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ABSTRACT 

The supercritical CO2 (s-CO2) power cycle has been taking into account as one of the most effective 

alternatives for energy conversion because of its higher efficiency and smaller compressor and turbine sizes for 

many years. A plenty number of parametric and experimental studies for the different type of s-CO2 cycles have 

been accomplished in the literature. In this paper, a performance analysis based on a power density criterion has 

been carried out for a simple s-CO2 Brayton power cycle. The parameters which are obtained from analyzes were 

compared with those of a power performance criterion that is shown that design parameters at maximum power 

density give a chance to smaller cycle components and more efficient s-CO2 Brayton power cycle. Due to loses in 

the cycle, the power and thermal efficiency will reduce by a certain amount, however, the maximum power density 

conditions will still give a better performance than at the maximum power output conditions. The analysis 

exemplified in this paper may provide a reference for the finding of optimal operating conditions and the design 

parameters for real s-CO2 Brayton power cycles. 
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INTRODUCTION 

The Brayton cycle based on supercritical carbon dioxide (s-CO2) as the working fluid is an innovative 

concept for converting thermal energy to electrical energy. There is a sufficiently long history of s-CO2 cycles. 

When open sources literature were examined the first application noticed, seems to be the patched half-

condensation CO2-Brayton cycle which belongs to the Sulzer brothers [1]. Although studies on this topic have not 

been continued adequately after this date, the main works that draw attention to these cycles have been studies of 

supercritical thermodynamic power cycles made by Feher in 1962 [2] and in 1968 [3]. It is widely known that, 

supercritical phase is a phase when an element properties between liquid and gas at critical temperature (Tc) and 

critical pressure (Pc). Fluids in the supercritical phase have liquid-like densities and act as a liquid solvent. As it is 

known, CO2 has high heat capacity with low viscosity and mass transfer property. Surface tension coefficients, 

viscosities are low and therefore the pumping energy is low. CO2 gas is not corrosive in the dry environment. It is 

not flammable, explosive or toxic and also is not harmful to the environment. The critical temperature for CO2 is 

304.3 K and the critical pressure is 7.38 MPa [4]. Benefits that will be reveal from successful research and 

development of the s-CO2 power conversion cycle will include, several heat sources including fossil fuel, nuclear 

and renewables such as nuclear energy, solar energy, geothermal energy, waste heat recovery and coal power plants 

[5–10]. Also, this technology will lead to lower capital costs and reduced water usage and most importantly lower 

emissions. Briefly, system is comprehensively feasible and worthy. The technology readiness can be divided into 

three parts. Mature components, less-mature components and system integration. Mature components contain 

electrical generation subsystems, control units and instrumentation. Less mature components contain turbine, 

heater etc. Lastly, system integration is needed to optimize the operating and design parameters and also systems 

start-up, shut-down, transient and part load operations of the system. 

Numerous studies have been carried out in different fields on s-CO2 power cycles. These studies consist 

of; thermodynamic cycle models and s-CO2 cycles on commercial or research-based tests [11–16]. In addition, 

studies on the real-time response of s-CO2 power cycles and the development of cycle control strategies [17–19], 

furthermore, research on turbo machines specially designed for s-CO2 flow and on air bearings and seals with 

turbo machine subcomponents [20–23], the work consists of studies on high speed electric motor technologies 

which is essential component for the s-CO2 cycles to be compact [24–28] and material investigations on the 

interaction of different materials with s-CO2 fluid under high temperature and pressure [29–32]. Apart from these 

studies, there is no doubt that one of the parameters that must be taken into consideration is the maximum power 
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density (MPD) when performing cycle optimization. There are many studies in the literature that have been done 

with MPD in cycle analysis [33–36]. Şahin et al. [37] defined the power density as the ratio of power to the specific 

volume in the cycle and obliquely added the effects of engine sizes to the analysis which leads to smaller and more 

efficient engines. Likewise, Gonca et al. [38] studied comprehensive analyses and comparisons for irreversible 

cycle engines and they examined effects of design parameters on MPD. Likewise, Chen et al. [39] investigated 

advantages and disadvantages of MPD design analysis to observe effects of some design parameters. And they 

concluded that MPD leads to a better efficiency at cycle analysis. Apart from prior studies, in this study, 

comprehensive comparison parameters which are obtained from analyzes were compared with those of a power 

performance criterion. It is shown that design parameters at maximum power density give a chance to smaller 

cycle components and more efficient s-CO2 Brayton power cycle. 

