by a fixed boundary composed of finite number of curves by 
minimizing its rms mean curvature functional instead of area functional which involves a square 
root in its integrand and applied this technique to a variety of surfaces. The idea may be extended 
to more generalized surfaces called toric Bezier surfaces to obtain a quasi-minimal surface by 
minimizing the quasi-harmonic functional as is done by Xu et al. [24] to find the quasi-harmonic 
surface as the solution of Plateau-Bezier problem. The related class of surfaces is called the 
harmonic mapping. The harmonic mappings find significant importance in the literature of 
minimal surfaces for the isothermal parameterization of the surfaces [1, 25]. This means that a 
positive definite metric in two dimensions 

     2 2 2, 2 , , ,ds E x y dx F x y dxdy G x y dy                                                        (1.4) 

defined in the neighbourhood of a surface ( , )x yx  in local coordinates  ,x y  takes the form 

  2 2 2 2, ,ds x y dx dy                                                                                                 (1.5) 

( . .i e         2, , , , , 0E x y G x y x y F x y   ) in the isothermal coordinates (x, y). 

If a surface is parameterized using the isothermal parameterization [25], then such a 
parameterization is minimal if the coordinate functions are harmonic. In other words, a surface 
with isothermal parameterization is a minimal surface if and only if it is a harmonic surface. This 
is also useful in finding a minimal surface associated to a class of surfaces namely the Bezier 
surfaces. Monterde and Ugail [26] indicated that harmonic Bezier surfaces can only be specified 
by opposite boundary control points and thus making it impracticable to generate a harmonic 
Bezier surface from the prescribed four boundary Bezier curves. In order to overcome this 
dificulty, Xu et al. [24] proposed the quasi-harmonic surfaces which serve as the solution surfaces 
for Plateau-Bezier problem. They also showed that in particular cases when the corners of Bezier 
surface are almost isothermal, quasi-harmonic surfaces are better approximations when compared 
to surfaces generated by Dirichlet method.  

Polynomial functions and splines are widely used in many structural design program 
softwares. The fundamental units of modeling a surface geometrically are the classical Bezier 
triangles and rectangular tensor product patches [27] in computer aided geometric designing 
(CAGD), however some applications require a more generalized form of multi-sided C1 patches 
rather than the classical Bezier surfaces. J. Warren [28] realized the usage of real toric surfaces in 
CAGD. His notable contribution is construction of a hexagonal patch from a rational Bezier 
triangle with zero weights and the corresponding control points located appropriately. The multi-
sided patches bear more exibility and present interesting mathematical structures when dealt 
through Krasauskas's toric Bezier patches [29]. Toric Bezier patches are the generalization of the 
classical Bezier patches that deal only with triangular or rectangular patches. In 2002, Krasauskas 
and Goldman [30] presented the construction of toric Bezier patches of depth d by using the de 
Casteljau pyramid algorithm and blossoming algorithm for the associated patches. In recent work 
by Gang Xu, Tsz-Ho Kwok and Charlie C.L. Wang [31], a B-spline volumetric parameterization 
is constructed with semantic features for isogeometric analysis. 

Further developments in toric Bezier surfaces include the work of Garcia-Puente et al. [32], 
they illustrated the geometrical importance of the structural system of toric Bezier patches, Sun 
and Zhu [33, 34] discussed the G1 continuity of toric Bezier surfaces and found approximate 
minimal toric Bezier surfaces by minimizing the Dirichlet functional. 

In this paper, we construct quasi-harmonic toric Bezier patches defined over multi-sided 
convex hulls with prescribed boundary mass-points by extremizing the quasi-harmonic functional 
to generate a system of linear equations for the unknown inner mass-points. This enables us to 
write down the parametric form of the solution of the Plateau-toric Bezier problem. The paper is 
organized as follows: In section 2, we give the preliminary introduction to toric Bezier patch of 
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depth d in general and its construction consisting of indexing lattice polygon domains and the 
associated toric Bernstein polynomials. In the following sections 3 and 4, we utilize the quasi-
harmonic energy functional as the objective functional to obtain the necessary and suficient 
conditions for a toric Bezier patch to be a quasi-harmonic toric Bezier patch which serves as the 
solution to the Plateau-toric Bezier problem. Finally, in section 5, we construct quasi-harmonic 
toric Bezier patches defined over trapezoidal convex hulls and hexagonal convex hull as 
illustrative applications. Constraints on mass-points of the toric Bezier patches defined over the 
above mentioned multi-sided domains are obtained by solving the respective systems of linear 
equations for the inner unknown mass-points. For the prescribed boundary mass points, quasi-
harmonic toric Bezier patches, as illustrative applications, have also been obtained and shown that 
the inner mass-points satisfy the computed constraints. 
 
