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ABSTRACT 
 
In this study, the free vibration analysis of cylindrical and non-cylindrical helicoidal bars with thin-walled 
circular tube cross-section is investigated by using the mixed finite element formulation based on 
Timoshenko beam theory. Frenet triad is adopted as the local coordinate system in the helix geometry. The 
curved elements involve two nodes, where each node has 12 DOF, namely three translations, three rotations, 
two shear forces, one axial force, two bending moment and one torque. Numerical solutions are performed to 
analyze the dynamic behavior of the helix geometries and benchmark results are presented. Parametric studies 
are carried out to investigate the influence of the section geometry, the helicoidal geometry, the boundary 
conditions and the density of the material. 
Keywords: Timoshenko beam theory, finite element, non-cylindrical helix, thin-walled circular tube section, 
free vibration. 
 
 
İNCE CİDARLI DAİRESEL TÜP KESİTLİ HELİSEL ÇUBUKLARIN KARIŞIK SONLU ELEMAN 
YÖNTEMİYLE SERBEST TİTREŞİM ANALİZİ 
 
ÖZET 
 
Bu çalışmada, ince cidarlı tüp kesite sahip silindirik ve silindirik olmayan helisel çubukların serbest titreşimi 
Timoshenko çubuk kuramını esas alan bir karışık sonlu eleman formülasyonu kullanılarak incelenmiştir. 
Helis geometrisinde Frenet koordinat sistemi kullanılmıştır. İki düğüm noktalı eğrisel elemanın bir düğüm 
noktasında,  üç yer değiştirme, üç dönme, iki kesme kuvveti, bir eksenel kuvvet, iki eğilme momenti ve bir 
burulma momenti olmak üzere, 12 bilinmeyen vardır. Helis geometrilerinin dinamik davranışı sayısal olarak 
incelenmiş ve literatüre özgün katkı sağlanmıştır. Kesit ve helis geometrileri, sınır koşulları ve malzeme 
yoğunluğu gibi parametrelerin etkisinin incelendiği parametrik çalışmalar yapılmıştır.   
Anahtar Sözcükler: Timoshenko çubuk kuramı, sonlu eleman, silindirik olmayan helis, ince cidarlı tüp kesit, 
serbest titreşim. 
 
 
 
1. INTRODUCTION 
 
Derivation of the differential equations of helicoidal bars goes back to 19th century [1-3]. Shear 
influence and rotary inertia effects are investigated by [4] and [5] derived the dynamic equations.   
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Natural frequencies of helicoidal bars depend on different parameters, and in order to address 
them various numerical methods were employed such as the finite element method [6-8], the 
transfer matrix method [9] which are the most popular ones. The transfer matrix method is 
intensively applied to dynamic analysis of cylindrical/non-cylindrical helical springs besides 
finite element method with circular and rectangular cross-sections by [10-14]. [15] employed the 
exact element method for the free vibration analysis of non-cylindrical helicoidal beams with 
circular and rectangular variable cross-sections. [16,17] applied the pseudospectral method to 
investigate the free vibration analysis of cylindrical and non-cylindrical helical springs with 
circular cross-sections. In this study, free vibration analysis of cylindrical, conical, barrel and 
hyperboloidal helices having thin-walled circular tube cross-section is performed via the mixed 
finite element method. The influence of some parameters (e.g., the thickness-to-section average 
radius ratio, the helix height-to-helix maximum radius ratio, various parameters of the non-
cylindrical helicoidal geometry, boundary conditions, and the density of the material) on the 
fundamental natural frequency of helicoidal bars are investigated. 
 

    
 

Figure 1. The envelope curves of helix geometries Figure 2. The barrel helix 
 
2. THE HELIX GEOMETRY, THE FUNCTIONAL AND THE MIXED FINITE 
ELEMENT FORMULATION 
 
Helix geometry: The geometrical properties of the helices in Figure 1 are ( )cosx R  = , 

( )siny R  = , ( )z p  = , ( ) ( ) tanp R  = , where   denotes the pitch angle, ( )R   and 

( )p   signify the centerline radius and the step for unit angle, respectively, of the helix as a 

function of the horizontal angle  . With 2 2( ) ( ) ( )c R p  = + , the infinitesimal arc length 

becomes d ( )ds c  = . In the cylindrical helix, since ( ) constantR R = =  and it is clear that 

