
285 

 

Sigma J Eng & Nat Sci 35 (2), 2017, 285-302 
 

                                                                                                                                 
 
 
 
 

Research Article 
RITZ SOLUTION OF BUCKLING AND VIBRATION PROBLEM OF 
NANOPLATES EMBEDDED IN AN ELASTIC MEDIUM 
 
 
Mohsen Bastami, Bashir Behjat*  

 
Department of Mechanical Engineering, Sahand University of Technology, Tabriz-IRAN 
 
Received: 03.08.2016   Revised: 14.01.2017   Accepted: 25.02.2017 
 
 
ABSTRACT 
 
In this paper, free vibration and buckling of single-layered isotropic rectangular nanoplate is investigated 
based on classic plate theory (CPT). Nonlocal elasticity theory accounts for the small-nonlocal effects. Both 
Winkler-type and Pasternak-type foundation models are employed to simulate the surrounding elastic matrix. 
Governing differential weak form equations of the plate based on nonlocal elasticity theory are derived. The 
Ritz method is used to solve the problem of buckling and free vibration nanoplate for various boundary 
conditions. In order to confirm the accuracy of the results, data are compared with the other results published 
in literature. The effects of different parameters on the plate behavior, such as nonlocal parameter, aspect 
ratio, boundary conditions, Winkler and shear modulus are investigated. 
Keywords: Buckling and vibration analysis, ritz method, nonlocal effects, elastic medium. 
 
 
 
1. INTRODUCTION 
 

Nano and micro-scale structures have attracted the attention of many researchers.  Due to their 
superior electrical, mechanical and thermal properties, this structures are being used in micro- and 
nano electromechanical systems (MEMS/NEMS). Among the methods that can be used to 
analyze the mechanical nanostructures, involves experimental methods, molecular dynamics 
(MD) methods and continuous models. Due to the difficulty experiments and MD models, the 
continuum modeling of nanostructures has received the attention. But when the dimensions of the 
system is reduced to nanometer, the space between the atomic and intermolecular are 
considerable and system cannot be considered continuous. Also at the nanoscale, the effects of 
atomic and intermolecular forces on the static and dynamic behavior of structures is significant. 
Since continuum classical mechanics does not consider the size effects, so It is necessary to 
predict the behavior of micro and nanostructures, small scale effects to be considered, so modified 
classic continuum theories  such as surface theory of elasticity[1], strain gradient theory [2], 
modified couple stress theory[3] and nonlocal elasticity theory[4], are reported. These modified 
continuum theories are being used for the analysis of nano/micro structure. The  nonlocal 
elasticity theory which developed by Eringen[4], most common  continuum theory is used to 
analyze small scale structures. To interfere the small scale effects in nonlocal elasticity theory it is 

                                                 
* Corresponding Author/Sorumlu Yazar: e-mail/e-ileti: behjat@sut.ac.ir, tel: +98 41 33459465 

 
Sigma Journal of Engineering and Natural Sciences 

Sigma Mühendislik ve Fen Bilimleri Dergisi 



286 

 