2. TORIC BEZIER PATCHES AND RELATED TERMINOLOGY 
 

In computer aided geometric designing (CAGD), three and four-sided patches namely the 
triangular and rectangular Bezier patches are commonly used for surface modeling but a multi-
sided generalization of these Bezier schemes is required in order to fill n-sided holes. One of such 
schemes used to define multi-sided C1 patches is the Krasauskas's Toric Bezier patch as 
introduced in [29]. A scheme in section 4 is given to obtain quasi-harmonic toric Bezier surface 
by extremizing the quasi-harmonic functional introduced in the section 3. To comprehend the 
construction of these toric Bezier patches and then to extremize a given functional to find an 
approximate minimal surface, we give below the related terminology for the reader to get familiar 
with lattice polygons, Bernstein basis functions for these polygons, discrete convolution indexed 
by Minkowski sum and finally the construction of toric Bezier patches for given depth d. 

 

Definition 2.1. (Lattice Polygons) The polygon formed by connecting the outer most sequence of 

points in the finite set 2 ¢  in the plane is called the lattice polygon. The finite set  is used as 

the index set for control points { }
i i

P    to form a polygonal array of control points. 

The lattice polygons for the classical tensor-product Bezier patch and triangular Bezier patch 
are lattice rectangle and lattice triangle respectively which form the array of their corresponding 
control points. Other examples of multi-sides lattice polygons are given in fig 1. 
 

 
 

Figure 1. Multi-sided lattice polygons, a lattice pentagon (left) and a lattice hexagon (right) with 
inner lattice points (red dots). 

 
Definition 2.2. (Bernstein Polynomial Functions for Lattice Polygons) Let  = {1, 2, …, 
m}  Z2 be the set of finite integers in uv-plane. The lattice polygon I denotes the convex hull 

D. Ahmad, S. Naeem    / Sigma J Eng & Nat Sci 36 (2), 325-340, 2018 



329 

 
 

of  with corner points 
1 2, ,..., nv v v  and ( , ) , 1,2,..k k k kL u v u v k n      , the $kth$ edge 

of the convex hull I. In addition, the direction of the normal vector (k, k) to the line  ,kL u v  is 

in the convex hull I and (k, k) is the shortest normal vector with integer coordinates in that 
direction. 

The Bernstein polynomials  i (u, v) i for (u, v) in the convex hull I, for toric Bezier patch 
can be written as 

1 2( ) ( ) ( )
1 2( , ) { ( , )} { ( , )} ...{ ( , )} ,i i n i

i i

L L L
nu v c L u v L u v L u v  

                                     (2.1) 

where positive arbitrary normalizing constants ci are the coefficients of basis functions, 
chosen appropriately to get certain desired formulas. For toric Bezier patches, the Bernstein 

polynomials for lattice polygon ( ){ ( , )}
i i Iu v

    have the analogous properties as that of 

classical Bernstein polynomials (1.3) for which the classical bivariate functions (eq. (1.2) 
,

,{ }( , )n m
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(for i  {0, …, n}; j  {0, …, m}) used to construct the triangular or rectangular Bezier 

patches. These Bernstein polynomials ( ){ ( , )}
i i Iu v

    (eq. (2.1)) indexed by the set  with 

lattice polygon I having corner points v1, v2, …, vn satisfy the following properties: 1) 

( , ) 0
i

u v   inside the lattice polygon I , 2) ( , ) 0
i

u v   on the edge 1k kv v  , if and only 

if 1i k kv v  , 3) ( , ) 1
i

u v   if 
i kv   and 4) { ( , )}

i
u v  are polynomial functions. 