2 2c R p= + , 2/R c = , 2/p c = , tanp R =  are all constant.   and   are the curvature 

and torsion of the helix axis, respectively. The Frenet unit vectors are as follows: t  is the tangent 
unit vector, n  is the normal unit vector, b = t n´  is the binormal unit vector. In the case of a 
conical helix, the radius at any point on the helix geometry is 

max min max( ) ( )( 2 )R R R R n  = + -  where n  is the number of active turns, maxR  and minR  are 

the bottom radius and top radius, respectively, of the conical helix geometry and in the case of a 

barrel, the radius is 2
max min max( ) ( ) (1R R R R n   = + - - , minR  and maxR  are the bottom 

radius and the central radius, respectively or in the case of hyperboloidal helix, the radius is 
2

min max min( ) ( ) (1R R R R n   = + - - , where maxR  and minR  are the bottom radius and the 

central radius, respectively. 
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The functional: The field equations for the helicoidal bars, which are based on the Timoshenko 
beam theory and refer to the Frenet coordinate system, are discussed in [7,8]. Using 

t n bu u uu t n b= + +  as the displacement vector, t n b  Ω t n b= + +  as the rotational 

vector, t n bT T TT t n b= + +  as the force vector, t n bM M MM t n b= + +  as the moment 

vector,   as the density of material, A  as the area of the cross-section, I  as the moment of 
inertia, q  and m  as the distributed external force vector and moment vector, respectively, the 
field equations can be written in the form 
 

,
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where the accelerations are denoted by 2 2/ t u = u , 2 2/ t =  . Eq. (1) is the equation of 

motion and Eq. (2) is the difference between the kinematic strain equation and the constitutive 
strain equation, namely, u 0- =  . The kinematic strain equation is in form ku D u= , where  

kD  is a differential operator. The constitutive strain equation is in the form C=  , where C  

is the compliance matrix, namely, 
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where /A A k¢ ¢=  and k ¢  is the shear correction factor; E and G are the elasticity and shear 
modulus, respectively; tI , nI  and bI  are the moments of inertia with respect to the t, n, b axes, 
respectively. Eqs. (1)-(2) can be written in operator form as Q Ly f= - ; if the operator is 

potential, the equality * *d ( , ), d ( , ),Q y y y Q y y y  must be satisfied [18]. d ( , )Q y y  and 
*d , )Q(y y  are Gâteaux derivatives of the operator in the directions of y  and *y , respectively. 

After proving the operator to be potential and considering the harmonic motion of the helix in the 
free vibration analysis (and also q m 0= = ), the functional yields to the following form  
 

             
       

1 1 1 2
, , 2 2 2

1 2
2

, , , , , ,

ˆˆ ˆ ˆ          , , ,

s s A 

  

 



       

                

I y u T t Ω T M Ω C M M C T T u u

Ω Ω T T u M M Ω u,T Ω,M
                   (4) 

 

where   is the natural circular frequency and the square parentheses indicate the inner product. 
The terms with hats in Eq. (4) are known values on the boundary and the subscripts   and   
represent the geometric and the dynamic boundary conditions, respectively.  
The curved element: Using the subscripts ,i j  to represent the node numbers of the bar element, 

the linear shape functions ( ) /i j   = -  and ( ) /j i   = -  are employed in the finite 

element formulation, where ( )j i   = - . The non-cylindrical helix geometry is interpolated 

from the cylindrical geometry as stated by [7].  
The free vibration analysis: The problem of determining the natural frequencies of a structural 
system reduces to the solution of a standard eigenvalue problem 2([ ] [ ]){ } { }K M u 0- =  where 

[ ]K  is the system matrix, [ ]M  is the mass matrix for the entire domain, u  is the eigenvector 
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and   is the natural angular frequency of the system. Hence the explicit form of standard 
eigenvalue problem in the mixed formulation is 
 

11 12
2

22 22

[ ] [ ] [ ] [ ] { } { }

[ ] [ ] [ ] [ ] { } { }
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                                                                           (5) 

 

where { }F  denotes the nodal force and the moment vectors and { } = { }TU u Ω  signifies the 

nodal displacement and rotation vectors. The { }F  vector is eliminated in Eq. (5) and the 

eigenvalue problem in the mixed formulation becomes * 2([ ] [ ]){ } { }K M U 0- =  where the 

condensed system matrix is * T 1[ ] [ ] [ ] [ ] [ ]22 12 11 12K K K K K-= - .  
 