assumed that stress at any point, as a function of the strains at all the other points in the domain. 
This contrasts with classic continuum theory which the stress at any point is only a function of 
strain in the same point. In this way, the internal size scale could be considered in the constitutive 
equations simply as a material parameter. Nanoplates are one of the most common nanostructures 
which due to low thickness in one direction, as are two-dimensional model and superior 
properties compared to other engineering materials. Understanding the characteristics of buckling 
and vibration of nanoplates is very important. Compared with the one-dimensional nano-
structures such as nanobeam and nanowires, number of studies have been done is low about the 
mechanical behavior of nanoplates, In these studies focus more on the behavior of buckling and 
vibration. Pradhan and Phadikar[5] reported use of the Navier method for vibration nanoplates 
using nonlocal elasticity theory. Ansari et al.[6] investigated vibration analysis of single-layered 
graphene sheets(SLGSs) by using the nonlocal continuum plate model. They used the generalized 
differential quadrature method (DQM) to obtain the frequencies of free vibration of simply 
supported and clamped SLGS. Murmu et al.[7] introduced an analytical method to determine the 
natural frequencies of the non-local double-nanoplate system. They derived explicit closed-form 
expressions for natural frequencies for the case in which all four ends are simply supported. 
Pradhan and Phadikar[8] analyzed the Small scale effect on vibration of embedded multilayered 
graphene sheets based on nonlocal continuum models. The Navier-type solution method was used 
for simply supported nano-plates. Malekzadeh et al.[9] investigated the free vibration of 
orthotropic arbitrary straight-sided quadrilateral nano-plates by using the non-local elasticity 
theory. They used the DQM as an efficient and accurate numerical tool to solve the governing 
equation. Pouresmaeeli et al.[10] presented an analytical approach for free vibration analysis of 
double-orthotropic nano-plates with all edges simply-supported. Chakraverty and  Behera[11] 
reported the Free vibration of rectangular nanoplates using Rayleigh–Ritz method. Mohammadi  
et al.[12] studied the free vibration behavior of circular and annular graphene sheet by using the 
non-local elasticity theory. Analytical frequency equations for circular and annular graphene 
sheets were obtained for different kinds of boundary condition. In other research[13] they 
investigated  effect of shear in-plane load on the vibration analysis of graphene sheet embedded in 
an elastic medium. Levy type solution was applied to study the vibration and buckling behavior of 
nanoplates considering nonlocal theory by Aksencer and Aydogdu[14]. Pradhan and Murmu[15] 
analyzed the buckling of rectangular SLGSs under biaxial compression by use of the non-local 
elasticity. Hashemi and Samaei[16] proposed an analytical solution based on the non-local 
Mindlin plate theory and considering small-scale effects for analysis of the buckling of 
rectangular nano-plates.  Murmu and Pradhan[17] studied the elastic buckling behavior of 
orthotropic small scale plates under biaxial compression. Farajpour et al.[18] investigated the 
buckling response of orthotropic SLGS by using non-local elasticity theory. They supposed two 
opposite edges of the plate were subjected to linearly varying normal stresses. Babaei and 
Shahidi[19] studied buckling of the quadrilateral nano-plates by use of non-local plate theory. 
Farajpour et al.[20] studied axisymmetric buckling of circular graphene sheets by using the non-
local continuum plate model. Pradhan and Murmu[21] studied the influence of small scale effect 
on the buckling of single-layered graphene sheet embedded in an elastic medium. Murmu et 
al.[22] investigated biaxial and uniaxial buckling of bonded double-nanoplate systems. Behfar 
and Naghdabadi[23], investigated vibration characteristics of multi-layered nanoplates embedded 
into elastic medium with constant van der Walls force between nanoplates. 

In this article, the free vibration and buckling behavior of single-layered isotropic rectangular 
plate is investigated when it is embedded in an elastic medium based on nonlocal elasticity 
theory. The governing differential equations for classical plate theory are achieved by using the 
principle of virtual work and Ritz method has been used to obtain natural frequency and buckling 
load of nanoplate.  The accuracy of the results in special cases are compared with other results in 
literature. In addition, the effect of various parameters such as nonlocal parameter, aspect ratio, 
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boundary conditions, Winkler and shear module parameter on the non-dimensional critical 
buckling and natural frequency of nanoplate are investigated. 
 
2. THEORY 
 

The purpose of this part is to introduce nonlocal elasticity theory and its application in 
classical plate theory, As well as how to obtain the governing equations for single-layered 
isotropic rectangular plate, when it embedded in an elastic medium.  
 

 
 

Figure 1. Definition of coordinate system for plate which is embedded in an elastic medium 
 

2.1. Nonlocal elasticity theory 
 

Based on nonlocal elasticity theory that has been proposed by the Eringen [4] the stress at 
reference point (x), not only a function of strain at that point, but also a function of strain at all 
other points of the body (x'). stress tensor at point x with considering effects nonlocal is defined 
by [4]: 
 

௜௝ݐ ൌ ᇱݔ|ሺߙ׬ െ ,|ݔ ߬ሻ  ᇱሻ                                                                                      (1)ݔሺݒᇱሻ݀ݔ௞௟ሺߝ௜௝௞௟ܥ
 

Where ݐ௜௝ሺݔሻ   ، ௞௟ߝ و    ,௜௝௞௟ are the stress, strain, and fourth-order elasticity tensorsܥ
respectively. ߙሺ|ݔᇱ െ ,|ݔ ߬ሻ is the non-local modulus, |ݔᇱ െ  is the Euclidean distance and ߬ is a |ݔ
material constant which depends on the internal (݈௜) and external (݈௘) characteristic lengths and is 
defined as ߬ ൌ ݁଴ሺ݈௜ ݈௘⁄ ሻ. Since the solution of the integral Eq.(1) is very difficult, it can be 
transformed into a differential form which is more efficient. So the differential form of Eq.(1) can 
be written as [24]: 
 

ሺ1 െ ௜௝ݐ	ଶሻ׏ߤ ൌ  ௞௟                                                                                                                 (2)ߝ௜௝௞௟ܥ
 

Where ߤ is nonlocal parameter or small scale parameter. 
 