Definition 2.3. (Toric Bezier Patch) A toric Bezier patch is a rational surface ( , )u v  in the 

real projective space RP4 of dimension 4 with control structure consisting of  mass-points 

{( , )}
i i i
P     indexed by the lattice polygon I . The  mass-points {( , )}

i i i
P      are 

four dimensional elements with i as the scaler weights corresponding to control points Pi in 
space. The Bernstein polynomials for lattice polygon i (u, v) as given in eq. (2.1) are the 
blending functions which serve as the basis functions for toric Bezier patches defined over the 
domain lattice polygon I and they are chosen to obtain the desired shape of the surface. The toric 

Bezier surface ( , )u v  is defined by the expression 

 ( , ) ( , ) , ,   ( , ) ,
i i i i

i I

u v u v P u v I


    


  


                                                            (2.3) 

where Bernstein polynomials ( ){ ( , )}
i i Iu v

    are given in eq. (2.1). A rational surface 

may be obtained by dividing the surface eq. (2.3) by ( , )
i

i I

u v







  provided that 

( , ) 0
i

i I

u v








 , throughout the domain. Krasauskas and Goldman [30] introduced the 

concept of depth for toric Bezier patches which is the analogue of degree used to define the 
classical higher order Bezier surfaces. It is based on the depth of lattice polygons defined with the 
help of repeated Minkowski sums. 

 

Definition 2.4. (Minkowksi sum) Let A and B be any two sets of p-tuples. The Minkowski sum A 
 B of these two sets is the set with the sum of all elements from A and all elements of B given 
by, 
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{ | , }.A B a b a A b B      
 

Definition 2.5. (Discrete convolution indexed by Minkowski sum) Let { | }aP P a A   and 

{ | }bQ Q b B   be two arrays. Then the discrete convolution P Q  indexed by the 

Minkowksi sum A B  i.e., {( ) | }cP Q P Q c A B      is defined as 

( ) .c a b
a b c

P Q P Q
 

    

The indexing of discrete convolution indexed by Minkowski sum may be used to define toric 
Bezier patches with depth d, as given below. The depth d of toric Bezier patches as expressed by 
Krasasuskas and Goldman [30] is the analogue of degree used to define the classical higher order 
Bezier surfaces. It is based on the depth of lattice polygons defined with the help of repeated 
Minkowski sums as given above (definitions 2.4 and 2.5). 
 

Definition 2.6. (Toric Bézier Patch with depth d )  Let 

0

...

d fold

d     


 be the d -fold 

Minkowski sum of   and 
dI , the corresponding convex hull of 

d . Then the toric Bernstein 

basis functions { ( , )} d

d u v  



 on 

dI  are given by convolution of the Bernstein basis function 

{ ( , ) ( , )}
i i

u v u v       indexed by 
d , . .i e ,  

 

{ ( , )} ( , ) ( , ) ... ( , ) .d

d fold

d u v u v u v u v    
   




   


                                                 (2.4) 
 

A toric Bézier patch defined on lattice polygon of depth d  and the corresponding convex 

hull 
dI  of 

d  in the projective space is a surface parameterized by the map 4: dI  ¡   

(for  , du v I ) is defined as, 
 

 ( , ) ( , ) , ,
d

du v u v p   
 

  


                                                                                  (2.5) 

 

the control structure consists of the mass-points   ,
d

p    
 


, where { } dp  

 are the 

control points and { 0} d  



  are the respective weights. ( , ) d

d u v  
  are the blending 

functions, known as the toric Bernstein basis functions for 
dI . 

The toric Bezier patches are the rational surfaces lying in the affine or projective spaces. The 
derivative of a rational surface is not that straightforward in general but rather a little complicated. 
It is however advantageous to find the derivatives of the numerator and denominator parts of the 
rational surface first and then to apply the quotient rule of derivation to get the derivative of the 
quotient. Therefore, instead of derivative of the rational toric Bezier patch, the derivative of the 
corresponding toric Bezier surface in the space of mass-points is more useful. A detailed account 
of finding derivative of toric Bezier patch of depth d w.r.t. the surface parameters u and v can be 
seen in [30] (pages 82-84). The partial derivative w.r.t. u of Bernstein polynomials ( , )d u v  for 

lattice polygons of depth d is given by the following expression 

1
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which leads to the first order partial differentiation w.r.t. u of the polynomial patch ( , )u v  

eq. (2.5) and is given by 

 1
( , )

