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ABSTRACT 

 
Differential Evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization 

algorithms in current use. Although the methodology of the DEA is similar to the genetic algorithm, DEA is 

simpler and has a better convergence rate than the other counterpart Meta-heuristic optimization algorithms. 
Herein, DE optimization is applied to determining the Feasible Design Target Space of a microwave transistor 

for use in Low Noise Amplifier (LNA) designs. Thus, a multiobjective cost function including all the 

performance measure functions of an LNA transistor which are the transducer gain (GT), Noise Figure (F), 
input and output Voltage Standing Wave Ratio (Vin, Vout) is built to determine the source (ZS) and load (ZL) 

terminations to meet the required (F≥Fmin, GT, Vin ≥1, Vout≥1) quadruple within the potential operation 

bandwidth of the device.  A study case is also presented for an LNA transistor NE350184C by applying DE 

optimization in the determination of their typical performance quadruples together with the source (ZS) and 

load (ZL) terminations. 

Keywords: Differential evolution algorithm, metaheuristic algorithms, multiobjective optimization, LNA 
design.  

 

 

 

 

1. INTRODUCTION 

 

Design of an ultra-wideband (UWB) single stage Low-Noise Amplifier (LNA) is one of the 

biggest challenges to UWB transceiver integrations. Especially most of the receivers are hand-

held or battery- operated devices that requires small size designs and low power consumption 

alongside of high gain GT, low noise figure F, low input Vin and output Vout Standing Wave Ratios 

with an UWB operation frequency range. Thus, the major challenge in designing a single stage 

LNA is to enable the active devices which are  transistors, subject to the physical limitations and 

compromise relations among the noise, gain and mismatches at the  input and output ports. 

Therefore performance analysis of a microwave transistor is of primary importance for the LNA 

design optimization since it facilitates to build all the trade-off relations between the performance 

ingredients GT, F, Vin, Vout within the device’s operation domain of bias condition (VDS, IDS) and 

frequency f. Some recent works in literature for performance characterization of a transistor for a 
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pre-determined design strategy using either analytical [1- 5] or numerical [6-10] methods with the 

Scattering (S-) and Noise (N-) parameters at the chosen operation conditions.                                                                                                                                                               

Design optimization of an UWB single stage LNA is a highly nonlinear optimization 

problem.   To tackle complex computational problems, researchers have been looking into nature 

for years both as model and as metaphor for inspiration. Optimization is at the heart of many 

natural processes like Darwinian evolution itself. Through millions of years, every species had to 

adapt their physical structures to fit to the environments they were in. A keen observation of the 

underlying relation between optimization and biological evolution led to the development of an 

important paradigm of computational intelligence the evolutionary computing techniques [11 -13] 

for performing very complex search and optimization. 

In this work, DE optimization which is arguably one of the most powerful stochastic real-

parameter optimization algorithms in current use, is applied to determining the Feasible Design 

Target Space of a microwave transistor for LNA designs.  For this purpose, a multiobjective cost 

function including all the performance measure functions of an LNA transistor which are the 

transducer gain (GT), Noise Figure (F), input and output Voltage Standing Wave Ratio (Vin, Vout) 

is built to determine the source (ZS) and load (ZL) terminations to meet the required (F≥Fmin, GT, 

Vin ≥1, Vout≥1) quadruple within the potential operation bandwidth of the device. A study case is 

also presented for an LNA transistor NE350184C by applying DE optimization in the 

determination of their typical performance quadruples together with the source (ZS) and load (ZL) 

terminations.  

The paper is organized as follows: Section 2 presents fundamentals of DE algorithm; in 

Section 3 the performance measure functions of a microwave transistor are given; section 5 

presents a study case on application of DE algorithm for performance analysis of an LNA 

transistor NE350184C, the paper ends with the conclusions. 

 

2. DIFFERENTIAL EVOLUTION ALGORITHM 

 

The DE algorithm is a population-based evolutionary optimization algorithm developed for 

the solution of real-valued numerical optimization problems and has been found several 

significant applications to the optimization problems arising from diverse domains of science and 

engineering. DE algorithm is originated by Kenneth Price and Rainer M. Storn and first 

publication of idea of this method was published as a technical report in [15]. Just after inception 

of this method it has become an attractive field for research and after establishing by Storn in 

1997 a website [16] an explosive expansion in differential evolution research took place. 

