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ABSTRACT 
 
Multiple Depot Vehicle Scheduling Problem (MDVSP) is the problem of preparing vehicle schedules, a task 
of public transport companies. MDVSP is solved to decide on daily duties of vehicles emanating from 
multiple depots. It aims to minimize number of vehicles used and total deadhead kilometers. Since there are 
large number of trips to be covered by vehicles emanating from multiple depots, manually prepared vehicle 
schedules are usually far from optimality. Therefore, using automatic scheduling systems can reduce number 
of vehicles used and total deadhead kilometers. In this study, 6254 daily trips belong to 2014-2015 Winter 
Timetable of IETT General Directorate’s Metrobus System are assigned to 476 vehicles instead of existing 
496 vehicles by solving a Single Depot Vehicle Scheduling Problem (SDVSP) model, actually a reduced 
model of MDVSP. As further study, Lagrangian relaxation is going to be used to solve MDVSP to minimize 
total deadhead kilometers. 
Keywords: Multiple depot vehicle scheduling problem, lagrangian relaxation, binary integer programming, 
public transport planning. 
 
 
OTOMATİK ARAÇ ÇİZELGELEME SİSTEMİ: METROBÜS SİSTEMİ İÇİN BİR ÖNERİ 
 
ÖZ 
 
Çok Garajlı Araç Çizelgeleme Problemi (ÇGAÇP), toplu ulaşım işletmelerinin hazırlamakla yükümlü 
oldukları araç çizelgelerinin oluşturulmasında karşılaşılan bir problemdir. Birden fazla garajda park etmekte 
olan araçlardan her birinin günlük sefer tarifesinde yer alan servislerden hangilerini gerçekleştireceğine karar 
vermek için çözülmektedir. Gün içerisinde kullanılan araç sayısını ve yapılan ölü kilometreyi enküçüklemeyi 
amaçlar. Uygulamada çok sayıda servis, garaj ve otobüs olmasından dolayı elle üretilen araç çizelgeleri 
optimumdan uzak olmaktadır. Bu nedenle bu çizelgelerin bilgisayar yardımıyla hazırlanması hem araç sayısı 
hem de ölü kilometre maliyetlerinden tasarruf edilmesini sağlayacaktır. Bu çalışma kapsamında Metrobüs 
Sistemi için planlanan kış-işgünü sefer çizelgelerinde yer alan 6254 sefer için ÇGAÇP, Tek Garajlı Araç 
Çizelgeleme Problemi’ne (TGAÇP) dönüştürülmüş, aynı sayıda servisin Kurum’un kullandığı 496 araca 
karşılık 476 araçla yapılabileceği tespit edilmiştir. İkinci aşama olaraksa Lagrangian gevşetmesinden 
yararlanılarak ÇGAÇP çözülecek, ölü kilometre enküçüklemesi de sağlanacaktır. 
Anahtar Sözcükler: Çok garajlı araç çizelgeleme problemi, lagrangian gevşetmesi, ikili programlama, toplu 
ulaşım planlama. 
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1. INTRODUCTION 
 

Public transport companies have to prepare four plans. These are: (1) network planning, (2) 
timetabling, (3) vehicle scheduling, (4) and driver scheduling [1]. Also, driver rostering may be 
added to this list as a fifth plan. Each of these plans are defined as a branch of public transport 
planning.  

Vehicle scheduling, as a medium-term plan, deals with deciding on daily duties of vehicles 
belong to a public transport company. It is desired to ensure that all timetabled trips are covered 
by minimum number of vehicles and total deadhead kilometers while scheduling vehicles. Cost 
improvements in number of vehicles may occur up to amount of 8% where cost improvement in 
total deadhead kilometers may occur up to amount of 6% through efficient scheduling practices 
[2]. When the case is large size public transport companies of crowded cities, amounts of cost 
improvements in terms of dollars may add up to high figures. 

Scheduling vehicles of Metrobus System governed by IETT (Istanbul Electricity, Tramway, 
and Tunnel) General Directorate is done manually. This fact indicates that there exist cost 
improvement opportunities in assigning vehicle scheduling task to a computer and developing a 
suitable scheduling software. On the other hand, scheduling staff of Metrobus System denote that 
timetabling activities are done by number of available vehicles. Therefore, reducing number of 
vehicles to cover the trips of same timetable also allows adding more trips into the timetable and 
increases customer satisfaction. Thus, minimizing number of vehicles is more beneficial than 
minimizing total deadhead kilometers.   

