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ABSTRACT 
The paper is dedicated to mathematical problem formulations for the heat propagation in biological tissues 

based on the Fourier and non-Fourier laws at different boundary conditions. The heating of the tissues is provided by 

external heat sources like low intensity lasers or light-emitting diodes which are widely used in contemporary medical 

care. Numerical computations on the standard Pennes bioheat equation with Fourier heat conduction give the 

temperature curves for both heating and thermal relaxation processes that do not correspond to the in vivo 

measurement data on human skin tissue. It is shown the modified bioheat equation based on the Guyer-Krumhansl 

heat conduction with correct formulation of the boundary conditions produces realistic temperature curves when the 

distributed heat sources and sinks in the tissue are accounted for. The former corresponds to the metabolic heat and 

temperature dependent chemical reactions, while the latter is provided by the heat convection with blood 

microcirculation system. The proposed model gives realistic two time temperature curves. The perspective 

applications of the novel mathematical formulation are discussed. 

 

Keywords: Pennes Bioheat Equation, Non-Fourier Heat Transport Laws, Heat Transfer in Biological Tissues, 

Mathematical Modeling 

 

INTRODUCTION 

During the last decades different methods of phototherapy and photodynamic therapy based on the coherent 

optical radiation of low-level lasers (LLL) and non-coherent radiation of light-emitting diodes (LED) had been 

introduced, tested and approved for routine treatment purposes [1-3]. Optical radiation improves local 

microcirculation in the tissues, produce stable dilatation of the blood and lymphatic vessels, and produce anti-

inflammatory, analgesic and lymph-depleting effects [4]. Personal-specific application of the therapy needs detailed 

quantitative estimations of the time, intensity and dose of the irradiation. For the surface or internal (i.e. via optic 

fibers or during an open surgery) radiation the correspondent models of the tissues accounting for their individual 

geometry, dimensions and material parameters are needed. The multilayer models of human skin have been developed 

for the LLL treatment [5-7]. Similar approaches have been proposed in dentistry [8] and general surgery [9]. Such 

modeling is based on the heat generation and propagation in the biological tissues due to the photoinduced biochemical 

reactions and the correspondent variations in the local blood microcirculation.  

 The very first heat balance equation for biological tissues has been formulated by H. Pennes [10]. It is a heat 

balance equation accounted for the metabolic heat sources metq  and heat exchange with the blood microcirculation. 

The latter is modeled as continuously distributed sources with intensities proportional to the local temperature 

differences between the blood and tissue. The Pennes bioheat equation has the form 

 

( ) (T )met rad b b b b

T
c k T q q c w T

t
 


=   + + − −


    (1) 
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where T  is the temperature, kc,,  are the density, specific heat and thermal conductivity of the tissue, the subscript 

b refers to the blood, 
bw  is the local blood perfusion rate in the tissue, 

radq  represents additional heat sources 

activated by the irradiation.  

The Pennes equation (1) has been used in a series of studies on the local heating or cooling of surface tissues, 

including the hyperthermia treatment of skin and underlying tissues by LED and LLL [7, 11]. The schema of the 

experiment and the layers of the surface tissues are shown in Figure 1. For the 1d case the analytical solutions of (1) 

can be easily obtained at different boundary conditions [12-15]. The corresponding solutions are given by quite 

cumbersome formulae and are not reproduced here for brevity. For the metabolic heat term the constant value 

corresponded to the average metabolic rate in the tissues constqmet = , 
radq = 0 have been mostly used. The typical 

surface temperature )(tT  curves for the heating and relaxation processes computed on the Pennes equation in this 

case can be found in Figure 2 that present the model validation curves. Similar dynamics have been detected for other 

types of the heat sources and boundary conditions [7]. Experimental studies on the infrared heating, LED irradiation 

or/and local cooling of the surface tissues produce dynamics [14,15] which differs from the one predicted by the 

Pennes equation. For example, the local heating (20 min) followed by thermal relaxation (30 min) exhibited complex 

dynamics of the temperature rise during the heating and clear two time decay relaxation process (Figure 2), while the 

theoretical estimations based on the Pennes bioheat equation posses simple monotonous temperature rise during the 

heating and exponential decay during the heat relaxation (see [7]). 

 

 

Figure 1. Schema of the surface heating experiment and three layer model of the surface tissues: dermis (I), 

hypodermis (II), muscle (III) 

 

 

Figure 2. Temperature curves measured for the local infrared radiation (t=20 min) followed by thermal relaxation 

(30 min) over human skin (I), muscle (II) and bone (III) [15] 

 

Different non-Fourier heat transport equations for the micro/nano scale systems, fast processes and complex 

biological systems with phase transitions at the interfaces have been proposed. The single phase lag (SFL) model 

introduces a time delay between the local heat flux q  and the temperature gradient T  in the form [16,17] 
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                                                                        ),(),( rtTkrtq q


−=+                                                                (2) 

 

where q  is the heat relaxation time. 

