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ABSTRACT 
 
Due to the inherent difficulties of nonlinear modelling, the studies for finding more practical methods on  
parameter estimation  become more and more important. As well as numerical methods like Gauss-Newton, 
The Steepest Descent, Newton-Raphson, Levenberg-Marquardt Compromise algorithms etc.,  some methods 
based on artificial intelligence optimization  get popularity among scientists increasingly. In this study, 
differential evolution algorithm (DEA) as one of the main  artificial intelligence algorithms is used  in 
nonlinear modelling. Then the parameter estimates by this method have been compared with those obtained 
by classic Gauss-Newton method. We have used three growth models, namely, Gompertz, Logistic and 
Weibull, in modeling.   In the end, our emphasis is the similarity of parameter estimates realized by both 
methods. Hence DEA may be advocated for finding the similar results with greater simplicity.  
Keywords: Nonlinear regression, differential evolution algorithm, Gauss-Newton method. 
 
 
DOĞRUSAL OLMAYAN REGRESYON MODELLERİ İÇİN DİFERANSİYEL GELİŞİM 
ALGORİTMASI 
 
ÖZ 
 
Doğrusal ve doğrusal olmayan regresyon modellerinin çözümü birçok bilim dalında araştırma konusu 
olmaktadır. 
Özellikle gerçek hayata dayalı olan doğrusal olmayan modellerin optimizasyonunda pratik yöntemler 
araştırmak zorunlu hale gelmiştir. Gauss-Newton, En dik iniş, Newton-Raphson, Levenberg-Marquardt 
uzlaşımı gibi iteratif çözümlere dayalı nümerik yöntemler paralelinde yapay zeka optimizasyon algoritmaları 
da önem kazanmaktadır. 
Bu çalışmada literatürden alınan doğrusal olmayan regresyon modellerine örnek olan üç büyüme modeli 
kullanılmıştır: Gompertz, Lojistik, Weibull. Modellere Gauss-Newton metodu ile yapay zeka 
algoritmalarından biri olan diferansiyel gelişim algoritması uygulanmış ve sonuçlar karşılaştırılmıştır. 
Anahtar Sözcükler: Doğrusal olmayan regresyon modelleri, diferansiyel gelişim algoritması, Gauss-Newton 
yöntemi. 
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1. INTRODUCTION 
 

A list of problems related to modeling data involves  optimization procedures inevitably. 
Although linear models are wellcome by various scientists because of the easiness they provide , 
some relations are  unfortunately nonlinear in nature.   
 
1.1. Nonlinear Regression  Models  
 

A  nonlinear regression model can be specified as  
 

௜ܻ ൌ ݂൫ ௜ܺ௝, ൯ߛ ൅   ௜                                                                                                                       (1.1)ߝ
                                                                      

Here ௜ܻ  is the ith observed value of dependent variable . ݂ሺ ௜ܺ௝,  ሻ  is the nonlinear  functionߛ
of parameters ߛ଴, ,ଵߛ … ,  ௣ିଵ . ௜ܺ௝ is the ith observed value of the jth independent  variableߛ
(j=1,2,…,q). The matrix of the observations of independent variables   is   
 

ܺ௤௡ ൌ ൦

ଵܺଵ ଵܺଶ … ଵܺ௡
ܺଶଵܺଶଶ … ܺଶ௡

…
ܺ௤ଵܺ௤ଶ … ܺ௤௡

൪                                                                                                                (1.2)  

 

We suppose that  the model has  p parameters and the parameter vector  is denoted by   
  

ߛ ൌ ቎

଴ߛ
ଵߛ
…

௣ିଵߛ

቏                                                                                                                                   (1.3)  

 

The vector of initial estimates for p  parameters  g is  as given below : 
 

݃ ൌ ቎

݃଴
݃ଵ
…

݃௣ିଵ

቏                                                                                                                                  (1.4)  

 

Besides  the difference between the kth parameter (k=0,1,2,…,p-1) and its initial estimate  
before  iterations  is  
 

௞ߚ
ሺ଴ሻ ൌ ௞ߛ െ ݃௞

ሺ଴ሻ                                                                                                                          (1.5)  
 

If  the matrix whose entries are the first derivatives  of the expectation function  with respect 
to kth parameter  initially  is denoted by                                                                                                 
 

௜௞ܦ
ሺ଴ሻ ൌ ቂ

డ௙ሺ௑೔,ఊሻ

డఊೖ
ቃ

ఊୀ௚ሺబሻ
                                                                                                                 (1.6) 

