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ABSTRACT 

A range of experiments was conducted to measure the heat transfer characteristics of titanium 

oxide/deionized water nanofluid (NF) inside a steel-made Pyrex annular system. A set of experiments was 

designed and performed at inlet temperature (IT) of the NF (333 K-363 K), the applied heat flux (AHF) (4.98 

kW/m2 to 112 kW/m2), 1988 < Re < 13,588 and dispersion concentration of wt.%=0.05 to wt.%=0.15) on the 

average heat transfer coefficient (HTC) and boiling section’s average pressure drop (PD). It was demonstrated 

that the increase in the volume flow and the AHF can increase the HTC while increasing the weight concentration 

of the NF, initially increased the HTC such that the maximum enhancement in the HTC was 35.7% at wt.%=0.15 

and Re=13500, however, over the time, the HTC of the NF decreased. The reduction in HTC was attributed to the 

formation of continual sedimentation on the boiling surface after 1000 minutes of the operation. The IT of the NF 

slightly increased the HTC, which was due to the enhancement in the thermal and physical properties such as 

thermal conductivity. The maximum enhancement in HTC due to increase of the IT from 333 K to 363 K was 

4.2% at wt.%=0.15 and Re=13500. The bubble formation was also found to be a strong function of the applied 

HF such that with increasing the HF, the rate of the bubble formation increased, which was also the reason behind 

the augmentation in the HTC at larger AHFs. Also, the PD was augmented due to the increase in the velocity and 

flow and also weight concentration of NF. The highest value measured for PD was 9 kPa recorded at a weight 

fraction of 0.15 and Re=13500, which was 28% larger than that of measured for the base fluid. It was also found 

that a continual fouling layer of nanoparticles (NPs) was formed on the boiling surface, which induced a thermal 

resistance against the boiling heat transfer. The fouling formation reduced the HTC of the NF such that the 

maximum reduction in the HTC was 21.6% after 1000 minutes of the operation of the heater.  

 

Keywords: Annular Heat Exchanger, Flow Boiling, Titanium Oxide/Deionized Water Nanofluid, Thermal 

Performance, Bubble Formation 

 

INTRODUCTION 

Boiling heat transfer and bubble formation are wonderful phenomena with lots of complex mechanisms and 

sub-phenomena, which are most of the time unknown and need further research [1, 2]. Generally, boiling occurs on 

the boundary between the liquid and vapour on which the pressure of liquid equals to its saturation pressure and the 

temperature is the main external parameter which causes the boiling phenomenon to occur [1, 3-6]. The boiling 

mechanism is associated with the generation and movement of small bubbles which intensify the heat transfer between 

the liquid and vapour phases [7, 8]. Hence, boiling heat transfer is a useful mechanism for cooling systems at high 

temperatures with large heat flux (HF) on the surface [2, 9-12]. Despite its promising thermal performance, some 

issues need to be addressed such as 1) The thermo-physical properties of the coolants such as heat capacity and thermal 

conductivity are normally low, which result in a reduction in the system performance. In the conventional low HF 

boiling systems mixed with natural or forced convective heat transfer, the forced convective HTC is low, which results 

in the decrease in the cooling and/or heating performance of the system [13-21]. This can affect the design of the heat 

exchangers (HEXs) as well [22-24]. 

To overcome the aforementioned challenges, nanofluids (NFs) were developed and introduced by Aragon 

National Laboratory (ANL) which have better thermal features compared to conventional liquids [6, 25-28]. Since the 

development of the NF, extensive works were conducted to implement NFs in the HEXs and cooling cycles. Recently, 

Han et al. [29] found that the presence of the nanoparticles within the conventional coolants can enhance the convective 

HTC within the HEX. In a study conducted by Ali et al. [30], thermal performance of the titanium oxide/water NF in 

a car radiator, heat sink and other thermal engineering systems was reviewed and it was shown that NF can promote 

the thermal conductivity of the liquid. Also, augmentation in the mean pressure drop (PD) was insignificant. Vakili et 
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al. [31] quantified the heat transfer coefficient (HTC) of titania NF and discovered a nonlinear equation between k and 

weight fraction of the NPs. Also, with increasing the mass flow rate of the flow, the HTC of the NF increased. Azmi 

et al. [32] assessed a system operating with titania and alumina and demonstrated that at 30ºC, alumina NF requires 

larger pumping power as it had larger viscosity. 