Then the bioheat equation (1) has the extended form 

 

                                 ( ) ( )
2

2q b b b q b b b met rad b b b b

T T
c c c w c w T k T q q c w T

tt
      

 
+ + + =   + + +


                        (3) 

 

Unlike the parabolic equation (1), hyperbolic equation (3) describes the thermal wave expansion at a constant 

speed. When 0, 0, 0b met radw q q= = = , (3) gives the Cattaneo-Vernotte model [18,19] of the temperature balance 

equation.  

Additional approach for the temperature gradient relaxation time T  has been proposed in the form of the 

dual phase lag (DFL) model 

 

                                                                  ),(),( rtTkrtq Tq


 +−=+                                                             (4) 

 

where the relaxation times T  and q  are not interconnected. 

That approach gives the bioheat DFL model in the form [6,20] 

 

                        ( )
2 2

2

2

( )
q b b b q b b b T met rad b b b b

T T T
c c c w c w T k T q q c w T

t tt
       

    
+ + + =  + + + + 

   
               (5) 

 

When 0, 0, 0b met radw q q= = = , (5) gives the Guyer-Krumhansl (GK) equation that is widely used now in 

the heat transfer studies at the micro/nano scales, but despite the DFL, in the GK model the positive parameter 
2

Tk =  is related to the characteristic length scale   and corresponds to the ballistic heat conduction mechanism.  

The solutions of the modified bioheat equations (3), (5) with different boundary conditions have been found 

in analytical, semi-analytical and numerical forms. Theoretical results have been compared to the Pennes equation 

based computations for the skin heating problem [6, 11-13, 20]. It was found the three models predict similar )(tT  

dynamics at relatively low values for q  and T  while at sTq 10,   significant differences between the models 

have been detected.  

The triple time lag and higher order equations can not improve the model because they are inconsistent with 

the second law of thermodynamics [21-23]. The SFL destroys the time translation invariance of the equation, while 

the DPL model cannot provide a general description of the heat conduction phenomena. The mathematical conditions 

to obtain an exponentially stable equilibrium solution of DPL model are beyond the physical limits [21,22,24]. Those 

conditions require negative time delay 0− Tq   between the heat flux and temperature gradient (retarded effect), 

and the DPL theory is based on the cause-effect concept, i.e. the quantity with the higher relaxation time is the effect 

caused by another quantity. That is why the basic model for treatment of the experimental curves and analysis of the 

regularities in the heat propagation in tissues must be corrected based on a thermodynamically consistent model able 

to describe the experimentally observed two-time heat relaxation (Figure 2) in the tissues. 

The heat conduction law must produce the corresponding heat transfer equation which is in agreement with 

the second law of thermodynamics and with space-time evolution. The correct thermodynamically consisted non-

Fourier heat conduction law is the GK equation [24,25] 
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         2

t J J k T T  + = −  +       (6) 

 

where   is the relaxation time,   is the dissipation parameter determined by the free path , ~   .  

Despite the DFL model, all the parameters in the model (6) are nonnegative and have clear physical meaning. 

In this work the modified Pennes bioheat equation based on the GK law of heat propagation is studied in application 

to the experimental data measured on LED irradiation of human skin and correct estimation of the temperature related 

effects. 

 

PROBLEM FORMULATION FOR THE PENNES BIOHEAT EQUATION WITH GUYER-KRUMHANSL 

LAW 

Substitution of (6) into the general heat conduction equation gives the following modification of the Pennes 

bioheat equation 

 

                                         

( )
2

2 2

2

2

1 ( ) ( )

( ) ( )

b b b b

met rad met rad met rad

T T
cw cw T T cw T T

t tt

q q q q q q
t

      

 

   
+ + = −  +  − − + 
   


+ + + + −  + 



                       (7) 

 

where /k c = is the thermal diffusivity, / b  = , / bc c c= , /met metq q c= , /rad radq q c= .  

Since the heat sources ,met radq q  include the radiation induced temperature dependent exothermal biochemical 

reactions, let us assume the tissues are uniform and (T)met metq q= , ( )rad radq q T= . Within a small interval of natural 

surface temperatures of human skin 
0T (1 )T =  , 1   the following linear approximations can be assumed 

 

                                                         0 (T T )met met met sq q = + − , 0 (T T )rad rad rad sq q = + −                                             (8) 

 

where (T )s

met met sq q= , ( )s

rad rad sq q T= , ,met rad const  = , 
sT  is the characteristic steady temperature [1].  In the 

considered experimental conditions (Figure 2) the measured temperature changed as 37 5T C=  , 0.13 =  and the 

approximations (8) are reasonable.  

Then, assuming 
bT const=  (7) can be presented in the form 

 

       
2

2

1 2 3 42
a a a a

T T
T T T

t tt
 
  

+ −  −  + =
 

    (9) 

 

where 
1a 1 ( )b met radcw   = − + + , 

2

2a bcw  = − , 
3a ( )b met radcw  = − + , 

4a T ( )s s

b b met rad s met radcw T q q  = + + − + , and the stroke sign means derivative with respect to temperature. 

