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AN EXPERIMENTAL INVESTIGATION ON RADIANT FLOOR HEATING SYSTEMS 

AT VARIOUS OPERATING CONDITIONS 

Yakup Karakoyun1,*, Özgen Açıkgöz2, Ahmet Selim Dalkılıç2, Zehra Yumurtacı3 

 

ABSTRACT 

In this study, heat transfer characteristics pertaining to a heated radiant floor are investigated 

experimentally. In order to achieve this aim, experiments have been conducted within extended supply water 

temperature ranging from 30 oC to 55 oC, and mass flow rate ranging from 0.056 kg/s to 0.125 kg/s according to 

experimental condition ranges in the relevant literature. Correlation comparison has been accomplished using a 

large number of experimental data including pioneer studies and international standards regarding with the 

determination of heat flux and heat transfer coefficients. Moreover, novel correlations providing convective, 

radiative and total heat fluxes have been derived, and it has been observed that most of the outcomes of correlations 

remain within deviation bands of ±15%, ±5% and ±20%, respectively. Apart from the literature, heat flux 

correlations corresponding to each heat transfer mechanisms are given and evaluated separately. Throughout 

experimental studies, the proportion of the radiative heat transfer to total one is found 60% approximately. 

Measured experimental data are given in the paper for other researchers validation problems on their theoretical 

and numerical works.  

Keywords: Natural Convection, Enclosure, Radiant Heating, Floor Heating, Energy Saving 

INTRODUCTION 

Low temperature heating applications such as hydronic radiant heating systems are nowadays being 

prevalently utilized particularly in association with renewable energy sources due to high energy saving potential 

along with thermal comfort advantage. Using wide surfaces as heat sources results in surface temperature of living 

environments to increase, and improves indoor thermal conditions. Furthermore, by causing lower amounts of 

exergy destruction due to lower supply temperatures, these systems bring about remarkable gains with regard to 

energy efficiency.  

Radiant heating and cooling systems are the frequently preferred air conditioning systems due to their 

advantages such as high thermal comfort and energy efficiency. Besides, these benefits of radiant heating/cooling 

systems also provide a homogeneous heat distribution, cooperation with supplementary systems including solar 

systems and heat pumps, and no extra need for mechanical equipment in the conditioned area, etc. Therefore, 

determining the heat transfer characteristics of a radiant heating/cooling system is the most important step in 

designing, dimensioning and defining thermal capacity, while the characteristics comprise radiative, convective, 

and total heat fluxes, as well as, radiative, convective, and total heat transfer coefficients. In the literature, it has 

been observed that various experimental and numerical studies have been conducted on radiant heating and 

cooling systems and their short summaries were given in the paragraphs below. 

In a numerical study, Awbi [1] calculated the convective heat transfer coefficient of room surfaces under 

natural convection using two different turbulence models and compared their findings with experimental 

measurements.  The two turbulence models are: a standard k-ε model using “wall functions” and a low Reynolds 

number k-ε model. It is observed that the low Reynolds number k-ε model predicts the heat transfer coefficient 

more accurately compared to k-ε model using wall functions. In the study of Hasan et al. [2], low temperature 

water heating systems are simulated with radiators in the rooms and floor heating in the bathroom. The requirement 

for the bathroom surface temperature is 27oC, thus the 33-43% of the heating energy is used for that purpose.  It is 

observed that the temperature fluctuations in the rooms are in limits of ASHRAE Standards 55-2004, four heating 

systems studied in this study fulfill the thermal comfort criteria. In a series of study Myhren and Holmberg 
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[3,4]investigated numerically the flow patterns of thermal comfort in a room with panel, floor and wall heating 

and design considerations with ventilation radiators. It is observed that the low temperature systems improve 

indoor climate with better comfort conditions however the location of the heat emission and the design ventilation 

system is important to maintain the desired level of heating. The numerical results showed that the ventilation 

radiators create more comfortable thermal conditions than the traditional radiators ventilations systems. The same 

thermal conditions are achieved with ventilation radiators with lower heat capacity which indicates energy and 

environmental savings. Li et al. [5] conducted a simplified analysis to estimate the floor temperature distribution 

for radiant floor cooling system where the key parameter is preventing the condensation in floor surface based on 

consideration of the dew point in indoor environment. The surface temperature difference between the simplified 

analysis and the experimental observation is 0.4oC. In the numerical study of Tye-Gingas and Gosselin [6], a semi-

analytical model is used to investigate the heat transfer characteristic for radiant panels with serpentine layout. The 

2-D finite volume model is used as a verification tool and the large range of assumptions yielded negligible errors 

with proposed semi-analytical model. A comparative numerical study is carried out to investigate the heat transfer 

characteristic of floor heating and wall heating system by Karabay et al. [7]. It is concluded that the wall heating 

system shows better thermal performance and thermal comfort compared to floor heating. The environmental 

considerations are also reduced in wall heating systems.   