Cost improvement opportunities by doing vehicle scheduling automatically are appraised in 
this study. Accordingly, assigning 6254 trips to vehicles emanating from 4 depots are modelled 
as Multiple Depot Vehicle Scheduling Problem (MDVSP) and feasibility of this model is checked 
by solving a Single Depot Vehicle Scheduling Problem (SDVSP) equivalent. 

In this study, MDVSP and related solution methodologies found in literature are discussed in 
Chapter 2. Then, mathematical models of MDVSP and SDVSP are given in Chapter 3. Daily 
duties of vehicles of Metrobus System are decided by using such a methodology explained in 
Chapter 4 and results of the application are given in Chapter 5. Finally, Chapter 6 has concluding 
remarks. 
 
2. MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM 
 

MDVSP is the problem of assigning ݊ number of timetabled trips to vehicles emanating from 
݉ number of depots. Three rules must be followed while assigning trips to vehicles [3]: 
 

1. Each trip must be covered by only one vehicle. 
2. A suitable set of constraints must be satisfied. 
3. A suitable objective function must be optimized. 

 

First of these rules must be satisfied obviously. Suitable set of constraints mentioned at 
second rule may differ for different problems. However, compatibility constraints and depot 
capacity constraints are common for all problems. At the same time, route time constraints [2], 
and constraints related to multi-vehicle type usage [4] are also found in literature. Two cost 
components are aimed to be minimized while solving MDVSP: (1) Number of vehicles, and (2) 
total deadhead kilometers. 

If number of depots ݉ ൌ 1 in MDVSP, then the problem is called SDVSP. SDVSP can be 
solved in polynomial-time [5] where MDVSP is an NP-Hard problem [3]. This means that there is 
no polynomial-time algorithm to solve MDVSP. Although this fact doesn’t constitute a serious 
problem for smaller MDVSP instances, when the problem size increases existing optimization 
software applications lose their ability to solve such problems. Thus, instance-specific exact 
optimization methods are needed to be devised [2] [6]. Heuristic and metaheuristic methods are 
also showed to be effective for MDVSP. 
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When it is impossible to obtain an optimal solution, heuristic and metaheuristics are used to 
find a feasible solution. However, it is not ensured that these feasible solutions are optimal. In [7], 
performance of three different ant colony algorithms are compared on solving MDVSP with route 
time constraints. MDVSP is also modelled as an asymmetric travelling salesman problem and 
solved by an ant colony algorithm [8]. A two-phase particle-swarm optimization is used to solve 
the problem in [9]. It is also showed that iterated local search based on block move neighborhood 
[10] is used effectively to solve MDVSP [11]. Another local search metaheuristic solution may 
also be found at [12]. On the other hand, five different heuristics are compared on solving 
MDVSP and it is noted that large neighborhood search is superior to tabu search and genetic 
algorithms [13]. In [2], [14], and [15] size-reduction heuristics are used to make the problem 
smaller enough to be solved by existing optimization software applications. 

MDVSP is modelled as integer program [16], multi-commodity flow network model [6], 
multi-commodity matching problem [3], and time-space network [15]. When MDVSP is 
modelled as network flows, usually two main approaches are utilized. Arc-oriented models have 
principle of deciding on consecutive trips where path-oriented models solve MDVSP by deciding 
on all of the trips assigned to a schedule. In [2], MDVSP is modelled as an arc-oriented model 
and one exact and two heuristic approaches are offered. A path-oriented model is solved by a 
column generation approach [17]. A large sized instance modelled as an arc-oriented model is 
solved to optimality by using column generation [6]. 
 
3. MATHEMATICAL MODELS 
 

In this study, the MDVSP is modeled as a multi-commodity flow network where each depot is 
treated as a commodity. Nodes of the network is classified into three groups: (a) trip nodes, (b) 
starting nodes, and (c) ending nodes.  
 

(a) Each trip node corresponds to a timetabled trip. A node has four characteristics: (1) 
starting station of the trip, (2) ending station of the trip, (3) starting time of the trip, and (4) ending 
time of the trip. 

(b) Starting nodes represents the depots (one node for each depot). These nodes help on 
deciding first trips of vehicle schedules. 

(c) Ending nodes represents the depots (one node for each depot). These nodes help on 
deciding last trips of vehicle schedules. 
 

Arcs of the directed graph are grouped into three categories: (1) pull-out arcs connect starting 
nodes to trip nodes, (2) deadhead trip arcs connect nodes of compatible trips, and (3) pull-in arcs 
connect trip nodes to ending nodes. Note that deadhead trip arcs are replicated to number of 
depots. Below binary integer program is given to model the network defined above. Model can be 
found at [18]. Let ܥ be the set of compatible trips (If ሺ݅, ݆ሻ א  ݆ then a vehicle can cover trip ,ܥ
immediately after trip ݅).  