( , ) ( , ) , .i

i
d

i

d
u

u v
u v d u v p

u


    
  


  




 
  

 
                                                            (2.7) 

The second order partial derivatives of toric Bezier patch w.r.t. its parameters u and v (later to 
be used in next section) can be computed and they are 
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             (2.9) 

Above partial derivatives of  ,u v  are helpful in the extremization of the quasi-harmonic 

functional used as objective function to obtain quasi-harmonic toric Bezier patch as the solution 
of Plateau toric Bezier problem, the task accomplished in section 4. The next section gives a brief 
description of the energy functionals that can be used as objective functions for extremization 
purpose to obtain an approximate minimal surface. 

 
3. QUASI-HARMONIC FUNCTIONAL 
 

To find an approximate minimal surface, several energy functionals have been used instead of 
area functional itself which involves a square root in its integrand. These functionals may be 
extremized to obtain quasi-minimal surfaces with prescribed boundary in general. Following 
section gives a brief description of different energy functionals which may be used as objective 
functions to trigger the extremization process for different surfaces along with the quasi-harmonic 
functional that is used in our next section to obtain a quasi-harmonic Bezier patch as an 
approximate solution to the Plateau-toric Bezier problem. In an optimization problem, one needs 
to  minimize the area functional (eq. (3.1)) for any surface ( , )u vx . The area functional of the 

toric Bézier surface ( , )u v  is 

( ( , )) | ( , ) ( , ) | ,
d

u v

I

u v u v u v dudv                                                                            (3.1) 

where 
2dI  ¢  is the parametric domain over which the surface ( , )u v  is defined as a 

map and ( , )u u v  and ( , )v u v  are the partial derivatives of ( , )u v  with respect to parameters 

u  and v . However, the non-linearity of this functional makes it difficult to find the solution of 
Plateau problem in general. Douglus [6] replaced the area functional for a surface ( , )u vx  with a 

relatively easy to manage Dirichlet functional 

   2 21
( , ) .

2 u v

R

D u v dudv x x x‖ ‖ ‖ ‖                                                                                 (3.2) 

This functional was utilized by Monterde [17] to solve the Plateau-Bezier problem. Sun and 
Zhu [34] found the extremals of toric Bezier surfaces by minimizing the Dirichlet functional. 
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Monterde and Ugail [35], in 2006, introduced a general biquadratic functional 

   2 2 21
( , ) , | , ,

2 uu uu uv uv uv vv vv

R

u v a b c d e dudv        x x x x x x x x ‖ ‖ ‖ ‖ ‖            (3.3) 

with a, b, c, d and e being the real constants. By assigning different values to these constants, 
the functional coul  d be reduced to other alternative functionals used for minimizing purposes 
such as Farin and Hansford functional [36], standard biharmonic functional introduced by 
Schneider and Kobbelt [37] or Bloor and Wilson's modified biharmonic functional [38]. The 
solution of the area problem for Bezier patches by extremizing the quasi-harmonic functional 

   2
( , ) .uu vv

R

u v dudv x x x                                                                                                 (3.4) 

for the surface x(u, v) is already known [24]. We choose this quasi-harmonic functional as an 
objective function to find the solution of Plateau's toric Bezier problem, as mentioned earlier that 
the toric Bezier patches generalize the classical rational triangular and tensor-product Bezier 
surfaces defined over multi-sided domains. It gives [24] better approximation of surfaces with 
lesser area and smaller mean curvature values at arbitrary points when compared to the Dirichlet 
functional for Bezier surfaces. The quasi-harmonic functional, taken as an objective function, for 
the toric Bézier patch ( , )u v  (eq. (2.3)) is given by  

 2
( ( , )) ( , ) ( , ) ,

d

uu vv

I

u v u v u v dudv                                                                      (3.5) 

where ( , )uu u v  and ( , )vv u v  are given by eqs. (2.8) and (2.9). In the following section, 

necessary and sufficient condition for a toric Bezier patch to be a quasi-harmonic toric Bezier is 
computed by extremizing the above mentioned quasi-harmonic functional eq. (3.5). 

