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ABSTRACT

In this study, the free vibration analysis of cylindrical and non-cylindrical helicoidal bars with thin-walled
circular tube cross-section is investigated by using the mixed finite element formulation based on
Timoshenko beam theory. Frenet triad is adopted as the local coordinate system in the helix geometry. The
curved elements involve two nodes, where each node has 12 DOF, namely three translations, three rotations,
two shear forces, one axial force, two bending moment and one torque. Numerical solutions are performed to
analyze the dynamic behavior of the helix geometries and benchmark results are presented. Parametric studies
are carried out to investigate the influence of the section geometry, the helicoidal geometry, the boundary
conditions and the density of the material.

Keywords: Timoshenko beam theory, finite element, non-cylindrical helix, thin-walled circular tube section,
free vibration.

iNCE CiDARLI DAIRESEL TUP KESIiTLi HELISEL CUBUKLARIN KARISIK SONLU ELEMAN
YONTEMIYLE SERBEST TiTRESIiM ANALIiZi

OZET

Bu ¢alismada, ince cidarli tiip kesite sahip silindirik ve silindirik olmayan helisel ¢ubuklarin serbest titresimi
Timoshenko ¢ubuk kuramini esas alan bir karigik sonlu eleman formiilasyonu kullanilarak incelenmistir.
Helis geometrisinde Frenet koordinat sistemi kullamlmustir. Tki diigiim noktal egrisel elemanin bir diigim
noktasinda, i¢ yer degistirme, lic donme, iki kesme kuvveti, bir eksenel kuvvet, iki egilme momenti ve bir
burulma momenti olmak iizere, 12 bilinmeyen vardir. Helis geometrilerinin dinamik davranisi sayisal olarak
incelenmis ve literatiire 6zgiin katki saglanmustir. Kesit ve helis geometrileri, sinir kosullar1 ve malzeme
yogunlugu gibi parametrelerin etkisinin incelendigi parametrik ¢alismalar yapilmistir.

Anahtar Sézciikler: Timoshenko ¢ubuk kurami, sonlu eleman, silindirik olmayan helis, ince cidarl: tiip kesit,
serbest titresim.

1. INTRODUCTION

Derivation of the differential equations of helicoidal bars goes back to 19™ century [1-3]. Shear
influence and rotary inertia effects are investigated by [4] and [S] derived the dynamic equations.
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Natural frequencies of helicoidal bars depend on different parameters, and in order to address
them various numerical methods were employed such as the finite element method [6-8], the
transfer matrix method [9] which are the most popular ones. The transfer matrix method is
intensively applied to dynamic analysis of cylindrical/non-cylindrical helical springs besides
finite element method with circular and rectangular cross-sections by [10-14]. [15] employed the
exact element method for the free vibration analysis of non-cylindrical helicoidal beams with
circular and rectangular variable cross-sections. [16,17] applied the pseudospectral method to
investigate the free vibration analysis of cylindrical and non-cylindrical helical springs with
circular cross-sections. In this study, free vibration analysis of cylindrical, conical, barrel and
hyperboloidal helices having thin-walled circular tube cross-section is performed via the mixed
finite element method. The influence of some parameters (e.g., the thickness-to-section average
radius ratio, the helix height-to-helix maximum radius ratio, various parameters of the non-
cylindrical helicoidal geometry, boundary conditions, and the density of the material) on the
fundamental natural frequency of helicoidal bars are investigated.
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Figure 1. The envelope curves of helix geometries Figure 2. The barrel helix

2. THE HELIX GEOMETRY, THE FUNCTIONAL AND THE MIXED FINITE
ELEMENT FORMULATION

Helix geometry: The geometrical properties of the helices in Figure 1 are x=R(@)cose,
y=R(p)sing, z=p(p)p, p(p)=R(p)tana , where a denotes the pitch angle, R(¢) and

p(@) signify the centerline radius and the step for unit angle, respectively, of the helix as a

function of the horizontal angle ¢ . With c(¢@)=/R*(¢)+ p*(p) , the infinitesimal arc length
becomes ds =c(@)de . In the cylindrical helix, since R = R(¢) = constant and it is clear that

c=+R*+p*, y=R/c*, r=p/c*, p=Rtana are all constant. y and 7z are the curvature
and torsion of the helix axis, respectively. The Frenet unit vectors are as follows: t is the tangent
unit vector, n is the normal unit vector, b=t xn is the binormal unit vector. In the case of a
conical  helix, the radius at any point on the helix geometry is
R(9) = R s+ (R win— R max) (9/2n7) where n is the number of active turns, Rp., and R, are