3. NUMERICAL EXAMPLES 
 
3.1. Convergence analysis 
 
A barrel helix bar, having circular cross section and fixed at both ends is solved [see Figure 2]. 
The material and geometrical properties are: the modulus of elasticity 210GPaE  ; Poisson's 

ratio  0.3  ; the material density 37850kg/m  ; the number of active turns 6.5n  ; the 

pitch angle 4.8   ; the ratio of the minor radius to the major radius of the helix 

min max/ 0.4R R   (where max 25mmR  ), radius of the circular cross section 1mmr  . Through 

the analysis, the first two natural frequencies of the barrel helix are calculated using 50, 75 and 
100 mixed finite elements. The convergence of the first two frequencies compared with [12,17] 
and SAP2000, and the results are shown graphically in Figure 3. SAP2000 needs more than 500 
elements for fulfillment but the result of 500 seems to be satisfactory. In this example, the shear 
correction factor 1.18k    is used [19] but [12,17] considered the value of shear correction 
factor as 1.1k   . 
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Figure 3. The first two frequencies graph for the barrel helix 
 
3.2. Benchmark Examples 
  
The material and geometrical properties of the cylindrical and non-cylindrical (conical, barrel, 
hyperboloidal) helicoidal bars, which are solved here, are as follows: the modulus of elasticity 

210GPaE = ; Poisson's ratio 0.3  ; the density of the material 37850kg/m = ; the number 

of active turns n  (3.5, 7.5, 11.5); the minimum radius of helix-to-maximum radius of helix ratios 
min max/R R  (0.4, 0.6, 0.8); the height of helix-to-maximum radius of helix ratio max/H R  (4, 6, 8); 

the average radius of cross-section 1mmor =  is kept constant; and the thickness-to-cross-section 

average radius ratios t/ro = 0.01, 0.10, 0.15 and 0.25. The pitch angle   has a unique value that 
refers to the number of active turns n  and the ratios min max/R R  and max/H R  as shown in Table 
1. In these examples, some cited parameters are kept constant for the solution, 200 mixed 
elements are employed. 
 
3.2.1. Fixed-fixed Boundary Condition 
 

max/ 4 constantH R = =  [see Figure 1(a)]: The fundamental natural frequencies are listed in 
Tables 2(a)-(c). An interpretive discussion of each table is as follows: As the thickness-to-section 
average radius ratio increases, an increasing trend is observed for the fundamental natural 
frequency. For the thin-walled circular tube sections ( / 0.1)ot r £ , this increasing trend is nearly 
negligible. If the fundamental natural frequency values of each table are compared with the 
results that correspond to / 0.01ot r =  for each helix type, the percent increase in the 
fundamental natural frequency, which corresponds to / 0.25ot r =  for max 10mmR = , 20 mm  
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and max 40 mmR = , ranges from 0.70% ~ 0.87%  and 0.48% ~ 1.06% , respectively. If the 

fundamental natural frequencies in each table are compared with the results that correspond to 
3.5n=  for each helix type, the percent reduction in the case of 7.5n   and 11.5n=  range 

between 46% ~ 52%  and 64% ~ 69% , respectively. If the fundamental natural frequencies of 
the non-cylindrical helices are compared with the fundamental natural frequencies of the 
cylindrical helix, the latter is smaller. For each number of turns, the comparison of the 
fundamental natural frequencies in each table with the results that correspond to min max/ 0.4R R =  
for each helix type reveals that the percent reduction in the case of conical, barrel and 
hyperboloidal helices range from 14% ~ 36% , 8% ~ 22%  and 18% ~ 40% , respectively. The 
comparison of the fundamental natural frequencies in Tables 2(b)-(c) are compared with the 
corresponding results of Table 2(a) for each helix type reveal that the percent reductions in 
Tables 2(b) and 2(c) are approximately 75%  and 94% , respectively. 

max 20mm=constantR =  [see Figure 1(b)]: The fundamental natural frequencies for 

max/ 6, 8H R =  are listed in Tables 3(a)-(b). The common evaluations of the fundamental natural 

frequencies in each Table 2(b) and Tables 3(a)-(b) are as follows: As the thickness-to-section 
average radius ratio increases, an increasing trend is observed for the fundamental natural 
frequency. For thin-walled circular tube sections ( / 0.1)ot r £ , this increasing trend is nearly 
negligible. The comparison of the fundamental natural frequencies in each table with the results 
that correspond to the ratio / 0.01ot r =  for each helix type indicates that the percent increases in 
the fundamental natural frequency, which correspond to / 0.25ot r =  for max/ 4, 6, 8H R = , 