 

4. QUASI-HARMONIC TORIC BEZIER PATCHES FOR A GIVEN BOUNDARY 
 

For the Plateau Toric Bézier problem, we minimize the quasi-harmonic functional to get a quasi-
harmonic toric Bézier patch ( , )u v . For this, we find the gradient of the ( ( , ))u v   with 

respect to the inner unknown mass-points  ,p     and equate it to zero to find the 

constraints as linear equations under which the ( , )u v is quasi-harmonic toric Bezier patch. 

Theorem 4.1. If the mass-points associated to the boundary lattice points of the convex hull 
dI  

of the toric Bézier patch  ( , ) ( , ) ,
d

du v u v p   
 

  


 
 are given, the patch ( , )u v  is 

quasi-harmonic toric Bézier surface if and only if the inner unknown mass-points  ,p     

associated to the lattice points of the convex hull satisfy the following system of  linear equations: 
  , , , , , , , ,( ( 1) ) ( ( 1) ) ( ( 1) ) ( ( 1) ) ( , ) 0,

dd

u u v v u u v v

I

d d d d p dudv       
  

 

         


          
      (4.1) 
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,u  and  ,u  are,  
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Other coefficients 
,v , 

,u , 
,v , 

,v , 
,u  and 

,v  are obtained by replacing u  

by v  and    by    in above eq. (4.2). 

Proof: The quasi-harmonic functional (3.5) can be rewritten as  
 

( ( , )) ( , ), ( , ) ( , ), ( , ) 2 ( , ), ( , ) ,
d

uu uu vv vv uu vv

I

u v u v u v u v u v u v u v dudv                  (4.3) 

 

where the operator ,  denotes the inner product of the two functions. For an inner mass point 

 ,p    , d   and {1, 2,3,4}a , the gradient of the quasi-harmonic functional with 

respect to the coordinates of  ,p     is given by 

 

     

   

( , ) ( , )( ( , ))
2 , ( , ) , ( , )

, , ,

( , ) ( , )
                           , ( , ) , ( , ) .

, ,

d

uu vv
uu vva a a

I

uu vv
vv uua a

u v u vu v
u v u v

p p p

u v u v
u v u v dudv

p p

        

     

     

   

 
 

  

 
 

 


  

 

 
 

         (4.4) 

 

Differentiating partially ( , )uu u v  and ( , )vv u v , the 2nd order partial derivatives (eqs. (2.8) 

and (2.9) respectively) of the toric Bézier patch ( , )u v   w.r.t. the inner mass-point coordinates 

 ,p      gives us 
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and 
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It is to be noted that in above eqs. (4.5) and (4.6), the coefficients 2 ( , ) 0
i i

d u v   
    if 

2d
i i       , 

ae  denote the 
tha  vector of the standard basis, . .i e   

1 2 3{1,0,0,0}, {0,1,0,0}, {0,0,1,0}e e e    and 4 {0,0,0,1}e  . Substituting the 

coefficients 
,u ,

,v ,
,u , ,v and ,u , ,v , ,u  , ,v (eqs. (4.2)) in eqs. (2.8)-(2.9), we get 
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so that the eqs. (4.5) and (4.6) reduce to 
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and 
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Now substitute eqs. (4.7) to (4.10) in eq. (4.4) to get 
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We can now obtain the set of linear system of equations as stated in eq. (4.1) for which the 

toric Bezier patch is quasi-harmonic surface by setting 
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5. QUASI-HARMONIC TORIC BEZIER PATCHES OVER MULTI-SIDED CONVEX 
HULLS 
 

In this section, we construct toric Bezier patches over two different convex hulls namely 1) 
the trapezoidal convex hull and 2) hexagonal convex hull. We use the linear set of equations 
given in eq. (4.1) to compute the inner unknown mass-points of the toric Bezier patches spanned 
by the curves over these convex hulls in order to obtain the associated quasi-harmonic toric 
Bezier patch. In the former case we construct the quasi-harmonic toric Bezier patches for n = 2, m 
= p = 1 in which we find one condition on the unknown inner mass point and n = 2, m = 3, p = 1, 
we find three conditions on the three unknown inner mass points whereas in the latter case we 
construct the quasi-harmonic toric Bezier patch with depth d = 2, in this case there appear seven 
unknown inner points in terms of known boundary mass points. To simplify the calculations, the 
weights  are all taken equal. 
 