  

by Taylor series expansion, one can get the following linearized form as 
 

௜ܻ ؆ ௜݂
ሺ଴ሻ ൅ ∑ ௜௞ܦ

ሺ଴ሻߚ௞
ሺ଴ሻ ൅ ௜ߝ

௣ିଵ
௞ୀ଴                                                                                                    (1.7)  

 

If the ith residual is defined as                                                                                                                  
 

௜ܻ
ሺ଴ሻ ൌ ௜ܻ െ ௜݂

ሺ଴ሻ                                                                                                                           (1.8) 
                                                                                                                                      

another  version  of  (1.1) is obtained as follows:  
 

௜ܻ
ሺ଴ሻ ؆ ௜݂

ሺ଴ሻ ൅ ∑ ௜௞ܦ
ሺ଴ሻߚ௞

ሺ଴ሻ ൅ ௜ߝ
௣ିଵ
௞ୀ଴                                                                                                (1.9) 

 

By using matrix notation;                                                                                                        
 

ܻሺ଴ሻ ؆ ሺ଴ሻߚሺ଴ሻܦ ൅  (1.10)                                                                                                                   ߝ
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Here the derivative matrix  D plays the same role as  X matrix does in linear  models. Hence 
parameter estimates and hypothesis tests  are realized by  this analogy (7). Following this 

argumentation, estimators of    can be realized initially: 
 

ܾሺ଴ሻ ൌ ቀܦሺ଴ሻ்
ሺ଴ሻቁܦ

ିଵ
ሺ଴ሻ்ܦ

ܻሺ଴ሻ                                                                                               (1.11)  
 

For the sake of generality,  the superscripts (zero’s) at (1.11) is simply replaced by “j” for the 
jth iteration.   
 

ܾሺ௝ሻ ൌ ቀܦሺ௝ሻ்
ሺ௝ሻቁܦ

ିଵ
ሺ௝ሻ்ܦ

ܻሺ௝ሻ                                                                                                (1.12) 

  
2. SOME DIFFERENCES IN GEOMETRIES OF LINEAR AND NONLINEAR MODELS  
        

In linear regression models, the expected response vectors form a p-dimensional expectation 
surface in the  n-dimensional response space. This surface is a linear subspace of the response 
space.  For nonlinear models however,  the expectation surface is a p-dimensional  curved surface 
in the n-dimensional  response space (1) . 

In  nonlinear regression models, the residuals   play the same role as the observed values of 
explained variable of linear  models. In  linear  models,  observed values of dependent variable 
are  projected onto two orthogonal subspaces of n dimensional Euclidean space to obtain residuals 
and parameter estimates. In nonlinear models, however, residuals themselves are projected  to get 
parameter estimates iteratively.    At the end of each iteration, current parameter estimate vector is 
updated by the following equation:        
 

݃௞
ሺ௝ሻ ൌ ݃௞

ሺ௝ିଵሻ ൅ ܾ௞
ሺ௝ିଵሻ            for j=1,2,…                                                                               (1.13) 

  

The iterative search procedure is finished as soon as iterative estimates   (or alternatively 
some summarizing statistics like sum of squares, etc.) are convergent,   although  the solution 
reached at the end   would rather coincide with a local optimum unluckily.     
If the error terms are independently and normally distributed  with zero expectation  and the 
common variance ߪଶ, then the asymptotic  distribution of g can be approximated well  by a 
multivariate normal distribution with the  expectation vector and variance-covariance matrix 
respectively  as  
 

ሺ݃ሻܧ ؆  (1.14)                                                                                                                                   ߛ
 

ଶሺ݃ሻݏ ൌ   ሻିଵ                                                                                                             (1.15)ܦ்ܦሺܧܵܯ
 

Here  MSE is the mean squares for the error term as usual:  
 

ܧܵܯ ൌ
∑ ௘೔

మ೙
೔సభ

௡ି௣
                                                                                                                            (1.16)  

 