In contrast to the above studies, for the systems working in the two-phase flow, the presence of the 

nanoparticles can apply a thermal resistance which suppresses the heat transfer mechanisms on the surface. Apart from 

this issue, there are extensive studies in which it has been shown that HTC can be augmented due to the NPs [7, 9, 33-

39]. Hence, more investigations are still required to understand the mechanism of boiling in two-phase systems.  

The type of the HEX and more importantly the type of the NPs affect the flow behaviour and thermal 

engineering in single or two-phase flow [15, 34, 35, 38, 40-44]. Babu et al. [45] showed that hybrid NFs such as a 

mixture of copper and carbon nanotube can promote the performance of the NF [45]. Huang et al. [46] studied the 

performance of a hybrid nano-suspension made from carbon nanotube mixed with alumina particles and showed that 

the HTC of the system can be greatly improved which was largely due to the NPs in the system. Sarafraz et al. [35, 

37, 47] conducted a set of experiments on the flow boiling heat transfer of a group of metal oxides including copper 

oxide, alumina, titanium oxide, silica and noticed that the HTC was a transient parameter, which can be regulated by 

controlling the thermal fouling resistance. He noticed that the presence of the NPs within the liquid phase reduced the 

HTC value. The reduction was related to the thermal resistance induced by the deposition layer on the surface. Facing 

the above literature, in the present study, the thermal performance and the heat transfer characteristics of titanium oxide-

deionized water NF inside an annular HEX was investigated. Titanium oxide has some wonderful physical and thermal 

properties. Hence, here, this material was utilized in a two-phase flow to promote the boiling HTC of the system. A 

steel made cylindrical surface was used as a boiling surface inside an annular space, which provided conditions for 

assessing the flow boiling heat transfer of titanium oxide/deionized water. The behaviour of the system was evaluated 

at variable conditions such as variable velocity, concentration, AHF. The generation of the bubbles inside the base 

fluid was investigated as well.   

 

Experimental 

Test rig 

As depicted in Figure 1, the designed system included a piping system for circulating the NF, an annular 

module as a boiling set up, and all the measurement systems. To continuously circulate the flow, a gear pump with 

a standard flow accuracy of ±0.7% was used. A hall sensor effect flow meter equipped with an ultrasonic extra 

sensor with an average accuracy of 0.1% was employed to read the fluid flow. Two transducers were used to 

measure the pressure before and after the boiling section. Two simple k-type thermocouples were utilised to 

measure the fluid temperature at two locations close to the pressure transducers. The temperature reading from 

the thermocouples were inlet and outlet temperatures of the boiling section. To suppress temperature overshoot, 

the flow was quenched with an R134a thermostat system operating at 298 K. Also, 8 k-type Flexi thermocouples 

were placed around the circumference of the steel cylinder to symmetrically measure the profile of the 

temperature. Mean value of the temperature reading was considered as tth referred to as the temperature of the 

thermocouple. Also, the average of the inlet reading and the outlet reading for the k-type thermocouples was 

considered as a flow temperature. The main source of thermal energy applied to the cylinder was generated with 

a boron-nitride rigid heater. Electrical characteristics of the circuit of the element were measured with a multimeter 

and the power source was a sinusoidal Autotransformer. Figure 2 illustrates the specification of the designed HEX. 
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Figure 1. Illustration of the system used for quantifying the HTC of the NF adapted from literature [48]. 

 

 
 

Figure 2. Detailed specifications of the annular HEX similar to the concept developed in the literature [49]. 

 

Data reduction  

The HTC value was quantified using the following equation: 

 

𝛼 =
𝜌. 𝑣. 𝑐𝑝 . (𝑇𝑜 − 𝑇𝑖𝑛)

(𝑇𝑠 − 𝑇𝑓)
 

(1) 

 

Here, 𝜌 is density, 𝜈 is the liquid volume of NF cooling the surface, 𝑐𝑝 is the heat capacity, T is the reading value for 

the temperature, while two abbreviations of in-out stand for measured temperatures before and after the boiling section. 

“f” stands for the film as discussed above and “s” shows the calculated average surface temperature. Notably, the HTC 

was measured based on the volumetric flow rate, however, for better understanding and to provide a condition for a 

back-to-back comparison, the mass flow rate was used on the figure legends.  