 

ሺܲሻ: min ෍ ෍ ݈ௗ,௜ܮௗ,௜

௜ௗ

൅ ෍ ෍ ෍ ܿ௜,௝,ௗݔ௜,௝,ௗ

ௗ௝௜

൅ ෍ ෍ ܽௗ,௜ܣௗ,௜

௜ௗ
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Variable definitions of model (P) are given below. 
 

 ܮௗ,௜: It is equal to 1 if trip ݅ is the first trip of a vehicle emanating from depot ݀ and 0 
elsewhere. 
 ݔ௜,௝,ௗ: It takes a value of 1 if a vehicle emanating from depot ݀ covers trip ݆ immediately 

after trip ݅ and 0 elsewhere. 
 ܣ௜,ௗ: It is equal to 1 if trip ݅ is the last trip of a vehicle emanating from depot ݀ and 0 

elsewhere. 
 ݕ௜,ௗ: It takes a value of 1 if trip ݅ is covered by a vehicle emanating from depot ݀. 
Parameters of model (P) are given below. 
 ݈ௗ,௜: Cost of deadhead trip from depot ݀ to the starting station of trip ݅ (pull-out costs). 
 ܿ௜,௝,ௗ: Cost of deadhead trip from ending station of trip ݅ to the starting station of trip ݆. 

Note that this cost is equal for each ݀. 
 ܽ௜,ௗ: Cost of deadhead trip from ending station of trip ݅ to depot ݀ (pull-in costs). 
 ݎௗ: Maximum number of vehicles depot ݀ provides (depot capacities). 

 

Objective function aims to minimize total deadhead kilometers. Fixed cost of a vehicle is 
added to each pull-out arc and pull-in arc costs. If fixed cost is adequately large, then aim of 
minimizing number of vehicles is prioritized. Constraints (2) and (5) are capacity constraints. 
Where constraints (3) and (4) are flow conservation constraints of multi-commodity network 
models. Constraints (6) ensures that each trip is covered by only one vehicle emanating from only 
one depot. Finally, constraints (7) are binary constraints.  

It is already denoted above that when number of depot ݀ ൌ 1, MDVSP is called as SDVSP. 
Let ܥ be the set of compatible trips and ܯ is an adequately large number. SDVSP model is given 
below. 
 

ሺܶሻ min ෍ ݈௜ܮ௜

௜

൅ ෍ ෍ ܿ௜,௝ݔ௜,௝

௝௜

൅ ෍ ܽ௜ܣ௜

௜

 (8) 

.ݏ  ෍ .ݐ ௜ܮ

௝

൑  (9)  ,ܯ

௜ܮ   ൅ ෍ ௝,௜ݔ

௝

ൌ 1 ሺ݆, ݅ሻ א ܥ  ,݅׊
(10) 

 

௜ܣ   ൅ ෍ ௜,௝ݔ

௝

ൌ 1 ሺ݅, ݆ሻ א ܥ  (11) ,݅׊

  ෍ ௜ܣ

௝

൑  (12)  ,ܯ

݈݈ܣ   ݏ݈ܾ݁ܽ݅ݎܽݒ ݁ݎܽ ݕݎܾܽ݊݅  (13) 
 

Variable definitions of model (T) are given below.  
 

 ܮ௜: It takes a value of 1 if trip ݅ is a first trip of a vehicle schedule and 0 elsewhere. 
 ݔ௜,௝: It is equal to 1 if a vehicle covers trip ݆ immediately after trip ݅ and 0 elsewhere. 
 ܣ௜: It takes a value of 1 if trip ݅ is a last trip of a vehicle schedule and 0 elsewhere. 

 

Parameters of model (T) are given below. 
 

 ݈௜: Cost of deadhead trip from depot to starting station of trip ݅ (pull-out costs). 
 ܿ௜,௝: Cost of deadhead trip from ending station of trip ݅ to starting station of trip ݆. 
 ܽ௜: Cost of deadhead trip from ending station of trip ݅ to depot (pull-in costs). 

 

Objective function aims to minimize total deadhead kilometers. A fixed cost for a vehicle is 
added to pull-out and pull-in arc costs. If fixed cost of a vehicle is adequately large, then aim of 
minimizing number of vehicles is prioritized as it is applied in model (P). Constraints (9) and (12) 
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are capacity constraints where constraints (10) and (11) are flow conservation constraints of 
network flows. Finally, constraints (13) are binary constraints. Since number of depots ݀ ൌ 1 for 
SDVSP, equivalent of constraints (6) of model (P) are redundant for model (T).  
 