In the study of Causone et al. [8], the limitations of floor heating and cooling with displacement ventilation 

is investigated experimentally. The effects of different environmental conditions are studied to obtain the 

temperature, air velocity profiles, surface temperatures and ventilation effectiveness. The measurements showed 

that the displacement ventilation guarantee high level indoor air quality and the use of floor cooling does not 

increase the draught risk at ankle level. In the experimental study Koca et al. [9] a climatic test chamber is 

constructed to characterize the heating capacity and heat transfer coefficient of a heated radiant wall system. It is 

observed that the radiant heat transfer dominated the convective heat transfer. The different configurations of the 

wall system is considered and did not effected radiation significantly (around 10 %) however the convective heat 

transfer is affected significantly (around 25%). Bojic et al. [10] studied different energy sources and compared the 

energy efficiency combined with the environmental effects. Four different heating systems analyzed: floor radiant 

panels, wall radiant panels, ceiling radiant panels and new floor-ceiling radiant panels, and three different heating 

sources compared in terms of cost and CO2 emission: natural gas boiler, ground source heat pump (GSHP) and 

photovoltaic(PV) combined with GSHP.  The best heating characteristic is evaluated for the new floor-ceiling 

radiant panels and GSHP lower the energy consumption compared to a system powered with natural gas. Seyam 

et al. [11] investigated experimentally and numerically the thermal comfort of a scale room model using electric 

heaters where the heating panels are installed on walls, floor and ceiling. The turbulent RNG k-ε numerical method 

is used and good agreement with experimental observations is obtained. For the same heater surface temperature, 

heat flux reduced for increased heater size and the corresponding heat transfer coefficient decreased. The floor 

heating is most cost efficient. In an experimental study Rahimi and Sabernaeemi [12] investigated the radiation 

and free convection in an enclosure with radiant heating ceilings. It is observed that 90% of heat transferred by 

radiation and the radiation is enhanced with increased ceiling temperature.  

In an experimental study Andres-Chicote et al. [13] studied the cooling capacity of a radiant cooled ceiling 

system. It is desired to relate the thermal comfort levels to operation conditions for cooling radiant ceiling system. 

It is concluded that the radiant and convective phenomena should be considered separately to obtain more realistic 

situations.  Cholewa et al. [14] conducted an experimental study on heated cooled radiant floor to obtain a reference 

temperature for the calculation of heat transfer coefficient and heating cooling capacity of radiant floor systems. 

For the proposed system the values of radiant convective and heat transfer coefficients are developed by the use 

of proper reference temperature. Causone at al. [15] evaluated the heat transfer coefficient between radiant ceiling 

and the room in an experimental study using surface temperature distributions, internal gains and air movements. 

The heating and cooling enhancement is possible with higher convective heat transfer because the radiant heat 

transfer is constant. The proposed solution to improve the convection is to couple radiant system to ventilation 

system. Tian et al. [16] conducted an experimental study using an actual office environment to evaluate the cooling 

performance of ceiling radiant cooling panels (CRCP). The characteristic temperature difference of 8oC enhanced 

the cooling capacity of panes by 17.1% and the correction coefficient for the air velocity is between 1.02 and 1.26 

under different conditions.  In an experimental study Zhang et al. [17] investigated the heating and cooling 

performance of a suspended metal ceiling radiant panel (CRP) with inclined fins. It is observed that the cooling 

capacity of CRP with inclined fins enhanced with 19% compared to the suspended panel. In an experimental study 
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of Li et al. [18], a radiant heating cooling ceiling panel system is investigated to clarify the system performance 

and tabulate reference data. The system performance is evaluated using its heating/cooling capacity and thermal 

comfort. The upward heat flux is found as 30-40% of the water heating/cooling capacity and several design 

proposals for reduction of upward heat flux are discussed. Fontana [19] investigated the effect of presence of 

furniture in the environment for lots of conditions with respect to the system performance of a radiant floor heating 

system experimentally. According to the study a radiant floor heating system cannot be designed without 

consideration of presence of furniture. While Açıkgöz et al.  [20,21] studied the thermal behavior of the floor 

heating and cooling systems, Xia and Zhang [22] used the phase change materials as a new approach.  

Açıkgöz and Kıncay [23] studied the heat transfer coefficients of a real sized room which cooled from 

wall, and the study consists of two parts as experimental and numerical. Another work done numerically and 

theoretically by Açıkgöz [24], considered the effect of emissivity of surfaces on the heat transfer coefficient in a 

radiant system. Based on his study it is revealed that for a room, the radiative heat transfer coefficient varies in a 

range of 5.4-5.5 W/m2K. Açıkgöz and Kıncay [25] investigated the effect of the wall temperature on the heat 

transfer coefficients based on 2-D and 3-D numerical simulation of a real sized room. In order to predict the heat 

transfer coefficients Açıkgöz et al. [26] proposed an ANN model and validated it with experimental results. 