 

THERMODYNAMIC MODEL 

Schematic and T-s diagrams of closed loop ideal Brayton cycle are shown in figure 1. An isentropic 

compression occurs between 1 and 2 in a compressor, constant-pressure heat addition between 2 and 3 then 

isentropic expansion occurs between 3 and 4 in a turbine then it follows with a constant pressure heat rejection 

between 4 and 1 which finish the whole cycle.  
 

 

Figure 1. Schematic and T-s diagrams of a Brayton power cycle [4] 

The energy balance for a steady-state flow process of ideal Brayton cycle can be expressed as below: 

( ) ( ) ( )23 41 in out out in
q q w w h h− + − = −  (1) 

As known, heat transfer occurs to the working fluid and likewise from the working fluid are, 

respectively, 

( ) ( )23 3 2 3 2p
q h h c T T= − = −  (2a) 

and 

( ) ( )41 4 1 4 1p
q h h c T T= − = −  (2b) 

With regards to the cold air standard assumptions the thermal efficiency of the ideal Brayton cycle 

becomes: 
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While processes of 1-2 and 3-4 are isentropic, P2=P3 and P4=P1. Thus, 
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Substituting equation (4) into the equation (3) and then re-arranging becomes: 
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= −  (5) 

where rp is the pressure ratio and k is the specific heat ratio. Apart from above equations, MPD can be expressed 

as below and it can be used as work density instead of power density: 

= net

max

w
MPD

v
 (6) 

 

RESULTS AND DISCUSSION 

In the calculations, the constants are considered as, ambient temperature and pressure are 298 K and 100 

kPa, respectively. Compressor and turbine isentropic efficiencies are 0.90 and pressure drop at heat exchangers 

(ΔP) is 0.03 bar. Generally, increasing the pressure ratio of a Brayton cycle is the most effective way that increases 

the overall thermal efficiency which cause the cycle to approach the Carnot cycle. When Figure 2 is examined, it 

can be seen that MPD increases to a certain value with increasing rp and then begins to decrease when 

approximately rp is 9.286. Likewise, ηth and rbw of the s-CO2 cycle is also seen to increase with increasing rp When 

considering α is 2.5 and constant as figure 2, the cycle thermal efficiency is 24.83%, 25.28% and 25.47%, 

respectively, by increasing rp from 8.673 to 9.898 and 11. 

 

 

Figure 2. Variation of α on ηth, rbw and MPD with respect to rp 
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The turbine inlet temperature (TIT) is known to be limited by the thermal resistance limits of the turbine 

materials can withstand. Therefore, the temperature ratio must be within a certain range. When the temperature 

ratio is optimized, the efficiency of the cycle must also be considered. Figure 3 shows that when the pressure ratio 

is 7, there is an increase in MPD and thermal efficiency with increasing the temperature ratio from 2.5 to 3.5. In 

contrast to this situation, the rate of back work ratio decrease with the increase in the temperature ratio. While rp 

is 7 and constant, increasing α from 2.908 to 3.5 value, MPD increases 14.89 %. 

 

  

Figure 3. Effects of temperature ratio α on ηth, rbw and MPD  

It is seen that increasing the pressure ratio and temperature ratio increases the net work in the system if it 

is optimized by considering the temperature resistances of the turbine blades. Referring to figure 4, the pressure 

ratio is increased from 5 to 11 and also the temperature ratio increased from 2.5 to 3.5. While the temperature ratio 

is 2.5, the MPD is increased first by increasing the pressure ratio, and then decreased by a certain amount. 