Moreover, the current progress in the field of computer computations makes in practice DE a 

powerful tool for stochastic optimization due to its parallelizable nature from the computational 

point of view which is used in many optimization problems [17-22]. DE is a method of 

multidimensional mathematical optimization which belongs to the class of Evolutionary 

Algorithm (EA). This meta-heuristic method tries to find optimum of the problem by iteratively 

improving of the candidate solution with respect to value of the objective function. The main 

difference in constructing better solutions is that genetic algorithms rely on crossover while DE 

relies on mutation operation. This main operation is based on the differences of randomly 

sampled pairs of solutions in the population. The algorithm uses mutation operation as a search 

mechanism and selection operation to direct the search toward the prospective regions in the 

search space. 

 

2.1. Initialization 

 

The first step is to initialize the population. In general, every member of the population is 

seeded uniformly within a given space. Most problems are considered to be box constrained since 
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the variables are subject to boundary constraints. This leaves us with the following simple 

initialization formula for each component: 
 

,0 ( ), 1,2,...,j j j j

ix l rand u l j n    
                                                                (2.1) 

 

where rand ϵ [0, 1] is a uniformly distributed random value generated for each j and uj and lj 

are the respective upper and lower limits for the jth variable or component. For certain problems, 

information might be available that would favor exploration in certain areas. In this case the 

population can be seeded around these areas of interest. 

 

2.2 Mutation 

 

The defining characteristic of the DE algorithm is the method via which the new trial points 

are generated. At every generation g, each member of S (S={x1,x2,…, xN}  solution space) is 

targeted to be replaced with a better trial point. Considering xig as the target point, the 

corresponding trial point yig is created using the target point and a mutated point ,i gx


. For the 

simplest case, a mutated point is created by adding the weighted difference of two population 

members to a third. However there are various other possible schemes for generating the mutated 

points. Some possible mutation schemes for the ith target point are given below: 
 

, (1) (2) (3)( )i g p p px x F x x


   
                                                                                      (2.2) 

 

, (2) (3)( )i g b p px x F x x


   
                                                                                         (2.3) 

 

, (1) (1) (2) (3)( ) ( )i g p b p p px x x x F x x


      
                                                    (2.4) 

 

where F and λ are scaling parameters and xb is the best point in the current population. xp(1) , 

xp(2) and xp(3) are randomly chosen points such that (1) (2) (3)p p p i   i.e. all points are 

unique and none of these points corresponds to the target point xi,g.  

There are other variants to the schemes described by equations (2.2) to (2.4). In order to 

distinguish between different schemes a standard notation is used to indicate the scheme type: 

DE/a/b/c. The variable “a” specifies the base vector used that will be perturbed is chosen. It can 

which can either be random e.g. xp(1), as is the case for equation (2.2) and (2.4) or the best vector 

is the population, xb, as in equation (2.3). The second variable b indicates how many vector pairs 

form the difference vectors. For equations (2.2) and (2.3) the value for b is l while for equation 

(2.4) b is 2. The variable c indicates what type of crossover method is used. Binomial crossover is 

represented by the abbreviation b in and exponential crossover by exp.  

 

2.3. Crossover 

The target or parent point xig together with the new mutated points ,i gx


 are recombined to 

create the trial point yig. There are two popular types of crossover methods used with the DE 

algorithm, namely binomial and exponential. For the purpose of this thesis we only use the 

binomial method which will be discussed below. 

Binomial recombination starts at the first component of the vector and generates a random 

number rj ϵ [0, 1] for each component. If rj<cr then the jth component of yig is taken from xjig, 

otherwise if rj>cr then the component is taken from xig. This process continues until all 

components from xig have been considered. In order to ensure that at least one component in yig is 
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from xig, a random integer  1,2,...,iI n is generated. The component in yig corresponding 

to Ii is taken from xig. The trial vector can contain components from xi,g at multiple, separated 

points. Binomial recombination can be mathematically formulated as: 
 

 ,,

j j
i gi g r iy x if r c or j I



  

,    
 ,,

j
i gi gy x Otherwise





                            (2.5) 
 

2.4. Acceptance 
 

At each iteration the DE algorithm attempts to replace each point in S with a better point. 