Authors showed the possibility of doing numerical analysis on this subject in order to at values in their works and 

substantive with some additional physics. 

A study conducted by Hu and Niu [27] indicates that there have still been problems related to estimation 

of heating/cooling capacity of such systems that result in the higher energy consumption and thermal discomfort. 

One of the most important reasons of this improper load estimation is associated with wide range of errors that 

arise from when assigning the heat transfer coefficients which identify the thermal behavior of radiant heating and 

cooling systems. As it is stated in the work of Shinoda et al. [28] that a comprehensive review based on the heat 

transfer coefficients over radiant surfaces, while the radiant heat transfer coefficients have compatible values with 

literature and standards, the convective and total heat transfer coefficients give different results in a wide range, 

even for the same conditions. Cholewa et al. [14] concluded that the heat transfer coefficients available in the 

literature are overestimated even in the range of 10-30%. According to study related to convective heat transfer 

characteristics in radiant systems performed by Peeters et al. [29], it is revealed that while radiation and conduction 

heat transfer can be defined easily using numerical and analytical models, the convective heat transfer is a more 

complicated phenomenon.  

According to the literature survey, many experimental and numerical studies have been conducted on 

determination of the radiative, convective, and total heat transfer coefficients of radiant heating/cooling systems. 

However, experimental studies in the relevant literature have been performed within narrow supply water 

temperature and flow rate ranges. Therefor, operating condition range has been widened, and the experiments have 

been conducted within extended supply water temperature and flow rate ranges of from 30 oC to 55 oC and from 

0.056 kg/s to 0.125 kg/s, respectively. From this point of view, the present paper defines the proper heat transfer 

coefficients (radiative, convective, and total) experimentally for the investigated radiant floor heating system in a 

real size enclosure.  

In addition, unlike most of other studies having only a combined total heat flux correlation involving both 

convection and radiation in a single form, this study has derived empirical correlations for convective, radiative, 

and total heat fluxes from a radiant heated floor separately.  

EXPERIMENTAL SETUP 

Accurate results can only be obtained via test rooms designed to work under steady state conditions. For 

this purpose, a reliable test room is established in a laboratory, shown in Figure 1, for studying characteristics 

pertaining to an underfloor heating system. The square floor has a length of 1.8 m, and the height of the room is 

2.85 m. The test room is insulated to reach and maintain the steady state conditions at an acceptable duration. 

Therefore, obtained results can be considered as accurate and tolerable. Schematic representation and formation 

process of the test room is shown in Figure 1 (a-e). A photo of experimental setup including its main components, 

primary and secondary supply water lines  is given in Figure 2 (a) and 2 (b), respectively. 
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                   (a) 

 

                    (b)                                           (c)                                      (d)                                       (e) 

Figure 1. Schematic build up representation (a) and photographic illustration (b-e) of the test room 

The distance between the buried pipes into the floor of test room is 12 cm. The pattern of the pipe 

arrangement is as shown in Figure 3 (a). The temperature values of the test room surfaces are measured with thirty-

four T type thermocouples that has been calibrated with a 0.4% precision. Five thermocouples are placed on each 

side walls and ceiling surfaces, and nine on the radiant floor of the test room. The configuration of thermocouples 

is shown in Figure 3 (b). The temperature measurements using the proposed thermocouple configuration 

demonstrate homogeneous temperature distribution. The constant and homogeneous temperature distribution 

enables the accurate radiant heat transfer calculations. The air temperature measurements are carried out using two 

thermocouples located at two different heights, 110 cm and 140 cm. The emissivity of the test room surfaces is 

evaluated using thermocouples and infrared thermal camera.   

Two calibrated PT100 type sensors are used to measure the supply water inlet and outlet temperatures. 

The experimental setup consists of two different heating circuits. The primary circuit is comprised of a heating 

tank, pump and a heat exchanger where the water circulates between the heating tank and the heat exchanger. The 

secondary circuit is in charge of heating the water that heats the test room. The flow rate of the water is measured 

using the flowmeter with 0.1% precision, and the desired amount of water is delivered to the chamber through the 

heat exchanger. The inlet and outlet supply water temperatures to the heating circuit are measured just before and 

after the water enters and leaves the circuit, respectively. Thus, the rate of transferred heat to the test chamber is 

obtained.  
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(a) 

 

(b) 

Figure 2.  Settlement of the setup in the laboratory (a) and sketch of the test chamber alongside hot water 

preparation equipment (b) 

 1. Heat storage water tank 2. Heat exchanger 3. Valve 4. Pump 5. Water supplier 6. Flow meter 7. PT100-hot line  8. PT100-

cold line 9. Pipes 10. Test chamber 11. PLC
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                     (a)         (b) 

Figure 3. Pattern of the pipe arrangement in the test room (a), the thermocouple configurations along the side 

walls, ceiling and the floor (b) 

The experiments are carried out at three different supply water mass flow rates of 0.056 kg/s, 0.090 kg/s, 

and 0.125 kg/s and six different supply water temperatures from 30 °C to 55 °C, by 5 °C temperature intervals. 