2.2. Single-layered isotropic nanoplates 
 

A single-layered rectangular nanoplates with length ݈௫ and width ݈௬ is considered. According 
Eq.(2), the two-dimensional nonlocal constitutive relations can be expressed as: 
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Where E and ν are the modulus of elasticity and the Poisson's ratio of the nanoplate, 
respectively. And ߪ௜௝ are local stresses in the plate. According to the classical plate theory, the 
strains are expressed as: 
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Here u ,v and w are components of the displacement vector in the mid-plane, along the x, y 
and z directions, respectively. Stress resultants can be written as: 
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Where h is the thickness of the plate. By combing Eq.(6)–Eq.6 into Eq.(3) and integrating 
through of thickness, the final equations of the plate can be written in terms of displacement as 
follows: 
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Where ܦ ൌ
ா௛య

ଵଶሺଵି௩మሻ
 denotes the bending rigidity of nanoplate. Note that when small scale 

parameter is set to be zero, the relations given in Eq.(7) and Eq.(8) is reduced to the classical 
relations. Using the principle of virtual work, the equations of the motion of the nanoplate resting 
on Pasternak foundation can be obtained as follows: 
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Where ݉଴ ൌ ீ݇ denotes the unit area mass and ݇௪and ݄ߩ  denote the Winkler modulus and 
the shear modulus of the surrounding elastic medium respectively. Also ഥܰ௜௝ shows the external in 
plane forces exerted on the plate. 

With assumption ݓሺݔ, ,ݕ ሻݐ ൌ ,ݔሺݓ  ሻ݁௜ఠ௧ and using Eq.(7)-(8) and Eq.(11) one can obtainݕ
the nonlocal governing differential equation for the vibration and buckling of single-layered 
nanoplates based on displacement as below. 
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As part of this study, we use the Ritz method to solve the Eq.(12) so that we can investigate 
buckling and vibration behavior of single-layer isotropic plate. 

 
3. RITZ SOLUTION 
 

It is obvious that to use Ritz solution for Eq.(12), the weak form of the equation should be 
obtained. To do this, by using the part by part integral, the final form of the weak form of the 
problem can be written as: 
 

∮ ఝሺா௤.ଵଶሻௗ஺ୀ଴஺                                                                                                                             (13) 
 

Here φ is a trial function so that satisfies the essential boundary conditions. After performing 
integration by parts on Eq.(13) and Assuming ഥܰ௬௬ ൌ ݇ ഥܰ௫௫ and  ഥܰ௫௬ ൌ 0, the weak statement can 
be written as follows: 

 

׬ ׬ ቆെݓܦ,௫௫߮,௫௫ െ ௬௬߮,௬௬,ݓܦ െ ௫௬߮,௫௬,ݓܦ2 െ ݇௪߮ݓ െ ௪݇ߤ ቀݓ,௫߮,௫ ൅ ௬ቁ,ݓߜ௬,ݓ െ
௟ೣ
଴

௟೤
଴

݇ீ ቀݓ,௫߮,௫ ൅ ௫߮,௬ቁ,ݓ െ ீ݇ߤ ቀݓ,௫௫߮,௫௫ ൅ ௫௬߮,௫௬,ݓ2 ൅ ௬௬߮,௬௬ቁ,ݓ െ ഥܰ௫௫ ቂݓ,௫߮,௫ ൅ ߤ ቀݓ,௫௫߮,௫௫ ൅

௫௬߮,௫௬ቁቃ,ݓ െ ݇ ഥܰ௫௫ ቂݓ,௬߮,௬ ൅ ߤ ቀݓ,௬௬߮,௬௬ ൅ ௫௬߮,௫௬ቁቃ,ݓ ൅ ଶ݄߱ߩ ൬߮ݓ ൅ ߤ ቀݓ,௫߮,௫ ൅

௬߮,௬ቁ൰ቇ,ݓ ݕ݀ݔ݀ ൌ 0                                                                                                                    (14) 
 