Therefore at each generation g, N competitions are held to determine the members of S for the 

next iteration. The ith competition is held to replace xi,g in S. This is done by comparing the 

function values of the trial points yi,g to those of xi,g, the target points. If
, ,( ) ( )i g i gf y f x then 

yig replaces xig in S, otherwise S retains the original xi,g. This can be written mathematically as: 
 

, , ,, ( ) ( )j

i g i g i gi gx y if f y f x


 

,   
 ,,

j
i gi gx x Otherwise





                             (2.6) 
 

The DE algorithm maintains a greedy selection scheme that ensures that the current 

generation is equal to or better than the previous generation. 
 

2.5. Stop Criteria 
 

The main criterion is that if the current best cost/Fitness value is reached to the requested 

value and if the maximum iteration limit is reached.  

Supportive and optional criteria 
 

- If for the last M iteration the best cost/Fitness value is not changed, 
 

In the next chapter, the DEA is used to determines the optimal design parameters of a SIW 

antenna for high performance measures such as low input reflection and high gain. 

By considering all the above requirements the DE algorithm appears to be one of the most 

appealing choices as an underlying global optimizer. Next section descripts the DE algorithm. 
 

3. A SMALL – SIGNAL MICROWAVE TRANSISTOR 
 

Fig.1 gives a single transistor LNA being designed by a proper compatible quadrate together 

with the matching networks providing the required (ZS, ZL) termination couple. As seen from 

fig.1, a transistor used for a small signal amplification can be characterized by a linear two port 

terminated by the source ZS and load ZL impedances, at the input and output ports, respectively. 
 

Input 

Matching 

Network
[S],[N]

Output 

Matching 

Network

Z
'
S

VS

Zin Zout

Z
'
L

ZSreq(ωi)  =  Zout{IMN}(ωi) ZLreq(ωi)  =  Zin{OMN}(ωi)

 
 

Figure 1. A Single transistor LNA circuit designed by a proper compatible (F≥Fmin, GT, Vin ≥1, 

Vout≥1) quadrate and its (ZSreq, ZLreq) terminations. [23] 
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In the Feasible Design Target Space (FDTS), this (ZS, ZL) termination couple guarantees a 

corresponding compatible performance (F≥Fmin, GT, Vin ≥1, Vout ≥1) quadrate. In other words they 

are a simultaneous solution set of the following highly nonlinear performance equations under the 

physical realization conditions:  
 

( / )

( / )

2

( )
min 2

SignalPower NoisePower input

SSignalPower NoisePower output

R Z Zn optS
F F Z F

Z Ropt S




                                                (3.1) 

 

Power delivered intothe Load

Maximum Source Power

S 11
=

T S L

11 S 22 12 21

2
4R R zL

G (Z ,Z ) =
2

(z + Z )(z + Z ) - z zL

         (3.2) 

 

2

2
*

1
( , ) , 1

1 in

Z Zinin SV V Z Zin in LS Z Zin in S








  

 

                                           (3.3) 

 

2

2
*

1
( , ) , 1

1

out out L
out out

out out L
S L out

Z Z
V V Z Z

Z Z






 
   

 
                                  (3.4) 

 

The physical realization conditions can be given as 
 

  12 21
11

22

0

L

z z
e Z e zin

z Z
    



  
 
  

                                                                      (3.5) 

 

  12 21
22

11

0

S

z z
e Z e zout

z Z
    



  
 
  

                                                           (3.6) 

  

min min max, 1, 1,in out T T TF F V V G G G                                                                   (3.7) 
 

where the conditions given by (5) and (6) ensure the stable operation of the active device, 

while the inequalities in (7) guaranties the performance ingredients to remain within the physical 

limitations of the device. 

 

4. STUDY CASE 

 

The following cost functions given in Eqs. (4.1-4.4) are used to perform 2 different 

optimization problem for a microwave transistors performance characterization. Eqs. (4.1-4.2) are 

used to determines the optimal ZS and ZL values separately while Eq. (3.9) simultaneously 

perform the search for ZS and ZL terminations.  
 