range from 0.68% 0.95% . The comparison of the fundamental natural frequencies in each 
table with the results that correspond to 3.5n=  for each helix type indicates that the percent 
reduction in the case of 7.5n=  and 11.5n=  range from 45% 52%  and 63% 69% , 
respectively. The comparison of the fundamental natural frequencies of the non-cylindrical 
helices with the cylindrical helix reveals that the latter is always smaller. For each number of 
turns, the fundamental natural frequencies in Table 2(b) and Tables 3(a)-(b) are compared with 
the results that correspond to min max/ 0.4R R = ; in the cases of min max/ 0.6, 0.8R R = , the percent 

reductions for the max/ 4, 6, 8H R =  ratios are listed in Table 4. The fundamental natural 

frequencies shown in Tables 3(a)-(b) are compared with the corresponding values in Table 2(b) 
[for max/ 4H R = ], and the reduction in the fundamental natural frequencies for the cylindrical, 
conical, barrel and hyperboloidal helices are listed in Table 5.  
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Table 1. The pitch angles ( ) of helix types for the number of active turns n  and the ratios 

min max/R R  and max/H R  
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Table 2. The fundamental natural frequencies (Hz) for max/ 4 constantH R    and 

max variableR   
(a) max 10mmR  , 40mmH   
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Table 2 continuing… 
(b) max 20mmR  , 80mmH   
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Table 2 continuing… 
(c) max 40mmR  , 160mmH   
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Table 3. The fundamental natural frequencies (Hz) for max 20mm constantR    and 

max/ variableH R   
(a) max/ 6H R  , 120mmH   
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Table 3 continuing… 
(b) max/ 8H R  , 160mmH   
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Table 4. The percent reductions in the fundamental natural frequencies of non-cylindrical helices 
in the case of min max/ 0.6, 0.8R R =  with respect to min max/ 0.4R R = . 

 

max/H R
Helix types 

Conical Barrel Hyperboloidal
4 14% 36% 8% 21% 18% 40%
6 12% 27% 8% 19% 15% 34%
8 11% 25% 7% 17% 14% 33%

 
Table 5. The percent reductions in the fundamental natural frequencies of cylindrical and non-

cylindrical helices in the case of max/ 6,8H R =  with respect to max/ 4H R =  
 

max/H R n  Helix types 
Cylindrical Conical Barrel Hyperboloidal 

 3.5 9% 13% 20% 11% 13% 14% 20%  
6 7.5 5% 10% 22% 10% 14% 9% 18%  
 11.5 4% 10% 22% 10% 14% 9% 17%  
 3.5 25% 29% 37% 28% 32% 30% 37%  

8 7.5 22% 27% 38% 26% 31% 26% 35%  
 11.5 21% 26% 38% 26% 31% 25% 33%  

 
3.2.2 The fixed-free Boundary Condition 
 

max 20mm constantR = =  [see Figure 1(b)]: The fundamental natural frequencies are shown in 

Tables 6(a)-(c), and the common evaluations are as follows: As the thickness-to-section average 
radius ratio increases, an increasing trend is observed for the fundamental natural frequency. In 
the case of / 0.01ot r =  for each helix type for / 0.25ot r = , the percent increase are shown in 
Table 7. The comparison of the fundamental natural frequency values in each table with the 
results that correspond to 3.5n=  for each helix type reveals that the percent reduction for 

7.5n=  and 11.5n=  range from 48% 53%  and 65% 69% , respectively. The comparison 

of the fundamental natural frequency values for the non-cylindrical helices with the cylindrical 
helix reveals that the latter is smaller. For each number of turns, the fundamental natural 
frequency values in each table are compared with the results that correspond to min max/ 0.4R R = ; 
the percent reductions in min max/ 0.6R R =  and 0.8  are listed in Table 8. The fundamental natural 
frequencies shown in Tables 6(b)-(c) are compared with the results in Table 6(a) [for 

max/ 4H R = ], and the percent reduction in the fundamental frequency are listed in Table 9. 
 