Where ݈௫ and  ݈௬ denotes the plate dimensions in the x and y directions. To solve the Eq.(14) 
by using Ritz method, the deflection of the plate has been written as follow: 
 

,ݔሺݓ ሻݕ ൌ ∑ ܿ௜ΓΔ௜
௡
௜ୀଵ                                                                                                                    (15) 

 

The ܿ௜ is the unknown coefficients and ߂௜ and ߁ are two-dimensional simple polynomials and 
boundary polynomial respectively, and can be written as follows: 
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 is taken such that, the boundary condition of the plate is satisfied. Substituting Eq.(15) into ߁
Eq.(14), the following equations of the nanoplate are obtained: 
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Where ܭ௜௝, ߚ௜௝ and ܯ௜௝ are stiffness, buckling and mass matrices respectively. 
 
 

Ritz Solution of Buckling and Vibration Problem of   …  /   Sigma J Eng & Nat Sci 35 (2), 285-302, 2017



290 

 

4. RESULTS AND DISCUSSION 
 

In this section the results of the nanoplate embedded in an elastic medium is presented. The 
properties of isotropic nanoplate in all examples of this article (except from those mentioned) are 
assumed as follows[7]. The thickness ݄ ൌ 0.34݊݉, Young's modulus ܧ ൌ 1.06ܶܲܽ, Poisson's 

ratio ݒ ൌ 0.25, and mass density ߩ ൌ 2250
௞௚

௠య. The length and width of the plate vary in different 

examples. In addition to the vibration analysis, the buckling of nanoplate under uniform uniaxial 
and biaxial loadings is considered in this part. 

The non-dimensional buckling load, frequency vibration, Winkler and shear modulus 
parameter are defined as: 
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The letters S and C denote the simply supported and clamped boundary conditions of the 
plate, respectively. The boundary conditions are taken in clockwise direction starting at the edge 
ݔ ൌ 0. 
 
4.1. Verification 
 

In this part, the proposed Ritz method was evaluated and results compared with other data 
reported in the literature. Aksencer and Aydogdu[14] applied Navier method for the uniaxial 
buckling analysis of rectangular nanoplates. In order to validate the numerical results, the 
comparison of solution Ritz, with those of exact ones[14] is presented. In this comparison it is 
assumed that ݈௫ ݈௬ ൌ 0.5⁄  and nonlocal parameter is set to 1nm2. The nonlocal buckling Load to 
local buckling ratio ሺܰே௅ ܰ௅⁄ ሻ are calculated for SSSS boundary conditions and is shown in 
Figure 2. It is seen that the present results are in a good agreement with the results of Aksencer 
and Aydogdu[14]. 
 

  
Figure 2. Comparison of Ritz method (present) with Navier method[14] for an isotropic 

nanoplate under uniaxial loading. 
 

In another example, the present results are compared with the natural frequencies of square 
single layer nanoplate reported by Pradhan and Phadikar [5] as is shown in Figure 3. The nonlocal 
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parameter of the plate is ߤ ൌ 1݊݉ଶ and plate has SSSS boundary conditions. From this figure, it 
is clearly seen that the results are in good agreement with the results of Navier methid. 
 

 
Figure 3. Comparison Ritz method (present) with Navier method [5] for an isotropic nanoplate 

under free vibration 
 

4.2. Buckling analysis of nanoplate 
 

In this section, the buckling load of the nanoplate versus nonlocal parameter is investigated. 
Table 1 shows a convergence study for buckling load a square nanoplate with all edges simply 
supported. The length of the plate is ݈௫ ൌ 10݊݉. As shown in Table 1 it is seen that by selecting 
the 18 terms of polynomials, the error is under 0.01 percent. The nanoplate under uniform uni-
axial and biaxial loadings is considered in this section. Figure 4 and Figure 5 shows the non-
dimensional buckling load for square single-layered nanoplate (݈௫ ൌ 10݊݉) subjected to biaxial 
uniform compression loading for SSSS and CCCC boundary conditions. The figures are plotted 
versus the nonlocal parameter for different values of compression ratio (݇ ൌ 1, ݇ ൌ 1.2, ݇ ൌ
1.4, ݇ ൌ 1.6, ݇ ൌ ݇	و	1.8 ൌ 2). In all cases, by increasing of compression ratio, the non-
dimensional buckling load decreases. Moreover it can be concluded from this figures that 
increasing the nonlocal parameter, leads to decrease in non-dimensional critical buckling load. It 
means that the stiffness of system, reduced with the increasing of nonlocal parameter.  
 