Hence, the calculations are conducted under different heating loads. The measured data are recorded at every 5 

minutes on PC using a PLC, and the ultimate measurements are acquired after the steady state is reached. It shoul 

be noted that throughout the experiments this has taken approximately 8-9 hours.  

CALCULATION METHODOLOGY OF THE HEAT TRANSFER COEFFICIENTS 

In this section, the calculation procedure of heat transfer characteristics for the radiant floor heating 

system is given. The total heat transferred from supply  water to the test chamber is calculated according to Eq. 

(1) in steady state condition. The temperature difference is determined by measuring the difference between the 

supply water inlet and outlet temperature to the circuit.  

                                                                 (1) 

The total heat transferred to the room can be considered as the summation of the heat transferred via 

radiation and convection as seen in Eq. (2).   

                                                              t r cQ Q Q= +                                                              (2) 

The total heat transfer coefficient between the radiant floor surface and test chamber can be obtained 

using Eq. (3).  

                                                           
( )

t
t

f op

Q
h

A T T
=

−
           (3) 

The calculation of radiant heat transfer characteristics is based on the determination of reference 

temperature named average unheated surface temperature (AUST) and it is given in Eq. (4). It has been commonly 

used by the researchers [9,14,15] in the literature.  

                                                   ( )44
1

n

s j jj
AUST F T−=

=                                    (4) 
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To obtain the radiation interchange factor and afterward to calculate radiant heat flux, Eq.(5) ang Eq.(6) 

are employed, respectively, and this calculation procedure along with its details exists in relavant publications 

[9,14,15]. 
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                                                        ( )4 4

1

n
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j
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=

= −                                   (6) 

3-D Matlab code is utilized to find out the radiative heat transfer rate between the radiant floor and other 

surfaces. Whilst the program is being operated of which interface is illustrated in Figure 4, all surface temperatures, 

surface dimensions, and surface emissivity values (Ɛ) are input to the program. The value of emissivities 

considered in the analyses is 0.9.  It should also be noted that data conveyed to the program is recurred for each 

experimental case study.   

 

Figure 4. Investigated model in radiation heat transfer software  

The radiant heat transfer coefficient (ℎ𝑟) between heated floor and its surroundings is determined using 

Eq. (7).  

                                                       

( )4 4
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n

s j s j

j

r

f

F T T

h
AUST T

  −

=

−

=
−


          (7) 

The convective heat flux can be calculated via Eq. (8). According to equation, radiant heat flux is extracted 

from the total heat flux from the floor to find the convective heat flux.  

     c t rq q q= +    (8) 
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With respect to all above mentioned equations, convective heat transfer coefficient between the radiant 

floor and air can be ascertained using Eq. (9). In this equation, as suggested by Cholewa et al. [14] and Causone 

et al. [15] for a standing person, air temperature at the height of 1.1 m, from the floor is selected as reference 

temperature. 

      
c

c

f a

q
h

T T
=

−
          (9) 

Rayleigh numbers are calculated by Eq. (10), where L represents the characteristic length, 𝛽 (K-1) is the 

thermal expansion coefficient and ʋ (m2 s⁄ )  is the kinematic viscosity. In equation, g (m s2⁄ ) presents the 

gravitational constant and Pr is the Prandtl number. It should be noted that throughout the evaluations, the range 

of Rayleigh numbers have varied within the range of 2.4 x 107 to 8.3 x 107.  

     ( )
3

2f a

L
Ra g T T Pr



 
= − 
 

                   (10) 

Uncertainty analysis 

While analyzing the experimental results, knowing the range of errors that affects the precision of outputs 

is necessary. In experimental works, errors may arise from two main sources as errors caused by component of 

experimental setup and measurement tools, and human factors. In order to define the experimental uncertainties, 

a method proposed by Kline and McClintock [30] has implemented. In Eq. (11) U is the measured parameter and 

is a function of independent variables as x1, x2, x3,….xn.  

                                                                    ( )1 2 3, , , ..., nU U x x x x=         (11) 

 The uncertainties of each independent variables that affect the U parameter is given as w1, w2, w3,…,wn. 

Afterward, the uncertainties of experimental results can be calculated based on the following equation (Eq. 12). 

