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ABSTRACT 
      The overall operating cost and operation of a turbine is 

greatly influenced by the durability of the hot section 

components operating at very high temperatures. Modern day 

turbine blades become a critical component for the designers as 

it receives heat and as a result produces great thermal stresses 

due to variation of high temperature. Thus the turbine blade 

metal temperature distribution and temperature gradients are the 

most important parameters to determine the blade life. In this 

paper the analysis is done by developing an analytical method 

to find the temperature distribution in lumped system of 

combined convection-radiation effect on a turbine blade. 

 

INTRODUCTION 

      The inlet temperature of the turbine engines has been 

steadily increasing with the development of new engine. The 

thermal efficiency of a turbine largely depends on the high 

operating temperatures in the engines as it produces more work. 

This results in extremely high temperature gases exiting the 

combustor and entering the other stages. Turbine blades 

experience severe thermal stress and fatigue as a result of 

exposure to these high-temperature gases. In particular, the tips 

of gas turbine rotor blades are subjected to large thermal loads, 

resulting in damage to the blade tips. 

      Turbine blade metal temperature distribution and 

temperature gradients are the most important parameters 

determining the blade life. The blade failure mechanisms are 

low cycle fatigue, high cycle fatigue and thermal fatigue, 

environmental attack and creep. Reyhani et al. [1] used the 

conjugate heat transfer method for finding temperature 

distribution and blade life and concluded that the minimum life 

occurs at the same point as the same point as maximum 

temperatures and indicated that the most dominant factor for 

blade creep life is temperature.  

      Most scientific problems such as heat transfer are inherently 

of nonlinearity. Except a limited number of these problems, 

most of them do not have analytical solution. Therefore, these 

nonlinear equations should be solved using other methods. 

Some of them are solved using numerical techniques and some 

are solved using the analytical method of perturbation. 

      Rajabi and Ganji [2] used both homotopy and perturbation 

techniques to solve the temperature distribution in lumped 

system of combined convection-radiation. The homotopy 

perturbation (HPM) is compared with the perturbation method 

(PM) and both methods have got nearly the same results. Ganji 

and Rafei [3] used the HPM for solving the nonlinear Hirota-

Satsuma coupled Kdv partial differential equations. The 

obtained solutions are compared with Adomian Decomposition 

Method (ADM) and concluded that HPM is to overcome the 

difficulties arising in calculation of adomian polynomials. Ganji 

and Rajabi [4] used both homotopy and perturbation methods to 

solve heat transfer problems with high nonlinearity order.  

      A new closed-form analysis was established by Kundu and 

Lee [5] for the temperature profile with the help of Differential 

Transformation Method (DTM) for calculating the maximum 

heat transfer of an annular stepped fins internal heat generation 

and radiation effects. An integral DTM was introduced to 
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determine the actual heat-transfer rate when heat was generated 

inside annular stepped fins under nonlinear radiation surface 

conditions. 

      Kundu and Lee [6] studied the effect of wet surface, the 

variable conductivity, and the heat transfer coefficient of 

different profiles on the temperature and fin efficiencies. The 

new expression based on the transformed method was 

formulated appropriately to determine the heat transfer rate as 

nonlinear terms associated with it. Kundu and Barman [7] has 

made an analysis on design analysis of annular fins under 

dehumidifying conditions with a polynomial relationship 

between humidity ratio and saturation temperature and 

proposed the DTM to determine the temperature field in wet 

fins of rectangular and triangular geometries. The fin 

performance of triangular fins subject to simultaneous heat and 

mass transfer has been studied by Kundu et al. [8] and they 

adopted DTM for solving the nonlinear governing differential 

equation of fully wet fins. 

      From the above literature survey, it can be highlighted that 

DTM is a power full method to solve a highly nonlinear 

differential equation analytically. For the implementation of 

DTM to solve any nonlinear equation, linearization is not 

required. Hence, in this paper, the differential transformation 

method is applied to solve the nonlinear problem arising in the 

analysis of determination of temperature distribution on turbine 

blade. Another closed form solution is established by 

linearization of the radiation term.  