Table 1. Convergence study for the Ritz method 
 

Number terms(n) 
ߤ ൌ 0݊݉ଶ ߤ ൌ 1݊݉ଶ ߤ ൌ 2݊݉ଶ ߤ ൌ 4݊݉ଶ 

Buckling load Buckling load Buckling load Buckling load 
9 19.7495 16.4923 14.1574 11.0334 
12 19.7442 16.4886 14.1547 11.0317 
15 19.7392 16.4852 14.1522 11.0302 
18 19.7392 16.4852 14.1522 11.0302 
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Figure 4. Variation of non-dimensional buckling load of nanoplate versus nonlocal parameter for 

different compression ratio (SSSS boundary conditions) 

 
Figure 5. Variation of non-dimensional buckling load of nanoplate versus nonlocal parameter for 

different compression ratio (CCCC boundary conditions) 
 

The effect of aspect ratio on the buckling load of single-layered nanoplate with different 
nonlocal parameter (ߤ ൌ 0݊݉ଶ,	1݊݉ଶ,	2݊݉ଶ,	3݊݉ଶ,	4݊݉ଶ) for CCCC and SSSS boundary 
conditions is also studied as shown in Figure 6 and Figure 7 respectively. The plate is assumed to 
have ݈௫ ൌ 10݊݉ and under uniaxial loading in the x direction. Figure 6 reveals that increasing in 

0

5

10

15

20

25

0 1 2 3 4

N
o
n
‐d
im

en
si
o
n
al
 c
ri
ti
ca
l b
u
ck
lin
g 
Lo
ad

µ(nm2)

k=1 k=1.2

k=1.4 k=1.6

k=1.8 k=2

0

10

20

30

40

50

60

0 1 2 3 4

N
o
n
‐d
im

en
si
o
n
al
 c
ri
ti
ca
l b
u
ck
lin
g 
lo
ad

µ(nm2)

k=1 k=1.2

k=1.4 k=1.6

k=1.8 k=2

M. Bastami, B. Behjat   / Sigma J Eng & Nat Sci 35 (2), 285-302, 2017 



293 

 

aspect ratio, reduces the small scale effects and the nonlocal curves converges to the classical 
theory results (0=ߤ). Also it can be concluded from figures, as the aspect ratio of the plate 
increases, the non-dimensional critical buckling load increases. 

  

 
Figure 6. Variation of non-dimensional buckling load of nanoplate versus aspect ratio for 

different nonlocal parameter under uniaxial load (SSSS boundary conditions) 

 
Figure 7. Variation of non-dimensional buckling load of single-layered nanoplate with apect ratio 

for different nonlocal parameter under uniaxial load (CCCC boundary conditions) 
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Figure 8 depicts the variation of Non-dimensional critical buckling load with the nonlocal 
parameter for different boundary conditions (SSSS, CCCC, SCSC, CSCS). A value of   
is assumed for the square nanoplate under uniaxial loading.  

 
Figure 8. Variation of non-dimensional critical buckling load of single-layered nanoplate with 

nonlocal parameter for different boundary conditions under uniaxial load 
 

To see the effects the elastic medium of Winkler-type foundation on the buckling behavior of 
square nanoplate subjected to uniaxial compression loading, the non-dimensional critical buckling 
load for various values of nonlocal parameter and Winkler modulus parameter for SSSS and 
CCCC are plotted in Figure 9 and Figure 10 respectively. It should be noticed , it signifies 
that the plate is free and not embedded in an elastic medium. It can be seen that by increasing 
Winkler modulus, the critical buckling load for all values of nonlocal parameter is increases. 
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Figure 9. Variation of non-dimensional critical buckling load of single-layered nanoplate with 

Winkler modulus parameter for different nonlocal parameter under uniaxial load(SSSS boundary 
conditions) 

 
Figure 10. Variation of non-dimensional critical buckling load of single-layered nanoplate with 

Winkler modulus parameter for different nonlocal parameter under uniaxial load (CCCC 
boundary conditions) 
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Figure 11 and Figure 12 illustrate the effect of shear modulus parameter on the buckling load 
of a nanoplate with elastic medium modeled as Pasternak foundation for SSSS and CCCC 
boundary conditions. Length of plate is taken as 10nm and value of Winkler modulus parameter is 
ܹܭ ൌ 250 and the plate is under uniaxial loading. As can be seen for all cases, with the increases 
of shear modulus parameter, the non-dimensional critical buckling load increases. 