 To calculate Ts, equation 2 was used: 

 

𝑇𝑠 = 𝑇𝑡ℎ − 𝑞".
S𝑔𝑎𝑝
𝑘

 

 

(2) 

HF is shown with q” and thermal conductivity is shown with k, Sgap is the small gap created due to the machining 

between the actual perforation for the thermo-well and the external boiling surface (=0.0017 m). Tth is the value of the 
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temperature reading from each k-type thermocouple close to the surface. The HF was calculated using equation 3 

according to the Joule’s effect: 

 

𝑞" = 𝑉. 𝐼 (3) 

Using a multimeter, voltage (V) and current (I) of the heater was measured. The calculated value for the uncertainty 

was obtained with the famous correlation of Moffat as below [50]:   
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Here, ΔR is critical uncertainty of the whole experiments which depends on a different parameter such as x1, x2, x3, ..., 

xn, R = R (x1, x2, x3, ..., xn), and 
nxxxx  ...,,, 321

are the values for the uncertainty of each variable. This 

method is accurate for estimating the instrument errors and has been used in a variety of heat transfer research [11, 47, 

51-53]. It was found that the value for the uncertainty in HTC was ~9.8-11.1%, the corresponding uncertainty of HF 

was ~5.2%, and that of calculated for the PD was ~1%. The density, viscosity, thermal conductivity, heat capacity was 

computed with the correlations [54] as represented in Table 1. 

Table 1. Accurate equations for estimating the properties of the NF [41, 42, 55, 56]. 
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*nf: nanofluid, bf: base fluid, p: particle, m: mass 
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Nanofluid preparation 

Titanium oxide NPs (40-50 nm with mean reported purity of 99.9%) was received from USnano. To 

develop the NFs, the following procedure was followed [30]: 

1) A quantified mass of NPs was dispersed in the base fluid using an ultrasonic homogenizer (400 Watt, 40 kHz) 

for 10 minutes. The ultrasonic provided a uniform dispersion of the NPs and cracked any agglomeration and clusters 

within the NF. 

2) to promote longer stability, nonylphenol ethoxylate (NPE) was used at 0.1 vol.%.  

To check the stability of NF, time-settlement experiments were designed and performed. It was seen that the 

sonication guaranteed two-week stability of the NFs within the mass concentrations of 0.05-0.15%. NFs cannot be 

prepared at higher concentrations because the rate of the sedimentation was not controllable and NFs were unstable at 

wt.% >0.15.   

 

RESULTS AND DISCUSSION 

Heat flux 

In Figure 3, the Variation of the HTC with the AHF is illustrated. As perceived, with increasing the HF, 

the HTC increased. At wt.% of 0.05, at HF 13 kW/m2, the HTC was ~1230 W/m2. K (in forced convective regime), 

while at HF 110 kW/m2, the HTC reached ~6640 W/m2. K (in nucleate boiling regime). Bubbles formed on the 

heating surface are the main cause of the augmentation in the value of the HTC. Such bubbles can also make 

changes in the flow regime and increase the interaction between layers of the fluid. Also, there are two general 

mechanisms including forced convective and boiling heat transfer. On a boundary zone, the first layer of liquid is 

evaporated and form a very small bubble which normally cannot be seen without visualization equipment. This is 

the point of separation for both heat transfer mechanisms, which is called the Onset of Nucleate Boiling. The heat 

transfer region before this zone was the forced convective with low HTC value and the heat transfer domain after 

the point was nucleate boiling with high HTC. The HTC was larger in the nucleate region because of the presence 

of the bubbles which made a local turbulent regime close to the hot surface, which enhanced the HTC. Also, the 

micro-convective streams induced by the bubble movements contributed to the enhancement in the HTC. These 

nano-mechanisms intensified the average value of HTC. Also, the presence of the NPs further intensified the 

Brownian motion and thermo-phoresis phenomena and also thermal conductivity as well. The maximum HTC 

was 8710 W/m2. K measured at the largest HF and for wt.%=0.15. Notably, with increasing the mass 

concentrations of the NF, the HTC increased. This phenomenon can be attributed to the intensification of the 

Brownian motion as well. This was because, at a higher mass fraction of NPs, more NPs were available around 

the hot surface, hence thermal conductivity increases around the surface and better thermal transport occurred.   
 

 
 

Figure 3. Variation of the mean value of the HTC with the AHF value at different concentration profile of the 

NPs.   
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Fluid flow 

In Figure 4, HTC variation with the change in the flow is depicted. As perceived, with increasing the 

Reynolds number, the HTC increased and this behaviour was seen for all NFs and concentrations. The largest 

recorded enhancement was ~35% (concerning base fluid) and at in the Re > 3500 where the fluid is completely 

turbulent and at wt.% of 0.15 and Re= ~13500 [57].    

 
 

Figure 4. Dependence of the quantified HTC value on the flow rate of the NF. 