                                 

1/2
2 22 2

1 2 3

1 2 3

...U n

n

U U U U
w w w w w

x x x x

          
 =  + + + +      
            

       (12) 

The uncertainty values of examined parameters which are radiative, convective, and total heat fluxes, and 

radiation, convection, and total heat transfer coefficients are found and demonstrated in Table (1). 

 

Table 1. Uncertainties of experimental results 

Parameters Uncertainty 

qtotal ± %1.3 

qrad ± %0.2 

qcon ± %3.7 

htotal ± %5.8 

hrad ± %4.1 

hcon ± %11.5 
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RESULTS AND DISCUSSION 

Radiant floor systems enable enhanced thermal comfort compared to tradiational HVAC systems due to 

advances in suitable surface temperature and air movement which allows to decrease draught discomfort and bring 

about better homogenous temperature distribution within the living environment. Contrary to radiant floor cooling 

systems, free convection over radiant heated floor plays an important role in heating applications for radiant 

floor.In these systems, it is presumable to have lower fluid temperatures under winter conditions in order to 

correspond thermal capacity. Thus, energy efficiency of the heat supplying devices and decrease in energy 

consumption are obtained finally.  

In relation to the compatibility issue with pioneer studies in the literature, operative temperature for total 

heat transfer coefficient (ht) and air temperature for convective heat transfer coefficient (hc) values at the height of 

1.1 m from the floor (as suggested by Causone et al. [15] for a standing person) are selected. To use as a source of 

comparison regarding the relevant literature, for convective heat transfer coefficient (hc), as used by Awbi and 

Hatton [31], air temperature at 1.4 m from the floor is also considered in this work. Additionally, in radiative heat 

transfer calculations, average unheated surface temperature (AUST) has been employed [32]. These information 

is summed up in Table 2.  According to Chicote et al. [13],evaluating the total heat transfer mechanisms, the 

operative temperature cannot be selected as only reference, and the paper proposes radiant and convective terms 

to be separately assesessed. From this point of view, novel equations corresponding to each phenomenon have 

been derived. 

 

Table 2. Reference temperatures [15] 

Heat transfer 

coefficient 

Reference temperature 

(Tref) 

Temperature 

difference 

hc Ta1.1, Ta1.4 Tref-Tf 

hr AUST Tref-Tf 

ht Top1.4 Tref-Tf 

Results acquired via real-size experimental setups such as the experimental chamber, and its supply water 

preparation equipment in the present investigation, provide most dependable outcomes. From this point of view, 

different case studies pertaining to a radiant floor heating system were performed to estimate its heat transfer 

characteristics. Heat transfer characteristics involve radiative, convective, and total heat fluxes, as well as, 

radiative, convective, and total heat transfer coefficients arising through the heated radiant floor. Throughout the 

experiments, six different supply water temperatures spanning between 30oC and 55 oC, and three different supply 

water flow rates (0.056, 0.090, and 0.125 kg/s) have been applied. It should also be noted that the whole 

measurements were ended, when all the measurements reached steady state conditions, and these ultimate values 

were taken into account in calculations related to heat transfer characteristics.  

Details of total 18 set of measurements, along with calculations pertaining each of them are observed in 

Table 3 (a-c), while each option belongs to a different water flow rate performed in the experiments. It can be 

noticed from the results that as the supply water temperature increases, heat outputs also increase with regard to 

radiative, convective, and total outputs. Figures 6 (a-c) illustrate the change of all heat outputs with corresponding 

temperature difference values. As expected, it is clear that with increasing temperature differences, thermal outputs 

result also in a raise. However, since radiation and convection have completely diverse phenomena, they both 

follow a different trend line. Additionally, it can be noticed that radiative heat outputs points follow a more steady 

distribution, whereas, convective output points follow a slightly more scattered distribution. This arises from the 

fact that radiative heat transfer calculations are conducted via theoretical calculations based on the net – radiosity 

method, and thus unavoidable experimental errors are involved in convective, and total heat transfer calculations.  

To validate the heat output results of the present work, the total output correlation presented in EN 1264-

2 [33], and the study of Cholewa et al. [14] which contains outcomes pertaining to a radiant floor heating, were 

chosen as benchmarks. Figures 7 (a-c) indicate the comparison of the radiative, convective, and total heat output 

results of the present investigation with that of mentioned in the previous sentence. It is evident from Figure 7a 

that the radiative heat output data of referenced study is almost follow the same trend line with that of this study 
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and thus it can be noted that two investigations are consistent with each other, in terms of radiative heat transfer. 