 

 

 

 
 

 

 

 
FIGURE 1 KINDS OF HEAT TRANSFER FROM GAS 

TURBINE BLADES. 

DEVELOPMENT OF MATHEMATICAL MODEL 

We consider the lumped system with a body of surface area A, 

volume V, density D, thermal conductivity k, specific heat Cp, 

initial temperature T0, and surrounding temperature Ta.  The 

transient response of the solid (blade surface) can be 

determined by equating an energy balance with combined 

convection and radiation heat transfer. 
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To normalized the above equation, the following dimensionless 

parameters are defined as 

 

      
22tA Vτ α= ; L V A= ; 0T Tθ = ; 0a aT Tθ =              (2) 

  

Equation (1) reduces to dimensionless form by using Eq. (2): 
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θ
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τ
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                          (3) 

  

where  

 

      ( )Bi hL k= ; 3

p aR T hσε=                                              (4) 

 

The initial condition taken for the solution of Eq. (3) is in 

dimensionless form as 

 

      at 0,τ =    1θ =                                                                 (5)

  

Equation (3) is a highly non linear. A method based on the DTM 

is considered to develop an analytical solution. A brief 

description of DTM is given in the following section. 

 

Differential transformation Method 

      This classical Taylor series method is one of the earliest 

analytical techniques to many problems, especially ordinary 

differential equations. However, since it requires a lot of 

symbolic calculation for the derivatives of functions, it takes a 

lot of computational time for higher order derivatives. Hence an 

updated version of Taylor series, called the Differential 

Transformation Method (DTM) is introduced here. 

      The differential equation for the initial- value can be 

described as 

 

      ( ), ,
dy

f t y a t b
dt

= ≤ ≤               (6)

      

With initial condition, 

 

      ( ) α=ay                                                                      (7)

        

If y (t) is analytic in the time domain t then let 
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,
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At itt = , ( ) ( )ktkt i,, ϕϕ = , where k belongs to the set of 

non-negative integer, denoted as the k domain. Therefore, Eq. 

(8) can be rewritten as 
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where Y(k) is called the spectrum of y(t) at t=ti in the k domain. 

If y(t) is analytic then y(t) can be represented as 
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Equation (10) is known as the inverse transformation of Y(k) 

If Y(k) is defined as 
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where 0, 1, 2,.....k = ∞ . Using the differential transform, a 

differential equation in the domain of interest can be 

transformed to an algebraic equation in the t domain and y(t) 

can be obtained by finite-term Taylors series plus a remainder, 

as 
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where, ( ) !kHkM k= .  

 

Using the above properties of DTM, Eq. (3) can be written as a 

differential transform function as 
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For 0i = , Eq. (13) reduces to 

     ( ) ( ) ( )4 41 0 0p a pBi Bi R RθΦ = − Φ + − Φ                         (14)

      

For 1i ≥ , Eq. (13) can be written as 
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Applying DTM to Eq. (5) 

 

      ( )0 1Φ =                                                                    (16) 

 

After knowing all the differential functions from Eq. (14) – 

(16), temperature of the turbine blade can be evaluated readily 

from the following expression:     

    

      ( )
0

i

i

iθ τ
∞

=

= Φ∑                                                      (17) 

 

Approximate solution is also possible if the radiation term in 

Eq. (3) is linearized. Now a linearization of the radiation term is 

to made as 

 

      
444 34 aa θθθθ −≈                                    (18) 

 

Equation (3) can be expressed by using Eq. (18) as 

        

      ( ) ( )44 0a a p

d
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d

θ
θ θ θ

τ
+ − + =                                        (19) 

 

Equation (19) is solved with the initial condition (5) as 

 

      ( ) ( )34

1
i a pB R

a a e
θ τ

θ θ θ
− +

= + −                                           (20) 

 

RESULTS AND DISCUSSION 

      The governing equating with the nonlinear term results in a 

complicated analysis. Hence the DTM is used for temperature 

distribution and to solve non linear equations of unsteady 

conduction in a turbine blade. 