 

The inlet temperature of nanofluid 

In Figure 5, change in the HTC value with Reynolds number and also the inlet temperature (IT) of the 

fluid is depicted. As perceived, with increasing the IT, the HTC is augmented slightly. As seen, for a Reynolds 

number such as 2900 and wt.%=0.15, the HTC at 60 ºC (333 K) is 1788 W/m2. K, while it reached 1984 W/m2. 

K, increasing by ~10.9% at the IT of 90ºC (363 K) and for the same Reynolds number. This can be attributed to 

the enhancement in thermal conductivity. However, the influence of IT can also slightly increase the Brownian 

motion. This micro-scale mechanism intensified the thermal transport between the solid NPs and also the bulk of 

the base fluid. Notably, at a high IT, bubbles formed in a short time and the interactions between the bubbles were 

more effective in comparison with a lower IT. Hence, the IT of the NF had a slight influence on the HTC. The 

maximum enhancement in the HTC was recorded at 90 ºC (363 K), which was ~12 % compared with the IT of 

40ºC (313 K), which was not plotted in Fig. 5.  
 

 
 

Figure 5. Effect of Re number on the HTC value of the NF.   
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Pressure drop 

In Figure 6, the effect of the flow on the pressure drop (PD) value of the system. As shown, with 

increasing the flow rate, the PD value non-linearly increased. Also, the presence of the NPs increased the PD of 

the system. At Reynolds number of 1500, the PD value of water and NF at wt.% of 0.15 was 2.6 kPa and 3.6 kPa, 

while at Re=13500, the PD for water and NF reached 6.8 kPa and 9.6 kPa. It represents that the PD of the system 

is augmented. This augmentation can be attributed to the enhancement in the viscosity of the base fluid. The 

presence of the NPs added frictional forces into the layer-layer interfaces. It also increased the collision and the 

friction between particle-particle interfaces, which directly influenced the viscosity of the NF. Also, the PD of the 

system in the laminar region was the lowest and the highest PD value was obtained for the turbulent region.  

 
 

Figure 6. Effect of the Reynolds number on the PD value. 

 

Nanoparticle fouling 

Figure 7 represents the dependence of the HTC on the time of the experiments for NF at wt.% of 0.1 and 

HF of 45 kW/m2. As can be seen, within the first 60 minutes of the experiments, the HTC showed a steady 

behaviour with time, however, over a period of 1000 minutes of the operation, the HTC slightly decreased. This 

is because, with time, the rate of deposition for NPs increased such that a continual but a porous layer of NPs form 

on the heating surface. This layer not only filled the irregularities and micro-cavities of the surface but also created 

a thermal resistance on the heating surface. Such thermal resistance can decrease the HTC and in addition to this, 

the porous layer suppressed the bubble formation as well. Hence, with time, the thickness of the deposition 

increased and the bubble formation was deteriorated. That being said, the HTC decreased over time. The fouling 

thermal resistance (FTR) of the system at wt.%=0.15 reached > 0.06 m2. K/kW after 1000 minutes of experiments. 

As perceived, the reduction of heat transfer showed a rectilinear trend similar to the FTR. Notably, 1000 minutes 

of operation was a standard for investigating the fouling and transient experiments on sub-micron particles [10].  

 
 

Figure 7. Variation of the HTC and FTR with time for 1000 minutes of the operation. 

 

In Figure 8. The fouling resistance trend against time is depicted for different NFs. As perceived, the FTR 

parameter increased with time-spanning reaching a maximum value under an asymptotic trend. Also, with 
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increasing the concentration, the FTR of the system slightly increased. This is because, at larger mass 

concentrations, more particles deposited on the surface creating a thick sedimentation layer. The layer decreased 

the HTC by increasing the thermal resistance and also due to the suppression of the bubble formation. As 

mentioned before, the bubble formation was under the influence of surface characteristics, meaning that for a 

smooth surface, the bubble formation rate can be lower than that of observed for a rough and surfaces with 

irregularities. Hence, with an increase in the mass concentrations of NF, the bubble formation decreased over time 

resulting in the reduction in the HTC of the system. Noticeably, at first minutes of the experiments, bubble 

formation hindered the formation of deposition on the surface, however, with time, a small layer of particle formed 

on the surface, which increased the stick-ability of the surface. Therefore, more NPs attached to the fouling layer, 

which increased the FTR. Such fouling layer, due to the porosity and the capture of vapour in the porous layer, 

decreased the conductivity of the surface as well. Hence, HTC decreased with time. The maximum FTR of the 

system was 0.053. 0.058 and 0.064 m2. K/kW for wt.%=0.05, 0.1 and 0.15, respectively.  