*

1Cos ( , , )


    
TG

b
S S L out reqt f R X Z Z a F F e                                                          (4.1) 

 

2Cos ( , , )   S L L out Outreq inoptt g Z R X c V V d V                                                          (4.2) 

 

where F is function of (RS, XS), however GT, Vin and Vout are functions of (RS, XS, RL, XL) as 
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given by Eqs. (3.1-3.4) respectively; Freq, and Voutreq are the required noise figure, output VSWR 

values, respectively.  Eq. (4.1) is targetted to obtain the source termination
SZ of the maximum 

gain subject to the required noise Freq, while Eq. (4.2) is aimed at obtaining the  load termination 

ZL to satify the optimum input mismatching for the requested output mismatching Voutreq.  a, b, c 

and d in Eqs (4.1, 4.2) are the user-defined weighting coefficients. If ZL is wanted for the required 

(Vinreq, Voutreq) couple, the Eq. 4.2 can be re-arranged as follows: 
 

2Cos ( , , )    S L L out outreq in inreqt g Z R X c V V d V V                                                        (4.3) 

 

In the Eq. (4.4), all the requirements is picked up in a single objective function as follows: 
 

3 e eCos ( , , , )
TG

b
S S L L req out outr q in inr qt f R X R X a F F e c V V d V V



                           (4.4) 

 

where the optimization problem carried with Eqs. (4.1-4.2) are merged into single cost 

function. Although by this way optimization process had become faster, the complexity of the 

problem is significantly increased because the cost given in Eq. (4.4) is a 4 variable optimization 

while cost functions given in Eqs. (4.1-4.2) are only two variable. 

In the following tables and figures, the performance results obtained with DE algorithm for 

NE350184C transistor are presented. In table 1, the performance results of DE algorithm for 

different population sizes for each cost function are given. 

 

Table 1. Performance results of Costs for 10 runs. 
 

 
Cost 1 Cost 2 Cost 3 

 
Max Min Mean Max Min Mean Max Min Mean 

Iteration=30 

Population=30 

Cost 
2.37 0.27 1.37 0.322 0.303 0.307 4.40 0.67 1.72 

FEN 
1633 1656 1651.7 1630 1627 1649.6 1641 1634 1649.4 

Iteration=30 

Population=50 

Cost 
1.25 0.18 1.09 0.315 0.302 0.304 2.02 0.66 1.25 

FEN 
2743 2752 2759.5 2752 2749 2758.5 2757 2748 2748 

Iteration=30 

Population=100 

Cost 
1.02 0.15 0.48 0.311 0.302 0.303 1.41 0.63 0.894 

FEN 
5499 5488 5501.5 5478 5497 5486.5 5474 5505 5499.2 

*FEN: Function Evaluation Number 
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(a)                                                           (b) 

 

Figure 2. (a) RL (b) XL Results of NE350184C @ 2V 20mA [Freq = Fmin , Vireq=1.5, 

Vout=Voutopt ,GTreq = GTmax (f)]. 

 

 
(b)                                                           (b) 

 

Figure 3. (a) RS (b) XS Results of NE350184C @ 2V 20mA [Freq = Fmin , Vireq=1.5, 

Vout=Voutopt ,GTreq = GTmax (f)]. 
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(c)                                                           (b) 

 

Figure 4. (a) Gain(b) Noise Results of NE350184C @ 2V 20mA [Freq = Fmin , 

Vireq=1.5,Vout=Voutopt, GTreq = GTmax (f)]. 

 

  
(a)                                                           (b) 

 

Figure 5. (a) Vin (b)Vout Results of NE350184C @ 2V 20mA [Freq = Fmin , Vireq=1.5, 

Vout=Voutopt,  GTreq = GTmax (f)]. 

 

5.CONCLUSION 

 

In this work, performance analysis   of a LNA   transistor is carried out without using any 

expertise knowledge on microwave device, circuit and noise. For this purpose, highly nonlinear 

performance measure equations of the transistor are solved with respect to the source ZS and load 

ZL  terminations as a constrained multiobjective optimization problem. In this problem, the 

physical realization conditions are taken account as the constraints of the optimization problem 

that are the performance  limitations and stability conditions of the transistor. Differential 

Evolution (DE) is used as a fast and accurate and powerful algorithm.  The typical LNA transistor 

NE350184C is presented as a study case by applying DE optimization in the determination of 

their typical performance quadruples together with the source (ZS) and load (ZL) terminations. 
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