Figure 7 (b) reveals the comparison of the convective results of the current study with relevant literature. As stated 

in the previous paragraph regarding reason for the slightly more scattered dispersion of convective data, the same 

behavior of this phenomenon can also be met in this figure. As it is indicated before, determination of convective 

heat transfer is generally difficult among all other heat transfer mechanisms while radiative and convective heat 

transfers can be determined via numerical and analytical methods. The reason of this behavior has been justified 

in the previous paragraph. Figure 7 (c) gives the comparison among three different studies in terms of total heat 

outputs, including the present investigation. It can be seen through the figure that three investigations keep track 

of each other, while the results of EN 1264-2 [33] are slightly higher than the  the results of current investigation 

which means higher energy consumption. It is also noticed that the less scattered dispersion of radiative data, 

which composes outweighing portion of overall heat transfer through the heated floor and also presented in Figure 

7 (a), turns total heat output data in Figure 7 (c) into a more straight dispersion. 

Furthermore, through the data acquired via this investigation, new correlations regarding radiative, 

convective, and total heat flux density from a radiant heated floor have been derived and are presented by Eqs. 

(13, 14, and 15), respectively. Figures 8 (a-c) illustrate the deviation of gained experimental data from those of 

obtained through correlations. 

                                                        ( )
1.04

5.26r fq T AUST= −         (13) 

                                                            ( )
1.02

3.3c f aq T T= −                                 (14) 

                                                            ( )
1.03

9.55t f opq T T= −                                                   (15) 

It is seen that when the experimental findings are compared with those obtained via derived radiative, convective, 

and total heat flux correlations, the R2 values of 0.99, 0.88, and 0.97 are attained, respectively. Thus it is deduced 

that the experiments have been performed within an acceptable accuracy. As it can be seen from Figure 8 (b) some 

of the data fall out of the deviation band due to uncertainty issue because it is hard to measure very small 

differences between inlet and outlet supply water temperatures. Beside this, all of the measured data are within the 

deviation band of ±20% at high temperature differences, as shown in Figure 8 (b). 

Heat transfer coefficients are key parameters in the designing, dimensioning, and thermal capacity 

determination of radiant heating and cooling systems. In case the relevant literature is rigorously reviewed, one 

can observe that rather than the radiative heat transfer coefficient which corresponds to radiation phenomenon, 

and is calculated by means of a theoretical method expressed in the previous paragraphs, the determinant parameter 

which also influence total heat transfer coefficient and thus total heat output is the convective heat transfer 

coefficient. Figures 9 (a-c) show the change of convective heat transfer coefficients attained via this study and 

comparison with works through which correlations have been derived. It can clearly be understood from the figures 

that the correlations found by Awbi and Hatton [31], and Min et al. [32] slightly overestimate convective heat 

transfer coefficients with the average proportional distances of 15%, and 26% to the present investigation. Along 

with the unavoidable experimental measurement errors which may explain the deviations between the studies 

mentioned, differences in heated surface temperature range, whether any other heated or cooled surface within the 

chamber exist or not, conductive heat losses and gains considered or not, may account for the differences in Figures 

9 (a-c). Furthermore, compared to the results pertaining to referenced studies seen in these figures that seem to 

have a steady dispersion, the points relating to the present investigation appear to draw a relatively more scattered 

dispersion. This is due to the fact that rather than the radiative heat transfer characteristic determined via theoretical 

methods, experimental errors are included in convective heat transfer calculations.  

 

 

 



Journal of Thermal Engineering, Research Article, Vol. 6, No. 5, pp. 751-771, October, 2020 

761 
 

Table 3. Measured values and calculated heat transfer characteristics in case the mass 