Table 7. The percent reductions in the fundamental natural frequencies of non-cylindrical helices 

in the case of / 0.25ot r =  with respect to / 0.01ot r =  
 

max/H R  
Helix types 

Cylindrical Conical Barrel Hyperboloidal 
4 0.68% 0.89% 0.60% 1.06% 0.53% 1.16% 0.63% 1.16%  
6 0.00% 0.63% 0.56% 1.00% 0.00% 1.01% 0.56% 1.09%  
8 0.81% 1.27% 0.66% 1.16% 0.00% 1.18% 0.61% 1.09%  
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Table 6. The fundamental natural frequencies (Hz) for max 20mm constantR    and 

max/ variableH R   
 (a) max/ 6H R  , 80mmH   

 
hy

pe
rb

ol
oi

da
l 

t /
 r
◦ 

0.
25

 

82
.2

 

67
.3

 

56
.3

 

- 

39
.8

 

32
.2

 

26
.7

 

- 

26
.1

 

21
.1

 

17
.5

 

- 

0.
15

 

81
.8

 

67
.0

 

56
.0

 

- 

39
.6

 

32
.0

 

26
.6

 

- 

26
.0

 

21
.0

 

17
.4

 

- 

0.
10

 

81
.7

 

66
.9

 

55
.9

 

- 

39
.5

 

32
.0

 

26
.6

 

- 

25
.9

 

20
.9

 

17
.4

 

- 

0.
01

 

81
.6

 

66
.8

 

55
.9

 

- 

39
.5

 

32
.0

 

26
.5

 

- 

25
.9

 

20
.9

 

17
.3

 

- 

ba
rr

el
 

t /
 r
◦ 

0.
25

 

60
.6

 

55
.8

 

51
.6

 

- 

28
.9

 

26
.6

 

24
.5

 

- 

18
.9

 

17
.4

 

16
.0

 

- 

0.
15

 

60
.3

 

55
.5

 

51
.3

 

- 

28
.8

 

26
.4

 

24
.4

 

- 

18
.8

 

17
.3

 

15
.9

 

- 

0.
10

 

60
.2

 

55
.5

 

51
.3

 

- 

28
.7

 

26
.4

 

24
.3

 

- 

18
.8

 

17
.2

 

15
.9

 

- 

0.
01

 

60
.1

 

55
.4

 

51
.2

 

- 

28
.7

 

26
.3

 

24
.3

 

- 

18
.8

 

17
.2

 

15
.9

 

- 

co
ni

ca
l 

t /
 r
◦ 

0.
25

 

69
.9

 

61
.1

 

53
.8

 

- 

33
.6

 

29
.2

 

25
.6

 

- 

22
.0

 

19
.1

 

16
.7

 

- 

0.
15

 

69
.5

 

60
.8

 

53
.6

 

- 

33
.4

 

29
.0

 

25
.4

 

- 

21
.9

 

19
.0

 

16
.6

 

- 

0.
10

 

69
.4

 

60
.7

 

53
.5

 

- 

33
.4

 

29
.0

 

25
.4

 

- 

21
.9

 

19
.0

 

16
.6

 

- 

0.
01

 

69
.4

 

60
.6

 

53
.4

 

- 

33
.4

 

28
.9

 

25
.4

 

- 

21
.8

 

18
.9

 

16
.6

 

- 

cy
li

nd
ri

ca
l 

t /
 r
◦ 

0.
25

 

   

47
.8

 

   

22
.6

 

   

14
.8

 

0.
15

 

   

47
.6

 

   

22
.5

 

   

14
.7

 

0.
10

 

   

47
.5

 

   

22
.5

 

   

14
.7

 

0.
01

 

   

47
.4

 

   

22
.4

 

   

14
.7

 

R
m

in
 / 

R
m

ax
 

0.
4 

0.
6 

0.
8 

1.
0 

0.
4 

0.
6 

0.
8 

1.
0 

0.
4 

0.
6 

0.
8 

1.
0 

n 3.
5    

7.
5    

11
.5

 

   

 

Free Vibration Analysis of Helicoidal Bars with Thin- …      Sigma 33, 200-218, 2015 



214 
 

Table 6. continuing… 
(b) max/ 6H R  , 120mmH   
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Table 6. continuing… 
(c) max/ 8H R  , 160mmH   
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Table 8. The percent reductions in the fundamental natural frequencies of non-cylindrical helices 
in the case of min max/ 0.6, 0.8R R =  with respect to min max/ 0.4R R =  

 

max/H R
Helix types 

Conical Barrel Hyperboloidal
4 12% 24% 7% 16% 18% 33%
6 11% 23% 7% 16% 16% 32%
8 10% 23% 6% 15% 14% 31%

 
Table 9. The percent reductions in the fundamental natural frequencies of cylindrical and non-

cylindrical helices in the case of max/ 6, 8H R =  with respect to max/ 4H R =  
 

max/H R
Helix types 

Cylindrical Conical Barrel Hyperboloidal 
6 29% 31% 30% 33% 29% 32% 30% 35%  
8 45% 48% 46% 51% 46% 50% 46% 53%  

 
3.2.3. Influence of Density on the Fundamental Natural Frequency 
 
The thickness-to-section average radius ratio / 0.10 constantot r = = ; the helix height to helix 
maximum radius ratio max/ 4 constantH R = = , where max 20mmR = ; and the densities of 

material 37850kg/m =  and 38300kg/m . The fundamental natural frequency results of the 

fixed-fixed and fixed-free boundary conditions are provided in Table 10(a) and Table 10(b), 
respectively. For the both boundary conditions, the percent reduction in the fundamental natural 
frequency values that correspond to 38300kg/m  with respect to the corresponding results of 

37850kg/m =  range from 2.3% 3.2% . 