4. METHODOLOGY 
 

The fixed cost of a vehicle is added to pull-out and pull-in arc costs. The aim of minimizing 
number of vehicles is prioritized by assigning the fixed cost to an adequately large number. 
Therefore, whether number of depots equal to |ܯ| or  |݇| it is assured that minimum number of 
vehicles are equal for each solution where ܯ is set of depots and ݇ is a set such that ݇ ؿ  For .ܯ
instance, if one of the depots is chosen as a single depot from a MDVSP instance, then minimum 
number of vehicles obtained from SDVSP is equal to minimum number of vehicles of MDVSP 
solution. However, same idea is not true for minimum total deadhead kilometers. 

Since MDVSP is a NP-Hard problem, it may be impossible to obtain optimum solutions of 
large instances. Fortunately, if aim of minimizing number of vehicles is prioritized it is possible to 
obtain a solution that provides minimum number of vehicles by solving a reduced MDVSP which 
is actually a SDVSP. If such priority exists then SDVSP is solved. Since minimum number of 
vehicles obtained from a SDVSP solution is same for MDVSP, feasibility of MDVSP and 
possible cost improvements may be provided by SDVSP solution. 

In this study, the reduction strategy above is used to find the minimum number of vehicles for 
operating Metrobus System governed by IETT General Directorate. The developed vehicle 
schedules are compared to existing vehicle schedules to study feasibility of problem and detect 
possible cost improvement opportunities. Optimization models are solved by GUROBI® Solver 
on a laptop with an Intel® Core™ i7-4510U CPU @ 2.00 GHz processor with 6.00 GB RAM on 
a Microsoft® Windows® 64 bit operating system. 
 
5. APPLICATION 
 

2014-2015 Winter Timetable belongs to seven lines of Metrobus System are used for MDVSP 
application. The timetable contains 6254 trips daily. Line information and frequencies are given 
in Table 1. 
 6254 trips belong to 2014-2015 Winter Timetable are covered by 496 vehicles emanating 
from 4 different depots. Depot names and physical characteristics are given in Table 2.  
 

Table 1. Metrobus lines and total number of daily trips 
 

Line 
Starting 
Station 1 

Starting 
Station 2 

Total Number of 
Trips ( Direction 1-

>2 ) 

Total Number of 
Trips ( Direction 2-

>1 ) 

34AS Avcilar Sogutlucesme 778 779 

34 Avcilar Zincirlikuyu 322 328 

34BZ Beylikduzu Zincirlikuyu 887 896 

34C Beylikduzu Cevizlibag 359 350 

34G Beylikduzu Sogutlucesme 38 37 

34Z Zincirlikuyu Sogutlucesme 738 583 

34U Uzuncayir Zincirlikuyu 159 - 
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Table 2. Depots serve Metrobus System 
 

Depot Area (m²) Closed Area (m²) 

Ikitelli 192.000 28.000 

Edirnekapi 60.000 6.720 

Hasanpasa 37.000 4.000 

Anadolu 58.200 10.000 

 
Vehicle schedules of Metrobus System are prepared by using SDVSP model obtained as 

explained in Chapter 4. Minimum number of vehicles to cover 6254 trips of 2014-2015 Winter 
Timetable are found. Aforementioned SDVSP model has 16,107,698 binary variables and 18,164 
constraints. CPU times for building the model and finding optimal solution is given in  

Table 3 
Table 3. CPU times for model building and solution of SDVSP model 

 

Network Building (sec) Model Building Solution (sec) 

133.24 >4 days 2400.8 
 

It is shown that 6254 daily trips of 2014-2015 Winter Timetable of Metrobus System of IETT 
General Directorate can be covered by 476 vehicles by solving given mathematical model. 
 
6. CONCLUSION 
 

In this study, it is shown that daily trips of 2014-2015 Winter Timetable of Metrobus System 
can be covered by 476 vehicles instead of existing 496 vehicles by solving a multi-commodity 
type MDVSP model. Solution is obtained by reducing MDVSP model to a SDVSP model. Since 
average purchasing cost of a vehicle is equal to 1,100,000 total cost reduction in number of 
vehicles incurs at amount of 20,900,000. Amount of cost reduction may become higher than 
20,900,000 by incorporating indirect costs into cost reduction calculations. 

SDVSP solution indicates that corresponding MDVSP model is feasible. Therefore, MDVSP 
model is going to be solved to optimality and aim of the total deadhead kilometers are also going 
to be minimized. As further study, it is planned to use Lagrangian relaxation strategy similar to 
one in [3]. Constraint (6) are going to be relaxed in model (P) to obtain and solve 4 separate 
SDVSP models. It is planned to find possible cost improvements in terms of total deadhead 
kilometers by using such a solution strategy. 
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