5.1. Quasi-harmonic toric Bezier patches over trapezoidal convex hulls 
 

The general representation of toric Bezier patch ( , )B u v  over a trapezoidal convex hull I is 

defined as follows. Let n , 1p   and 0m   be integers and set  
 

{( , ) : 0 , 0 }i j j n i m pn pj                                                                                  (5.1) 
 

( , ) ( ) ( ) .i m pn pj i i n j
ij iju v c u m pn pv u v n v                                                             (5.2) 

Then the toric Bezier surface ( , )B u v  defined over a general trapezoidal hull is expressed as  
 

 
( , )

( , ) ( ) ( ) , ,   ( , ) .i m pn pj i i n j
ij ij ij ij

i j I

u v c u m pn pv u v n v P u v I    



                       (5.3) 

 

Example 1. In particular, for n = 2, m = p = 1, the eq. (5.1) gives us the following set of integer 
lattice-points 

 

 = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (1, 2), (2, 1), (1, 1)}, 
 

with only one inner unknown mass-point p11 associated to i = (1, 1). The Bernstein 
polynomials 

 

2 3( , ) (2 ) (3 ) ,i j j i j
ij iju v c u v v u v                                                                               (5.4) 

 

for the respective lattice-points come out to be 
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                   (5.5)  

   

 
 

Figure 2. Trapezoidal domain with 1 inner lattice point, shown as the blue dot, indexing the 
corresponding unknown mass-point 

 

in which ijc  have been chosen appropriately. The toric Bezier patch over the given 

trapezoidal convex hull I, as shown in fig.2 with corresponding Bernstein polynomials defined 
over lattice points is expressed as 
 

( , )

( , ) ( , )( , ),ij ij ij ij
i j I

u v u v P  


                                                                                           (5.6)  

where (u, v)  I. We find the constraints for the toric Bezier patch with unknown inner mass-
points to be quasi-harmonic by substituting the second order partial derivative and their gradient 
with respect to the inner unknown mass-point p11 in eq. (4.1). The toric Bezier patch is quasi-
harmonic if and only if the mass-points of the patch satisfy the following constraint equation 
 

11 00 01 02 10 12 20 21 300.0904 0.1973 0.01430 0.1970 0.1006  0.09269 0.1390  0.0438 .p p p p p p p p p          (5.7)  
 

  
 

Figure 3. A quasi-harmonic toric Bezier patch with 1 inner lattice point indexing the unknown 
mass-point which is computed by using the eq. (5.7) 
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A particular example of a toric Bezier patch over trapezoidal convex hull with 1 unknown 
inner mass-point is given in figure 3 by taking known mass-points on the boundary of the convex 
hull. The unknown inner mass-point p11 is computed by using the result as stated in eq. (5.7). 

 

Example 2. For n = 2, m = 3, p = 1, the set of integer lattice points is given as 
 

= {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (0, 1), (0, 2), (1, 2), (2, 2), (3, 2), (2, 1), (3, 1), (4, 1), 
(1, 1)} 

 

with 3 inner unknown mass-point 11 21,p p  and 31p . The Bernstein polynomials 

                                                   (5.8) 
 

  
 

Figure 4. Trapezoidal domain with 3 inner lattice point, marked as blue dots, associated to the 
corresponding unknown mass-points 

 

for the respective lattice points are 
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 3 2 ).u v

          (5.9) 

 

for an appropriate choice of cij. The toric Bezier patch over the given convex hull I is defined 
as 
 

( , )

( , ) ( , )( , ),ij ij ij ij
i j I

u v u v p  


                                                                                   (5.10) 

where (u, v)  I. We can find the constraints for the toric Bezier patch with unknown inner 
mass-points to be quasi-harmonic by substituting the second order partial derivatives and their 
gradient with respect to each unknown inner mass points, namely p11, p21 and p31 in eq. (4.1). The 
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toric Bezier patch over the given trapezoidal convex hull is quasi-harmonic if and only if the 
mass-points of the patch satisfy the following system of equations 
 

11 00 01 02 10 12 20 22 30

32 40 41 50

21 00 01 02 10 12 20 22

0.8157 1.027 0.3170 0.1815 0.2146 0.1106 0.0981 0.06520

0.1122 0.0210 0.07081 0.02990 ,

0.4561 0.5450 0.1718 0.2450 0.0246 0.2527 0.7647

p p p p p p p p p

p p p p

p p p p p p p p

       
   