 
Table 10. The fundamental natural frequencies (Hz) for two different density of material  

(a) B.C. (boundary condition): fixed-fixed ( max 20mmR  , max/ 4H R  ) 
 

n  
 

min max/R R

cylindrical conical barrel hyperboloidal 
 3(kg/m )  3(kg/m )  3(kg/m )  3(kg/m )  

 7850 8300 7850 8300 7850 8300 7850 8300  
3.5   0.4   300.1 291.9 248.2 241.3 330.4 321.4 

  0.6   256.1 249.0 227.2 221.0 270.5 263.1 
  0.8   213.1 207.3 202.6 197.0 220.0 213.9 
  1.0 175.3 170.5 - - - - - - 

7.5   0.4   159.6 155.2 125.6 122.1 174.3 169.5 
  0.6   130.4 126.8 114.2 111.1 136.4 132.6 
  0.8   104.1 101.2 99.8 97.1 106.8 103.9 
  1.0 84.5 82.1 - - - - - - 

11.5   0.4   106.2 103.3 82.8 80.5 114.8 111.7 
  0.6   85.8 83.5 75.4 73.3 89.1 86.6 
  0.8   68.2 66.3 65.6 63.8 69.8 67.9 
  1.0 55.3 53.8 - - - - - - 
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Table 10.  continuing…  
(b) B.C. (boundary condition): fixed-free ( max 20mmR  , max/ 4H R  ) 

 

n  
 

min max/R R

cylindrical conical barrel hyperboloidal 
 3(kg/m )  3(kg/m )  3(kg/m )  3(kg/m )  

 7850 8300 7850 8300 7850 8300 7850 8300  
3.5   0.4   69.4 67.5 60.2 58.5 81.7 79.4 

  0.6   60.7 59.0 55.5 53.9 66.9 65.1 
  0.8   53.5 52.0 51.3 49.9 55.9 54.4 
  1.0 47.5 46.2 - - - - - - 

7.5   0.4   33.4 32.5 28.7 27.9 39.5 38.5 
  0.6   29.0 28.2 26.4 25.7 32.0 31.1 
  0.8   25.4 24.7 24.3 23.6 26.6 25.8 
  1.0 22.5 21.9 - - - - - - 

11.5   0.4   21.9 21.3 18.8 18.3 25.9 25.2 
  0.6   19.0 18.4 17.2 16.8 20.9 20.4 
  0.8   16.6 16.2 15.9 15.5 17.4 16.9 
  1.0 14.7 14.3 - - - - - - 

 
4. CONCLUSION 
 
The mixed finite element formulation is based on the Timoshenko beam theory, and the 
documentation of the corresponding functional exists in [7,8]. The non-cylindrical helix 
geometry is derived using exact curvatures at the nodal points and their interpolations through the 
element. As a convergence test, a barrel type helicoidal bar is handled, results of the present 
program is compared by the literature and a commercial program, and even with a coarse element 
mesh excellent agreement is achieved. In this study, four benchmark examples are solved to 
investigate the influence of the thickness-to-section average radius ratio, the helix height-to-helix 
maximum radius ratio, the various parameters of the non-cylindrical helicoidal geometry, the 
boundary conditions, and the density of the material on the free vibration analysis of helicoidal 
bars having thin-walled circular tube cross-section. Following remarks can be cited: 
 

 As the thickness-to-section average radius ratio increases, an increasing trend is 
observed for the fundamental natural frequency.  

 If the fundamental natural frequencies of the non-cylindrical helices are compared with 
the fundamental natural frequencies of the cylindrical helix, the latter is smaller. 

 As the number of active turns and the ratio min max/R R  increase, a reduction in the 
fundamental natural frequencies of the non-cylindrical helicoidal bars is observed. 

 For both the cylindrical and non-cylindrical helicoidal bars, an increase of the density 
of material caused a reduction of the fundamental natural frequencies. 
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