�̇�= 0.056 kg/s 

  Measured values   Calculated values 

Test  

descriptor 

Ts  

(oC) Tw Tc Tf Ta1.1 Ta1.4 AUST qr qc qt hc hr ht 

1 30 24.1 24.7 27.4 24.7 24.7 24.2 20.1 11.9 32.0 4.4 6.3 11.9 

2 35 24.7 25.7 31.1 25.7 25.6 24.9 34.9 14.8 49.8 2.8 5.6 9.2 

3 40 24.9 26.4 34.2 26.4 26.4 25.2 50.2 26.0 76.2 3.4 5.6 9.8 

4 45 27.4 29.0 38.2 29.1 29.1 27.6 61.0 22.7 83.7 2.5 5.8 9.3 

5 50 27.4 29.7 40.9 29.6 29.5 27.9 76.6 37.1 113.7 3.3 5.9 10.0 

6 55 31.2 32.2 44.6 32.1 32.0 31.3 80.6 48.4 129.0 3.9 6.1 10.3 

  𝒎 ̇ =  0.125 kg/s 

  Measured values   Calculated values 

Test 

descriptor 

Ts 

(oC) Tw Tc Tf Ta1.1 Ta1.4 AUST qr qc qt hc hr ht 

1 30 24.7 25.1 28.18 25.21 25.15 24.8 18.57 12.7 31.3 4.3 5.42 10.6 

2 35 26 26.7 31.69 26.75 26.7 26.1 31.18 15.8 46.99 3.2 5.54 9.51 

3 40 26 27.5 34.81 27.43 27.32 26.3 48.11 26.7 74.84 3.62 5.64 10.1 

4 45 27.7 29.5 38.4 29.41 29.31 28.1 59.68 35.4 95.1 3.94 5.8 10.6 

5 50 28.4 30.6 41.51 30.5 30.34 28.8 74.68 43.8 118.5 3.98 5.89 10.8 

6 55 31 33.4 45.63 33.25 33.08 31.5 86.57 52 138.5 4.2 6.1 11.2 

�̇� =  0.090 kg/s                                                                                      

  Measured values   Calculated values 

Test 

descriptor 

Ts 

(oC) Tw Tc Tf Ta1.1 Ta1.4 AUST qr qc qt hc hr ht 

1 30 22.3 23.1 27.48 23.13 23.06 22.4 26.37 13.3 39.7 3.02 5.24 9.13 

2 35 24.1 25.2 31.15 25.25 25.19 24.4 36.85 13.8 50.64 2.31 5.42 8.57 

3 40 26.1 27.4 34.72 27.42 27.35 26.3 47.5 26.9 74.43 3.66 5.64 10.2 

4 45 27.6 29.3 38.27 29.26 29.22 27.9 59.91 35.6 95.47 3.93 5.79 10.6 

5 50 28.3 30.5 41.41 30.39 30.31 28.8 74.67 39.8 114.4 3.58 5.9 10.4 

6 55 29.7 32.2 44.77 32.09 32.02 30.3 87.64 49.9 137.5 3.91 6.05 10.8 
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         (c) 

Figure 6. Alteration of radiative, convective, and total heat flux values through the examined radiant floor for 

𝑚 ̇ = 0.056 kg/s (a), �̇� = 0.125 kg/s (b) and �̇� = 0.090 kg/s (c) 
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             (c) 

Figure 7. Variation of (a) radiative, (b) convective and (c) total heat flux values through the examined radiant 

floor with temperature difference and comparison with relevant literature  
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Figure 8. Comparison of the outcomes of the correlations derived for (a) adiative, (b) convective, and (c) total 

heat fluxes with those obtained from experiments 
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          (c) 

Figure 9. Convective heat transfer coefficient’s variation with the temperature difference between the radiant 

heated floor surface and air a) �̇� = 0.125 kg/s b) �̇� = 0.056 kg/s c) �̇� = 0.090 kg/s 
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At three water flow rate values, Figures 10 (a-c) demonstrate the variation of radiative, convective, and 

total heat transfer coefficients with corresponding temperature difference values found using the reference 

temperature noted in the literature. It is obvious that just like abovementioned while remarking on figures 

presenting heat outputs, radiative heat transfer coefficients draw a more regular trend line, on the other hand, 

convective and thus total heat transfer coefficients have had a relatively dispersed behavior.  

Table 4 is also a comparison source for the results of this study with the literature values with regard to 

radiative and total heat transfer coefficients. Moreover, as can be noticed from Figures 10 (a-c), the radiative heat 

transfer coefficient does not consist in the variation of water flow rate passing through the pipes composing floor 

heating panel, since, in all three water flow rate options performed, identical supply water temperatures (Ts= 30-

55oC) were applied, and eventually when the measurement points within the chamber reached the steady state, 

roughly the same radiative heat transfer equality was established. A subtle rise is observed in radiative heat transfer 

coefficients in Figures 10 (a-c), and this is due to gradual growth of supply water temperature in experimental case 

studies. In the literature, related to radiative heat transfer coefficients, Cholewa et al. [14], Olesen et al. [34], and 

ASHRAE [35] recommend the values of 5.6 W/m2K, 5.5 W/m2K, and the interval (5.3-6.0 W/m2K), respectively, 

while results of this study lies within the range 5.2 -6.3 W/m2K and recommendation is 5.7 W/m2K. This shows 

that data obtained via the current investigation are compatible with relevant literature in terms of radiative heat 

transfer coefficients. With increasing values of radiant floor the radiative heat transfer coefficient augments 

simultaneously. This because of the use low temperature  of heating medium to supply radiant floor. Slight 

differences may be accounted for by differences in dimensions of analyzed chambers which indispensably cause 

change in view factors in radiation calculations, differences in surface emissivity values, and diversities in radiant 

panel dimensions utilized.  