The validity of parameter estimates realized by(1.10), (1.11) and (1.12) depends on  how 
justifiable the linearization technique is. If the intrinsic nonlinearity is high, then the results  from 
the analysis of residuals may be highly misleading (9). In practice, a lot of competing algorithms 
are used  so that  (1.10), (1.11) and (1.12) are useful in a pedagogical way. The formulas in (1.14) 
and (1.15) are used in hypothesis testing and confidence interval estimation procedures . For  
bootstrap approach  in nonlinear modeling one can refer to (5).  One special difficulty to go 
forward by any estimation method is that one must initially determine starting values, step sizes. 
etc. Determining step size in each iteration  requires  another optimization procedure (2). Some 
other problems that have to be taken into account  and some practical ways to remedy can be 
found in  (6) and (8).  Some of these issues can be listed as follows: 
 

i) For nonlinear models, the objective function  may  have more than one optimum.   
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ii) R-square statistic (and some other versions of it) may be highly misleading for nonlinear 
models. For nonlinear models, R-square values should be very close to 1 for a good fit. For this 
reason comparing  linear and nonlinear models by only checking R-square statistics is not 
appropriate (6).     

iii) Initial parameter estimates are to be introduced the model  exclusively. This may require 
another estimation procedure initially.   

iv) Assumption on the normality of dependent variable does not guarentee normally 
distributed parameter estimates. Therefore confidence interval estimates  require bigger sample 
sizes compared to linear models.  

v) If intrinsic curvature is high, the results obtained by the analysis of residuals may be 
misleading . 
 
3. DIFFERENTIAL EVOLUTION ALGORITHM (DEA) 
   

Although  the issue of  DEA methodology on optimization problems is relatively older, a 
considerable amount of  effort  on the applicability of  DEA methods on various fields is  a fact.  
In  this type of problem formulation, especially for nonlinear models, there exiss a lot of 
constraints that should be met and a lot of  difficulties in calculations  to be considered etc. 
Besides, not all the methods offered by DEA methodology is  suitable in every situation.  
Recently scientists have focused on nature, natural systems, natural progress and natural ways. As 
a result, artificial intelligence algorithms, in other words intuitive methods, gain importance. DEA 
has been  developed by Price and Storn in 1995. It provides scientists a  simple but powerful tool 
(10). Especially, it is a direct search algortihm used to optimize functions of real variables on a 
global basis. 
 
3.1. Parameters of DEA and Implementation 
 

Selection is the step which determines the conditions, under which currently produced vectors 
will be included in population. In DEA, a new-born vector is kept in population, at least for one 
generation more, if it is less developed than its vector parents. Crossbreeding  is a complementary 
operation whose main goal is to make the inquiry successful to constitute new vectors by using 
the existing goal vector parameters. In the first versions of DEA, special nonuniform, seperate 
crossbreeding operation was adopted. In this operation ,while  a new solution (which has the 
chance of taking the place of its parents) has been generated, some elements of the solution are 
taken from parents whereas some other elements from mutated vectors. In selecting the new 
candidate for solution, exponential and binomial operations are done to control the frequency 
which determines the elements that will be taken from the vectors.  These two operations are 
performed by a control parameter which is kept constant during optimization operation and also 
called as crossbreeding ratio (CR). At least one of the parameters of the new-born vector is aimed 
to be different from that of parent vector. 

The basic steps of DEA algorithm are as below: 
Step 1. Specify the values of control parameters: 

݆    the number of parameters to be optimized :     ܦ ൌ 1,2, … ,  ܦ
ܰܲ : the number of variable vectors  ,ܰܲ ൒ 4  , ݅ ൌ 1,2, … , ܰܲ 
ܨ , scale  factor :     ܨ א ሺ0,2ሻ  
Assign parameter boundaries: 
 .௠௜௡ : lower boundaries of parametersିݔ
 .௠௔௫:  upper boundaries of parametersିݔ

Step 2. Create initial population: 
 .generation number :      ܩ
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 .௝,௜,ீୀ଴: jth parameter of ith chromozome of generation Gݔ
 

௝,௜,ீୀ଴ݔ ൌ ௝ݔ
ି௠௜௡ ൅ ௝ݔሾ0,1ሿሺ݀݊ܽݎ

ି௠௔௫ െ ௝ݔ
ି௠௜௡ሻ                                                                       (3.1) 

 

Repeat the following steps until stopping criterion is met. 
Step3. Mutation and crossbreeding: 
  ௝,௜,ீାଵݔ ௝,௜,ீାଵ :generated chromosome (solution) after generationݑ
 

,ଵݎ ,ଶݎ ଷݎ א ଵݎ ݀݊ܽ ܲܰ ് ଶݎ ് ଷݎ ് ݅ 
 

௝,௜,ீାଵݑ ൌ ൜
ீ,௝,௥యݔ ൅ ீ,௝,௥భݔሺܨ െ ௝,௥మ,ீሻ,     ௥௔௡ௗೕሾ଴,ଵሿழ஼ோݔ

௝,௜,ீାଵ                                                                   ௢௧௛௘௥௪௜௦௘ݔ
                                                               (3.2) 