the bottom radius and top radius, respectively, of the conical helix geometry and in the case of a
barrel, the radius is R(¢) = Ruux + (R min— R max) (l—go/nn')z, Ryin and R, are the bottom
radius and the central radius, respectively or in the case of hyperboloidal helix, the radius is
R(¢) = Ruin + (R mx— R i) 1— /1 7[)2 , where R,.. and R,, are the bottom radius and the

central radius, respectively.
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The functional: The field equations for the helicoidal bars, which are based on the Timoshenko
beam theory and refer to the Frenet coordinate system, are discussed in [7,8]. Using
u=ut+u,n+u,b as the displacement vector, Q=0Q,t+Q,n+Q,b as the rotational

vector, T=Tt+T,n+T,b as the force vector, M=M,t+ M,n+ M,b as the moment
vector, o as the density of material, A as the area of the cross-section, I as the moment of

inertia, q and m as the distributed external force vector and moment vector, respectively, the
field equations can be written in the form

-T,—q+pAii=0 1)
-M, - txT-m+pIQ=0
L +HtxQ—C,T=0

“ - 2
Q,-—CM=0

where the accelerations are denoted by ii=0%u/0t?, Q=22Q/0r. Eq. (1) is the equation of
motion and Eq. (2) is the difference between the kinematic strain equation and the constitutive
strain equation, namely, g* —¢&° =0 . The kinematic strain equation is in form g" = D*u , where
D* is a differential operator. The constitutive strain equation is in the form &* =Co, where C

is the compliance matrix, namely,

1/EA 0 0 1/GI, 0 0
C,=|0 1G4 o |,C=| 0 1EI, 0 3)
0 0 1/G4 0 0 1/EI

where A= A/k' and k' is the shear correction factor; E and G are the elasticity and shear
modulus, respectively; /,, I, and [, are the moments of inertia with respect to the ¢, n, b axes,
respectively. Egs. (1)-(2) can be written in operator form as Q =Ly —f; if the operator is
potential, the equality (dQ(y,y),y’)=(dQ(y,y").y) must be satisfied [18]. dQ(y,¥) and

dQ(y,y") are Gateaux derivatives of the operator in the directions of y and y*, respectively.

After proving the operator to be potential and considering the harmonic motion of the helix in the
free vibration analysis (and also ¢ = m = 0 ), the functional yields to the following form

I(y)=-[uT,]+[txQT]-[M,,Q]-{[C.M,M]|-1[C,T,T] -1 pA0>*[u,u]

—lpw? [IQ,Q]+[(T—T),uL +[(M—M),QL +[a,T]. +[Q,Ml @

where @ is the natural circular frequency and the square parentheses indicate the inner product.
The terms with hats in Eq. (4) are known values on the boundary and the subscripts ¢ and o
represent the geometric and the dynamic boundary conditions, respectively.

The curved element: Using the subscripts i, j to represent the node numbers of the bar element,

the linear shape functions ¢ = (¢; —@)/A@ and ¢; =(¢p—¢;)/ Ap are employed in the finite
element formulation, where A@=(¢p; —@:) . The non-cylindrical helix geometry is interpolated

from the cylindrical geometry as stated by [7].
The free vibration analysis: The problem of determining the natural frequencies of a structural
system reduces to the solution of a standard eigenvalue problem ([K]— @*[M]){u} = {0} where

[K] is the system matrix, [M] is the mass matrix for the entire domain, u is the eigenvector
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and @ is the natural angular frequency of the system. Hence the explicit form of standard
eigenvalue problem in the mixed formulation is

H[Kn] K] (0] [0] {{F}}_{{U}} )
Uy 10

[K»] [Ks] (0] [M]
where {F} denotes the nodal force and the moment vectors and {U}={u Q}" signifies the

2

nodal displacement and rotation vectors. The {F} vector is eliminated in Eq. (5) and the
eigenvalue problem in the mixed formulation becomes ([K"]—@?*[M]){U}={0} where the
condensed system matrix is [K*]=[K2»]—[K: " [Ku ] '[Ki2].