Therefore, the pressure ratio should be optimized by taking into account the MPD. While the temperature ratios 

are 3 and 3.5, it is seen that the MPD increases by increasing the pressure ratio between 5 and 11. These increases 

seem to lead increases on wnet and MPD.  

 

 

Figure 4. Variation of MPD and wnet with respect to various α and rp 
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When optimizing the system, the pressure and temperature ratios need to be monitored in order to 

maximize the net work output and thermal efficiency. Figure 5 shows effect of increasing the temperature ratio 

and the pressure ratio on the thermal efficiency and MPD. An increase in thermal efficiency and an increase in 

MPD was observed with increasing temperature ratio. Similarly, thermal efficiency and MPD increase with 

increasing pressure ratio. The MPD reaches the highest value at the maximum pressure and maximum temperature 

ratios. The highest MPD will directly lead to lower machine dimensions which means low costs. 

 

 

Figure 5. Variation of MPD and ηth with respect to various α and rp 

 

As it is known, the ratio of the work to the turbine work used to operate the compressor is called the back 

work. The increase in compressor work reduces the net work of the system. Thus, one can say; the less the back 

work, the higher the system efficiency. Figure 6 shows a decrease in the back work ratio with increasing the 

temperature ratio. However, an increase in MPD was observed with increasing temperature ratio from 2.5 to 3.5. 

Similarly, increasing the pressure ratio has led to an increase in the MPD and rbw. 

 

 

Figure 6. Variation of MPD and rbw with respect to various α and rp 
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When Figure 7 is examined, an increase in wnet is observed with increasing temperature ratio. As the 

temperature ratio increases, the thermal efficiency also increases at the same pressure ratio line which is an 

expected result. In addition, increasing the pressure ratio has also increased the thermal efficiency. When the figure 

is examined in detail, it is seen that the thermal efficiency increases with increasing pressure ratio for temperature 

ratio 2.5 and it increases with increasing pressure ratios at other temperature ratios but there is an optimum 

compression ratio that makes the net work maximum. 

 

 

Figure 7. Variation of ηth and wnet respect to various α and rp 
 

CONCLUSION 

The parameters which are obtained from analyzes were compared with those of a power performance 

criterion. And it is shown that design parameters at maximum power density give a chance to smaller cycle 

components and more efficient s-CO2 Brayton power cycle. Major challenges of s-CO2 system can be expressed 

as, materials strength to improve reliability and cycle efficiency, identifying entire system design, developing oxy-

combustors for direct fired system, model control strategies and lastly integration of fossil energy heat sources to 

the cycles. Due to loses in the cycle, the power and thermal efficiency are reduced by a certain amount, however, 

the maximum power density condition still gives a better performance than the maximum power output conditions. 

Effect of increasing the temperature ratio and the pressure ratio on the thermal efficiency and MPD have been 

examined. It can be concluded that MPD increases to a certain value with increasing rp and then begins to decrease 

approximately when rp is 9.286. An increase in thermal efficiency and an increase in MPD is observed with 

increasing α. Similarly, thermal efficiency and MPD increases with increasing pressure ratio. In addition, while rp 

is 7 and constant, increasing α from 2.908 to 3.5 value, MPD increases 14.89%. To sum up, the results show that 

when system design optimizations are made, thermodynamic analyzes must also include MPD analysis in order to 

operate the system with smaller components.  

 

NOMENCLATURE 
cp Specific heat capacity, kJ/kg.K 

h Specific enthalpy, kJ/kg 

k Isentropic coefficient 
MPD Maximum power density, kJ/m3 

TIT Turbine inlet temperature, K 

P Pressure, kPa 

q Heat transfer, kJ/kg 

rp Pressure ratio 

rbw Back work ratio 

T Temperature, K 
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w Specific work, kJ/kg 

Greek Letters 

η  Thermal Efficiency 

α Temperature Ratio 
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