 

Step 4. Selection: 
 

ҧ௜,ீାଵݔ ൌ ൜
,ത௜,ீାଵݑ ݂݅  ݂ሺ ݑത௜,ீାଵሻ ൑ ݂ሺݔҧ௜,ீሻ  

 (3.3)                                                                               ݁ݏ݅ݓݎ݄݁ݐ݋                                  ீ,ҧ௜ݔ

 
4. APPLICATION 
 
4.1. Data 
 

There are two data sets for three different growth models used in this study. In each data set 
there is one dependent, and one independent variable. 
 
4.2. Models 
 

Three widely used growth models are studied here. In model selection, our two criteria are the 
number of parameters and the difficulty levels of each model in parameter estimation 
respectively. Models can be classified as models having three or four parameters. Similarly, they 
can be identified as “models easy to estimate”  and “models difficult to estimate”.   
 
4.3. Applying DEA  
 

To estimate parameters of each model, DEA methodology has been adopted. The least 
squares function has been used to determine the degree of goodness of fit. 

In other words, the parameter estimates that minimize the goal (least squares) function are 
found. In achieving this objective, the lower and upper parameter values are introduced by 
specifying some intervals and then by the help of “rand” function initial values are fixed.   

After we  fix these values, the value of the goal function is determined. Then by the help of 
rand function parameter estimates are subjected to mutation and crossbreeding.  During this 
application, a program written on Matlab 7.10 has been  run for 100, 200 and 300 iterations. 
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Table 4.1 Models  and data sets 
 

Gompertz 
y =B1*exp[−exp(B2 –B3*x)] 
Number of parameters:   3 
Level of difficulty:high  

y x 

8.93 9 

10.8 14 

18.59 21 

22.33 28 

39.35 42 

56.11 57 

61.73 63 

64.62 70 

67.08 79 
 

Logistic 
y=B1/(1+exp(B2-B3*x)) 
Number of parameters:3 
Level of difficulty :   high 

y x 

8.93 9 

10.8 14 

18.59 21 

22.33 28 

39.35 42 

56.11 57 

61.73 63 

64.62 70 

67.08 79 
 

Weibull  
y=B1-B2*exp(-B3*x^B4) 
Number of parameters:4  
Level of difficulty : medium 
   

y x 

16.08 1 

10.8 2 

18.59 3 

22.33 4 

39.35 5 

56.11 6 

61.73 7 

64.62 8 

67.08 9 

651.92 10 

724.93 11 

699.56 12 

689.96 13 

637.56 14 

717.41 15 
 

Table 4.1 presents models, data sets, number of parameters to be estimated and the difficulty 
levels of each model in estimation. 
 

Table 4.2 Parameter estimates for Gompertz growth model. 

 
 
 

Parameters 
 

Estimates provided 
by Gauss-Newton 

DEA 
estimates 
(after 100  
iterations) 

DEA 
estimates 
(after 200  
iterations 

DEA 
estimates 
(after 300  
iterations 

B1 82.830 83.532 80.23 83.74 

              B2 1.224 1.297 1.293 1.264 

B3 0.037 0.023 0.018 0.017 
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Table 4.3. Parameter estimates for logistic growth model.  

 
 Table 4.4 Parameter estimates for Weibull growth model. 

 
 

For all of the models, the conditions  F=0.8 and CR=1 are assumed. Although initially  F=0.5, 
F=2 and F=1 weighing factors are assumed, it is observed that  F=0.8  gives the best results. 
Secondly, we emphasize that even 100 iterations give satisfactory results for all of the models.   
 
5. RESULTS 
 

In literature, it is pointed out that DEA algorithm provides good solutions for some 
optimization  problems. In this study, DEA  algorithm is applied in modelling some nonlinear 
data. Then the results obtained have been compared to those of Gauss-Newton algorithm. In 
nonlinear regression models, the performance of the various algorithms depend mostly on the 
convenient determination of initial estimates of the parameters.  The situation is nearly  the same 
for DEA algorithm. Yet as soon as the initial estimates are appropriate, DEA procedure gives 
consistent final estimates with Gauss-Newton algorithm. In addition,   Due to its simple structure 
in formulation,   the great  flexibility DEA  provides has to be pointed out.    
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