 

Table 4. Comparison of the current work with relevant literature in terms of heat transfer coefficients 

References ht hc hr 

EN 1264 – 5 [36] 10.8 - - 

Cholewa et al.* [14] 8.5 - 11.1 2.2 - 3.5 5.6 

Min et al.** [32] - 3.0 - 4.8 - 

Awbi and Hatton ** [31] - 2.7 - 4.3 - 

Olesen et al. [37] - - 5.5 

ASHRAE [35] - 3.0 - 4.8 5.3 - 6.0 

Present study 8.6 - 11.9 2.3 - 4.4 5.2 - 6.3 

Recommendation of this study 10.2 3.5 5.7 

*ht results are obtained according to the reference temperatures of Top1.1 and Top0.6 

**Results of correlations derived by corresponding researchers 

 

In addition to above mentioned and interpreted heat transfer characteristic data, throughout the 18 

experimental case studies applied within the chamber, the proportions of radiation and convection comprising total 

heat transfer through the heated floor have been calculated and demonstrated in Figure 11. From the data used to 

illustrate the figure, it is understood that nearly in all bars symbolizing each case study, a similar behavior of 

phenomena making up overall heat transfer is observed. 
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Figure 10. Change of radiative. convective. and total heat transfer coefficients with corresponding temperature 

differences for (�̇� = 0.056 kg/s (a),  �̇� = 0.125 kg/s (b) and �̇� = 0.090 kg/s (c) 
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Figure 11. Proportion of radiation and convection in each case study 

CONCLUSION 

This paper mainly deals with an experimental approximation on the determination of heat transfer 

characteristics encompassing heat transfer mechanisms. Investigated hydronic radiant heated floor system has a 

real-sized test facility and indicates that some international standards might need reconsideration on the values of 

design parameters due to the advances in the technology. In order to fill this gap in open sources, working condition 

interval have been widened, and the experiments have been performed within extended supply water temperature 

and flow rate ranges of  30 oC to 55 oC and 0.056 kg/s to 0.125 kg/s, respectively.  

The deductions of this investigation can be summarized as follows; 

• It can be noticed from the results that the radiative, convective, and total outputs increase with increasing 

supply water temperature during the experiments, as expected.  

• b. Additionally, unlike most of other studies having only a combined total heat flux correlation concerning 

both convection and radiation in a single form, the current one has derived new empirical correlations for 

convective, radiative, and total heat fluxes of which deviation bands remain within ±20%, ±5%, and 

±15%, respectively.   

• c. According to test results, the total and radiative heat transfer coefficients for heated radiant floor are 

found to be within the ranges of 8.6-11.9 W/m2K and 5.2-6.3 W/m2K, respectively. Thus, it is 

recommended that the average total and radiative heat transfer coefficients are 10.2 W/m2K and 5.7 

W/m2K, respectively. It is seen that the total heat transfer coefficient recommendation of this study is 

lower than that of EN 1264-5 [36] by approximately 6% which is commonly used.  

• d. Convective heat transfer coefficients for heated radiant floor via this study are compared with well-

known works in the literature and it is observed that similar trendlines are drawn. Nevertheless, the 

outcomes are found to be slightly lower than the common literature that is in the interval of 2.3-4.4 W/m2K 

with the recommended average value of 3.5 W/m2K. 

• e. The proportions of radiation and convection heat transfer through the radiant heated floor in total heat 

transfer have drawn the same tendency within entire experimental case studies, and the mean rate of 

radiation has been calculated as 60%. 
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NOMENCLATURE  

A Surface area [m2] 

AUST Average unheated surface temperature [°C] 

cp  Specific heat (J/kgK) 

Fs-j View factor between the radiant surface and j surfaces [-] 

𝐹ɛs−j  Radiation interchange factor [-] 

hc Convective heat transfer coefficient [W/m2K] 

hr Radiative heat transfer coefficient [W/m2K] 

ht Total heat transfer coefficient [W/m2K] 

�̇�w Mass flow rate [kg/s] 

Qc Convective heat transfer [W] 

Qr Radiative heat transfer [W] 

qc Convective heat flux [W/m2] 

qr Radiative heat flux [W/m2] 

qt Total heat flux [W/m2] 

qc, exp Convective heat flux-experimental [W/m2] 

qc, corr Convective heat flux-correlation  [W/m2] 

qt, exp Total heat flux-experimental  [W/m2] 

qt, corr Total heat flux-correlation  [W/m2] 

qr, exp Convective heat flux-experimental [W/m2] 

qr, corr Convective heat flux-correlation  [W/m2] 

Ta  Air temperature [°C] 

Top Operative temperature [°C] 

Tf Heated floor temperature [°C] 

Ts Supply water temperature [°C] 

Tc Ceiling temperature [°C] 

Tw Wall temperature [°C] 

ΔT Temperature difference between radiant heated floor and reference temperature [°C] 

Greek symbols 

ɛ Surface emissivity [-] 

σ Stefan–Boltzmann constant [W/m2K4]  
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