3. NUMERICAL EXAMPLES
3.1. Convergence analysis

A barrel helix bar, having circular cross section and fixed at both ends is solved [see Figure 2].
The material and geometrical properties are: the modulus of elasticity £ =210GPa ; Poisson's

ratio v =0.3; the material density p =7850kg/m3; the number of active turns n =6.5; the

pitch angle «=4.8°; the ratio of the minor radius to the major radius of the helix
Ruin / Rnax =0.4 (Where R =25mm), radius of the circular cross section »=1mm . Through
the analysis, the first two natural frequencies of the barrel helix are calculated using 50, 75 and
100 mixed finite elements. The convergence of the first two frequencies compared with [12,17]
and SAP2000, and the results are shown graphically in Figure 3. SAP2000 needs more than 500
elements for fulfillment but the result of 500 seems to be satisfactory. In this example, the shear
correction factor k'=1.18 is used [19] but [12,17] considered the value of shear correction
factoras £'=1.1.
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Figure 3. The first two frequencies graph for the barrel helix
3.2. Benchmark Examples

The material and geometrical properties of the cylindrical and non-cylindrical (conical, barrel,
hyperboloidal) helicoidal bars, which are solved here, are as follows: the modulus of elasticity
E =210GPa ; Poisson's ratio v =0.3 ; the density of the material p =7850kg/m?; the number
of active turns n (3.5, 7.5, 11.5); the minimum radius of helix-to-maximum radius of helix ratios
Ruin / Riax (0.4, 0.6, 0.8); the height of helix-to-maximum radius of helix ratio H / R (4, 6, 8);
the average radius of cross-section 7 =1mm is kept constant; and the thickness-to-cross-section
average radius ratios #r,= 0.01, 0.10, 0.15 and 0.25. The pitch angle « has a unique value that
refers to the number of active turns n and the ratios R, / Rmex and H / Rnx as shown in Table

1. In these examples, some cited parameters are kept constant for the solution, 200 mixed
elements are employed.

3.2.1. Fixed-fixed Boundary Condition

H / Ry =4 =constant [see Figure 1(a)]: The fundamental natural frequencies are listed in
Tables 2(a)-(c). An interpretive discussion of each table is as follows: As the thickness-to-section
average radius ratio increases, an increasing trend is observed for the fundamental natural
frequency. For the thin-walled circular tube sections (¢/7, <0.1), this increasing trend is nearly
negligible. If the fundamental natural frequency values of each table are compared with the
results that correspond to #/7 =0.01 for each helix type, the percent increase in the
fundamental natural frequency, which corresponds to #/7 =0.25 for Ryw =10mm, 20 mm
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and Ru.x =40mm, ranges from 0.70% ~0.87% and 0.48% ~1.06% , respectively. If the
fundamental natural frequencies in each table are compared with the results that correspond to
n=3.5 for each helix type, the percent reduction in the case of #=7.5 and n=11.5 range
between 46% ~52% and 64% ~ 69% , respectively. If the fundamental natural frequencies of
the non-cylindrical helices are compared with the fundamental natural frequencies of the
cylindrical helix, the latter is smaller. For each number of turns, the comparison of the
fundamental natural frequencies in each table with the results that correspond to Ruin / Rinax = 0.4
for each helix type reveals that the percent reduction in the case of conical, barrel and
hyperboloidal helices range from 14% ~36%, 8% ~22% and 18% ~40% , respectively. The
comparison of the fundamental natural frequencies in Tables 2(b)-(c) are compared with the
corresponding results of Table 2(a) for each helix type reveal that the percent reductions in
Tables 2(b) and 2(c) are approximately 75% and 94% , respectively.

Rrox =20mm=constant  [see Figure 1(b)]: The fundamental natural frequencies for

H / Rux = 6,8 are listed in Tables 3(a)-(b). The common evaluations of the fundamental natural

frequencies in each Table 2(b) and Tables 3(a)-(b) are as follows: As the thickness-to-section
average radius ratio increases, an increasing trend is observed for the fundamental natural
frequency. For thin-walled circular tube sections (¢#/r, <0.1), this increasing trend is nearly
negligible. The comparison of the fundamental natural frequencies in each table with the results
that correspond to the ratio ¢/7, =0.01 for each helix type indicates that the percent increases in

the fundamental natural frequency, which correspond to ¢/, =0.25 for H/Ruw.x=4,6,8,

range from 0.68% ~0.95% . The comparison of the fundamental natural frequencies in each
table with the results that correspond to n =3.5 for each helix type indicates that the percent
reduction in the case of n=7.5 and n=11.5 range from 45% ~52% and 63% ~ 69%,
respectively. The comparison of the fundamental natural frequencies of the non-cylindrical
helices with the cylindrical helix reveals that the latter is always smaller. For each number of
turns, the fundamental natural frequencies in Table 2(b) and Tables 3(a)-(b) are compared with
the results that correspond t0 Ruin / Ruax = 0.4 ; in the cases of Ruin / Ruax = 0.6, 0.8 , the percent

reductions for the H/R..x =4,6,8 ratios are listed in Table 4. The fundamental natural

frequencies shown in Tables 3(a)-(b) are compared with the corresponding values in Table 2(b)
[for H/Rwx =41, and the reduction in the fundamental natural frequencies for the cylindrical,
conical, barrel and hyperboloidal helices are listed in Table 5.
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Table 1. The pitch angles () of helix types for the number of active turns » and the ratios
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Table 2. The fundamental natural frequencies (Hz) for H / Ry« =4 = constant and