      Figure 2 shows the variation of dimensionless temperature 

as a function of dimensionless time with different surrounding 

temperature. From Fig. 2, it can be found that the value of 

dimensionless temperature (θ) for different value of (θa) is 

decreasing with the increasing value of (τ) and after some time 

θ becomes constant. Here the value of other parameters like 

Biot number (Bi) and radiation parameter (Rp) are kept constant 

as 0.01 and 0.1, respectively. For a high surrounding 

temperature, less time is provided to reach under steady 

condition.  
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FIGURE 2 DIMENSIONLESS TEMPERATURE (θ) VS 

DIMENSIONLESS TIME (τ) FOR DIFFERENT aθ    
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FIGURE 3 DIMENSIONLESS TEMPERATURE (θ) VS 

DIMENSIONLESS TIME (τ ) FOR DIFFERENT Bi 

 

Figure 3 depicts the temperature on the turbine surface with 

time for different Biot number values. From Fig. 3, it is clear 

that the value of dimensionless temperature (θ) for different 

values of Biot number (Bi) is decreasing sharply with increasing 

value of (τ) and after some time (θ) becomes constant. The 

value of other parameters like (θa) and (Rp) are considered as 

0.5 and 0.1 respectively. From this figure, it can be highlighted 

that the temperature does not change significantly with variation 

of Bi. It may be important from the design point of view.  
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FIGURE 4 EFFECT OF pR ON DIMENSIONLESS 

TEMPERATURE (Θ) UNDER TRANSIENT CONDITION  

  

To know the radiation effect on transient temperature response 

for a turbine blade, Fig. 4 is illustrated. From Fig. 4, it is found 

that the value of dimensionless temperature (θ) for different 

values of (Rp) is decreasing sharply with the increasing value of 

(τ) and after some time (θ) becomes constant. The values of 

other parameters like (θa) and (Bi) are considered as 0.5 and 

0.01 respectively. The effect of radiation becomes dominated 

with lower values of its parameter.  

 

 

CONCLUSIONS 

      The study investigates the effect of temperature distribution 

of a gas turbine blade with some design parameters. The 

mathematical model is for a 2-dimensional profile of a gas 

turbine engine blade. The differential Transformation method is 

used for calculating the temperature distribution on a turbine 

blade. The proposed approximate analytical model can estimate 

the temperature distribution on a turbine blade under both 

convective and radiative environments. 

    The major findings can be enumerated as follows:  

(1) Dimensionless temperature (θ) for a constant θa 

decreases with the increasing value of dimensionless 

time (τ). A higher θa requires more time to attend 

steady condition.  

(2) The effect of Bi on temperature response under 

lumped system of analysis is insignifiant. 

(3) The radiation parameter Rp reduces time scale to have 

maintaining unsteady condition.  
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NOMENCLATURE 
 

A  area (m2) 

Bi  Biot number, hL k  

pC  Specific heat ( KJ/KgK)  

DTM differential transform method 

h  Coefficient of convection (W/m2K) 

HPM  homotopy perturbation method 

k  Thermal conductivity (W/mK) 

L  characteristics length, V L  (m) 

PM  perturbation method 

pR  dimensionless radiation parameter, 3

p aR T hσε=  

t  time (sec) 

T  temperature (0C) 

0T  initial temperature (0C) 

aT  Surrounding temperature (0C)  

V  Volume (m3) 

x  Coordinate (m) 

X  dimensionless Coordinate, x L  

  

Greek symbols 
α  thermal diffusivity (m2/sec) 

ε  emissivity  

ρ  density  (Kg/m3) 

σ  Stefan-Boltzman constant (-) 

θ  dimensionless temperature, 0T T  

aθ  dimensionless temperature, 0aT T  

Φ  differential transform function of  θ  
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