        30

32 40 41 50

31 00 01 02 10 12 20 22 30

32 40 41 50

0.03338

0.3465 0.02031 0.2384 0.09169 ,

0.0871 0.0955 0.0341 0.0211 0.0221 0.1053 0.3099 0.3448

0.6595 0.1629 0.4250 0.2278 .

p

p p p p

p p p p p p p p p

p p p p


   
       
   

  (5.11) 

 
5.2. Quasi-harmonic toric Bezier patches of depth 2 
 

Consider a toric Bezier patch defined over hexagonal convex hull, shown by the dotted line in 
fig. 6 with lattice-points, 

 

 = {(0, 0), (1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2)}, 
 

where the edges of the hexagonal convex hull I are 
 

1 2 3 4 5 6( , ) ; ( , ) 2; ( , ) 2; ( , ) ; ( , ) 1; ( , ) 1.L u v v L u v v L u v u L u v u L u v v u L u v v u                
 

  
 

Figure 5. A quasi-harmonic toric patch defined over trapezoidal convex hull with 3 inner lattice 
points indexing the unknown mass-points which are computed by using system of eqs. (5.11) 

 
The toric Bernstein polynomials for each lattice-point i   can be defined using the 

following relation 
 

1 2 3 4 5 6( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 5 6( , ) ( , ) ( , ) ( , ) ( , ) ( , ) .i i i i i i

i i

L L L L L Lc L u v L u v L u v L u v L u v L u v     
          (5.12) 

 

Whereas, the Bernstein polynomials { } d

d

I 



 for the toric Bezier patch of depth d = 2 can 

be computed by convolving the Bernstein polynomials i (u, v) as stated above in eq. (5.12) 
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indexed by the Minkowski sum    = 2. The toric Bezier patch of depth 2 over the hexagonal 

convex hull (as shown as solid line in fig. 6) 
dI , with corresponding Bernstein polynomials is 

defined as 
 

  ( , ) ( , ) , ,
d

du v u v p   
 

  


                                                                            (5.13) 

 

where (u, v)  Id. Similarly, as we already have shown for the toric Bezier patches over 
trapezoidal convex hull, the constraints on the mass-points for this patch can also be computed by 
using eq. (4.1). The toric Bezier patch of depth 2 over the hexagonal convex hull with 7 unknown 
inner-mass points is quasi-harmonic if and only if these inner- mass points of the patch satisfy the 
following linear system of constraints   
 

  
 

Figure 6. A hexagonal convex hull (solid line) of depth d = 2 with 19 lattice points indexed by 
the set I2 with 7 inner lattice points, marked as blue dots corresponding to the unknown mass-
points. The dotted lines represent the hexagonal hull of I for toric Bezier patch of depth d = 1 

 
11 00 01 02 10 13 20 24 31

34 42 44

21 00 01 02 10 13 20 24
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   43 440000 2.9665 .p p

   (5.14) 

                                                               

 
Toric Bezier patches defined over any polygonal convex hull of domains with prescribed 

boundary mass-points can be approximated to quasi-harmonic toric Bezier patch using the result 
stated in eq. (4.1).        
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6. CONCLUSION 
 

In this paper, we considered the quasi-Plateau problem which consists of finding the quasi-
minimal surface with prescribed entire or partial border. In particular, we find a solution to the 
Plateau-toric Bezier problem for toric Bezier surface, which is the generalization of classical 
rational triangular and tensor-product Bezier surfaces defined over multi-sided domains. Quasi 
harmonic functional is used as the objective functional which is extremized to obtain a toric 
Bezier patch among all the possible patches with prescribed boundary, which we termed as quasi-
harmonic toric Bezier patch. This patch serves as the solution to quasi Plateau-toric Bezier 
problem. The vanishing condition for gradient of the quasi-harmonic functional yields the 
constraints on mass-points of the toric Bezier patch as system of linear equations under which it is 
a quasi-harmonic toric Bezier patch. This scheme is applied to toric Bezier patches for different 
prescribed borders defined over the multi-sided convex hulls to illustrate its effectiveness and 
exibility. 
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