R..x = variable

(@) Ryax =10mm , H
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inuing.
20mm , H =80mm

Table 2 conti
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constant and

Table 3. The fundamental natural frequencies (Hz) for Ry =20mm

H / Ry, = variable
(a) H/Ruwx =6, H=120mm
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Table 4. The percent reductions in the fundamental natural frequencies of non-cylindrical helices
in the case of Ruin / Ruax = 0.6, 0.8 with respect t0 Ruin / Rnax = 0.4 .

Helix types
H / R Conical Barre};p Hyperboloidal
4 14% ~ 36% 8% ~21% 18% ~ 40%
6 12% ~27% 8% ~19% 15% ~34%
8 11% ~25% 7% ~17% 14% ~33%

Table 5. The percent reductions in the fundamental natural frequencies of cylindrical and non-
cylindrical helices in the case of H / Ry = 6,8 with respect to H / Rnx =4

HIR. Helix types
" Cylindrical Conical Barrel Hyperboloidal
3.5 9% 13% ~ 20% 11% ~ 13% 14% ~ 20%
6 7.5 5% 10% ~ 22% 10% ~ 14% 9% ~18%
11.5 4% 10% ~ 22% 10% ~ 14% 9% ~17%
3.5 25% 29% ~37% 28% ~32% 30% ~37%
8 7.5 22% 27% ~38% 26% ~31% 26% ~35%
11.5 21% 26% ~38% 26% ~31% 25% ~33%

3.2.2 The fixed-free Boundary Condition

Ryox =20mm = constant [see Figure 1(b)]: The fundamental natural frequencies are shown in
Tables 6(a)-(c), and the common evaluations are as follows: As the thickness-to-section average
radius ratio increases, an increasing trend is observed for the fundamental natural frequency. In
the case of 7/7 =0.01 for each helix type for #/7, =0.25, the percent increase are shown in
Table 7. The comparison of the fundamental natural frequency values in each table with the
results that correspond ton =3.5 for each helix type reveals that the percent reduction for
n="7.5 and n=11.5 range from 48% ~ 53% and 65% ~ 69% , respectively. The comparison
of the fundamental natural frequency values for the non-cylindrical helices with the cylindrical
helix reveals that the latter is smaller. For each number of turns, the fundamental natural
frequency values in each table are compared with the results that correspond t0 Ruin / Rnax = 0.4 5
the percent reductions in Ry / Rux = 0.6 and 0.8 are listed in Table 8. The fundamental natural
frequencies shown in Tables 6(b)-(c) are compared with the results in Table 6(a) [for
H / Rn.x =4 ], and the percent reduction in the fundamental frequency are listed in Table 9.

Table 7. The percent reductions in the fundamental natural frequencies of non-cylindrical helices
in the case of 7/ = 0.25 with respectto ¢/ = 0.01

HIR o . Helix types .
" Cylindrical Conical Barrel Hyperboloidal
4 0.68% ~ 0.89% 0.60% ~1.06% 0.53% ~1.16% 0.63% ~1.16%
6 0.00% ~ 0.63% 0.56% ~1.00% 0.00% ~1.01% 0.56% ~1.09%
8 0.81% ~1.27% 0.66% ~1.16% 0.00% ~1.18% 0.61% ~1.09%
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Table 6. The fundamental natural frequencies (Hz) for R =20mm = constant and

H / Ry, = variable
(a) H/Rux=6, H=80mm
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Table 6. continuing...
(b) H/Runax =6, H=120mm
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Table 6. continuing...
(€) H/Rmnx =8, H=160mm
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Table 8. The percent reductions in the fundamental natural frequencies of non-cylindrical helices
in the case of Ruin / Ruax = 0.6, 0.8 with respect t0 Ruyin / Rnax = 0.4

Helix types
H | R Conical Barre);p Hyperboloidal
4 12% ~ 24% 7% ~16% 18% ~33%
6 11% ~ 23% 7% ~16% 16% ~32%
8 10% ~ 23% 6% ~15% 14% ~31%