 
 

Figure 8. Variation of the FTR with time for different NFs.   

 

Figure 9a represents a comparison chart between the resistance values extracted from the literature and 

those calculated from the experiments [58]. As perceived, the calculated data are in a reasonable agreement with 

those of data extracted from the literature within the deviation of ±20%. This was because the comparison was 

made between the fouling resistance measured in the NF and the FTR in the micro-fluids. Hence, due to the 

significant difference between the micro-fluids and NFs, the thermal fouling resistance was also different. Please 

note that the thickness of the fouling for the micro-fluids was larger than that of observed for the NFs. As can also 

be seen in Fig. 9b, results of the comparison between the HTC measured for water and the HTC calculated with 

the Chen model [59] showed that the experimental data were in a good agreement with Chen model within the 

deviation of ±4% and ±7%, respectively. Therefore, FTR obtained with the experiments and also the HTC 

measured with the test rig are reliable.   

  

(a) (b) 
 

Figure 9. (a) The comparison chart of the reported FTR and those measured by the experiments and (b) the 

measured HTC against those of calculated with Chen correlation.   
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Figure 10 represents the boiling surface before and after 300 and 1000 minutes of the boiling tests with 

NF at wt.%=0.15. As can be seen, the roughness of the boiling surface vanished over time and a porous layer 

formed on the surface. However, for the clean surface, the roughness can provide sufficient extended area for the 

bubbles to form, grow and detach. Overall, titanium oxide/deionized water showed a great thermal performance 

in the forced convective heat transfer domain, however, it did not provide plausible heat transfer characteristics 

over the extended operating time due to the massive deposition of NPs on the surface. The images have been taken 

with Digi-scope IDP 200X.  

 

   
(a) clean surface (b) after 300 min (c) after 1000 min 

 

Figure 10. The visualization of the surface before and after the boiling experiments with NFs. 

 

Bubble interaction 

In Figure 11, bubble formation and the effect of the AHF on the rate of formation is depicted. As shown, 

with increasing the AHF, the mechanism for the generation of the bubble is somehow fortified, and due to the 

enhanced evaporation, bigger bubbles are seen. At HF 25 kW/m2, the bubbles were relatively small in comparison 

with other AHFs. However, with increasing the HF, layers of fluid become agitated and more local movements 

were observed close to the heating surface. As a result of such movements, bubbles were merged and the size of 

the bubbles become larger. Also, as a result of such movements, some micro-convective streams are formed which 

locally increase the HTC value. Thus, at higher HFs, larger bubbles, higher movements and larger HTC was 

observed. Also, the mean bubble size for the case of NF was relatively larger than those measured for the pure 

water. This was because the presence of the NPs increases the bubble detaching time resulting in the augmentation 

in the mean residence time recorded for each bubble on the heating surface. Hence, bubbles have more time to 

grow on the surface, which results in the production of the larger bubbles. Also, NPs can change the size of the 

irregularities, which in turn creates larger bubbles at the onset of nucleate boiling. Hence, larger bubbles were 

seen for the case of NFs.  

 
 

Figure 11. Bubble formation of the NF at various HFs. 

 

CONCLUDING REMARKS  

Following concluding remarks were obtained by assessing the experimental results: 

(1) HF and flow rate of NF enhanced the mean value of the HTC. It was perceived that amount of augmentation 

in HTC pertaining to HF was larger than that does record for the other parameters. Two pivotal heat transfer 

mechanisms of forced convective and nucleate boiling were found as the dominant governing heat transfer 

mode.  

(2) The presence of titanium oxide NPs enhanced HTC. This was justified based on the enhancement in micro- 

and nano-scale phenomena such as random Brownian motion and also a surface-liquid thermophoresis effect. 
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Also, the augmentation of the thermal conductivity was another major parameter for enhancing the HTC value. 

The maximum enhancement in the HTC was 34% at wt.% of 0.15 and the calculated Reynolds number of 

~13500.  

(3) The quantified PD was also augmented with increasing the wt.% of the NPs. The highest recorded PD was 9 

kPa at wt.%=0.15 and Re=13500, which was 28% larger than that of measured for the base fluid.  

(4) HTC and PD had a trade-off behaviour. Hence, more experiments are highly recommended to identify the 

operating conditions in which the PD is minimized, while the enhancement in HTC is maximized.   

(5) The formation of fouling on the heating surface over the 1000 minutes of experiments showed that the HTC of the 

NF may drop by 21.6% due to the thermal resistance induced by the fouling layer.   
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