 
Figure 11. Variation of non-dimensional critical buckling load of single-layered nanoplate with 
shear modulus parameter for different nonlocal parameter under uniaxial load (SSSS boundary 

conditions) 
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Figure 12. Variation of non-dimensional critical buckling load of single-layered nanoplate with 
shear modulus parameter for different nonlocal parameter under uniaxial load (CCCC boundary 

conditions) 
 

4.3. Vibration analysis of nanoplate 
 

In this section, the vibration analysis of the nanoplate is studied. In Figure 13 and Figure 14, 
the non-dimensional natural frequency of nanoplate, have been depicted for SSSS and CCCC 
boundary conditions respectively. The figures are plotted based on variation of aspect ratio and 
for different nonlocal parameter, for a square plate with ݈௫ ൌ 10݊݉. As it is seen, in constant 
aspect ratio, by increasing nonlocal parameter, the non-dimensional natural frequency reduced. 
The reason for this phenomenon is the decreasing of stiffness nanoplate. Also, it is seen that in all 
boundary condition, by increasing the nonlocal parameter, the natural frequency is decreasing. 
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Figure 13. Variation of non-dimensional natural frequency of nanoplate versus aspect ratio for 

different nonlocal parameter (SSSS boundary conditions) 

 
Figure 14. Variation of non-dimensional natural frequency of nanoplate with aspect ratio for 

different nonlocal parameter (CCCC boundary conditions) 
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To study the small-scale effects on the natural frequencies of nanoplate with different 
boundary conditions, effects of nonlocal parameter on the non-dimensional natural  frequency of 
nanoplate with ݈௫ ൌ 10݊݉ and aspect ratio is 1 for different  boundary conditions (SSSS, CCCC, 
SCSC, CSSC) is plotted in Figure 15. It is implied that the difference between curves decreases 
when the nonlocal parameter takes greater values.  

 
Figure 15. Variation of non-dimensional natural frequency of single-layered nanoplate with 

nonlocal parameter for different boundary conditions 
 

Figure 16 shows the Winkler modulus parameter effect on non- dimensional natural 
frequency of square nanoplate with different nonlocal parameter. The length of plate is considered 
as ݈௫ ൌ 10݊݉. In these figures it is obvious that with increasing Winkler modulus, the non-
dimensional natural frequency for all values of nonlocal parameter is increases. 
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Figure 16. Variation of non-dimensional natural frequency of nanoplate with Winkler modulus 

parameter for different nonlocal parameter (SSSS boundary conditions) 
 

5. CONCLUSIONS 
 

In this paper, we studied the small scale effects on the buckling and vibration analysis of 
single-layered rectangular nanoplate, when it is embedded in an elastic medium. The governing 
equations of nanoplate obtained by considering the Eringen nonlocal theory. The Ritz method was 
used to solve the equation. Both Winkler-type and Pasternak-type foundation models are 
employed to simulate the surrounding elastic matrix. Effects of various parameters such as 
nonlocal parameters, aspect ratio, boundary conditions, Winkler and shear module parameters on 
the buckling load and natural frequency of nanoplate are investigated. It is shown that the small 
scale, has a significant influence on the buckling load and natural frequency of nanoplate. Also it 
is seen that by increasing aspect ratio and Winkler and shear modulus parameters, the difference 
between the local and nonlocal theories decreases. By increasing the Winkler and shear module 
parameters, the nanoplate shows stiffer behavior and has greater values of natural frequency and 
buckling load. It is seen that in higher values of small scale parameter, the Winkler and shear 
module has lower effect on the natural frequency and buckling load of the nanoplate. Also it is 
seen that the shear module has more effect on the natural frequency and buckling load of the 
nanoplate than Winkler module. It is worth to note that, if we want to have a naoplate with greater 
natural frequency, we should use Winkler or shear foundation. 
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