Table 9. The percent reductions in the fundamental natural frequencies of cylindrical and non-
cylindrical helices in the case of H / Rnx = 6,8 with respect to H / Rux =4

H/R Helix types
- Cylindrical Conical Barrel Hyperboloidal
6 29% ~31% 30% ~33% 29% ~32% 30% ~35%
8 45% ~ 48% 46% ~ 51% 46% ~ 50% 46% ~ 53%

3.2.3. Influence of Density on the Fundamental Natural Frequency

The thickness-to-section average radius ratio ¢/7, =0.10 = constant ; the helix height to helix
maximum radius ratio H /R, =4 =constant, where Ru. =20mm ; and the densities of
material p =7850kg/m*> and 8300kg/m3. The fundamental natural frequency results of the

fixed-fixed and fixed-free boundary conditions are provided in Table 10(a) and Table 10(b),
respectively. For the both boundary conditions, the percent reduction in the fundamental natural
frequency values that correspond to 8300kg/m* with respect to the corresponding results of

p =7850kg/m* range from 2.3% ~3.2% .

Table 10. The fundamental natural frequencies (Hz) for two different density of material
(a) B.C. (boundary condition): fixed-fixed ( Ruax =20mm , H/ Ryox =4 )

cylindrical conical barrel hyperboloidal

n Ruin / Ronax p(kg/m?) p(kg/m?) p(kg/m?) p(kg/m?)
7850 8300 7850 8300 7850 8300 7850 8300
35 0.4 300.1 2919 2482 2413 3304 3214
0.6 256.1 249.0 227.2 221.0 270.5 263.1
0.8 213.1 207.3 202.6 197.0 220.0 213.9

1.0 175.3 170.5 - - - - - -
7.5 0.4 159.6 1552 125.6 122.1 1743 169.5
0.6 1304 126.8 1142 111.1 1364 132.6
0.8 104.1 101.2 99.8 97.1 106.8 103.9

1.0 84.5 82.1 - - - - - -
11.5 0.4 106.2 103.3 82.8 80.5 114.8 111.7
0.6 85.8 83.5 754 733 89.1 86.6

0.8 68.2 66.3 65.6 63.8 69.8 67.9

1.0 553 53.8 - - - - - -
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Table 10. continuing...
(b) B.C. (boundary condition): fixed-free ( Rmax =20mm , H/Rpox =4 )

cylindrical conical barrel hyperboloidal
n Runin / Rinex p(kg/m?) p(kg/m?) p(kg/m?) p(kg/m?)
7850 8300 7850 8300 7850 8300 7850 8300
3.5 0.4 694 675 60.2 585 81.7 79.4
0.6 60.7 59.0 55.5 53.9 66.9 65.1
0.8 53.5 520 51.3 499 559 544
1.0 475 46.2 - - - - - -
7.5 0.4 334 325 28.7 279 39.5 385
0.6 29.0 282 264 257 320 31.1
0.8 254 247 243 236 26.6 258
1.0 225 219 - - - - - -
11.5 0.4 219 213 18.8 183 259 252
0.6 19.0 184 172 16.8 209 204
0.8 16.6 16.2 159 155 174 169
1.0 14.7 143 - - - - - -

4. CONCLUSION

The mixed finite element formulation is based on the Timoshenko beam theory, and the
documentation of the corresponding functional exists in [7,8]. The non-cylindrical helix
geometry is derived using exact curvatures at the nodal points and their interpolations through the
element. As a convergence test, a barrel type helicoidal bar is handled, results of the present
program is compared by the literature and a commercial program, and even with a coarse element
mesh excellent agreement is achieved. In this study, four benchmark examples are solved to
investigate the influence of the thickness-to-section average radius ratio, the helix height-to-helix
maximum radius ratio, the various parameters of the non-cylindrical helicoidal geometry, the
boundary conditions, and the density of the material on the free vibration analysis of helicoidal
bars having thin-walled circular tube cross-section. Following remarks can be cited:

. As the thickness-to-section average radius ratio increases, an increasing trend is
observed for the fundamental natural frequency.
. If the fundamental natural frequencies of the non-cylindrical helices are compared with

the fundamental natural frequencies of the cylindrical helix, the latter is smaller.

. As the number of active turns and the ratio Zmin / Rmax increase, a reduction in the
fundamental natural frequencies of the non-cylindrical helicoidal bars is observed.

. For both the cylindrical and non-cylindrical helicoidal bars, an increase of the density
of material caused a reduction of the fundamental natural frequencies.
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