In general case (9) is the nonlinear PDE of the second order on time and space with mixed derivatives. 

Assuming (8) and 
/

met metq = , 
/

rad radq = , 
/ / 0metq = , 

/ / 0radq = , (9) can be rewritten in the form 

 

                                                            
2

2

1 3 4

1

a
a a a

a

T T
T T T

t t t






     
−  + −  = −   

    
                                         (10) 

When 
2

2 1a / a / = , (10) has the form 

 

                                                                      
2

1 3 4a a a
T

T T
t t






   
+ −  = −      

                                                   (11) 
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where the square brackets are related to the differential operator.  

The standard bioheat equation (1) rewritten with new designations is  

 

                                                                                    3 4a a
T

T T
t




−  = −


                                                             (12) 

 

 When 2 /  = , solutions of the classical GK (11) and Fourier heat conduction (12) equations are the same, 

and this case is called Fourier resonance condition [25]. In the case of the bioheat equation, the Fourier resonance 

condition 
2 1a / a =  can be provided by the balance between the source terms in the form 

 

                                                                               ( )met met rad radq q q q   − = − −                                                           (13) 

 

or, accounting for (8), 0met rad + = . Since 0met  , the resonance condition is possible in the specific case when  

0met rad = −  , i.e. for the frequencies inducing the endothermal biochemical reactions [4].  

 When 2

2 1a / a /  , solution of (11) is overdiffusive [25,26]. For the classical GK equation, it means the 

Peclet number 2 / 1Pe  =  and convective heat conduction prevails over the molecular one. For the bioheat 

equation the condition is satisfied when ( ) ( ) 0met met rad radq q q q   − + −  . The latter can be satisfied when, for instance, 

both metabolic and photoinduced reactions exhibit exponential growth with temperature. 

 

ONE-DIMENSIONAL HEAT PROPAGATION PROBLEM FOR BIOLOGICAL MATERIAL 

Let us consider one-dimensional heat propagation across the uniform layer of biological tissue 0 x h   

(Figure 3). The material is irradiated by LLL, LED or other source of heat at the surface 0x =  and the external heat 

flux 
1( )J t  is known. At the surface x h=  another heat flux 

2 ( )J t is assumed to be given. Since in the biological 

tissues the surface x h=  is deep located and its temperature distribution cannot be measured directly, it is natural to 

assume 
2 ( ) 0J t =  and determine h  as a penetration depth for the irradiation source applied. Here the solution will be 

found for the more general case 
2 ( ) 0J t   

 

                                                                                10 : ( )
T

x J t
x




= − =


                                                                (14) 

 

                                                                               2: ( )
T

x h J t
x




= − =


                                                                (15) 

 

At 0t =  the temperature distribution in the tissues is supposed to be correspondent to the temperature of 

blood 

 

                                                                                    0 : bt T T= =                                                                          (16) 

 

In the non-dimensional variables 
*( ) /bT T T T= − , /x x h= , */t t t=  the equations (1), (3), (9) and 

boundary conditions (14)-(16) (the symbols  at the variables are omitted for simplicity) read 

 

                                                                                
2

0

2

T T
T q

t x
 

 
= − +

 
                                                               (17) 
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                                                                 ( )
2 2

0 0 0

2 2
1

T T T
T q

tt x
   

  
+ + = − +

 
                                                (18) 

( ) ( )
2 3 2

0 0 / 2 0 2 /

2 2 2
1 ( ) ( )

T T T T
q Kn Kn q T q

tt t x x
     

   
+ + − = + − − − +

   
  (19) 

 

0

10 : ( )
T

x J t
x


= =


     (20) 

 

0

21: ( )
T

x J t
x


= =


     (21) 

 

   0 : 0t T= =       (22) 

 

where 0 * 2/t h = , 0 *

b bw w t= , 0 */ t = , 0

bcw = , 0 0 0 0 0T ( )met rad s met radq q q  = + − + , / 0 0

met radq  = + , 

0 *

, ,

s

met rad met radq q t= , *T T /s s T= , 0

, , /met rad met rad c  = , 0 *

1,2 1,2( ) ( )h/ TJ t J t = , /Kn h=  is the Knudsen number. 

Generally speaking, the equivalent T Ts b= may be accepted, but in this study both temperatures are taken as 

different.  

The terms ~ 2Kn  are essential for the nanostructural materials and nanofluid dynamics. In the biological 

tissues and other materials interacting with optical radiation, those terms determining additional sources of ballistic 

heat production become important [1].  

Solution of (19) with the boundary and initial conditions (20)-(22) will be obtained and studied. The 

corresponding solutions of (18) and (17) with the same boundary conditions can be obtained then by assuming 0Kn =

, / 0q =  in (18), and additionally 0 0 =  in (17). 

 The heat equation with GK law has already been studied for solid materials [25], but the bioheat equations 

(1), (3), (9) with temperature dependent heat sources and boundary conditions (14)-(16) have not been properly studied 

yet. The analytical solution for the temperature independent heat sources has been studied in [13].  

 Solution of (19) can be found in the form 

 

                                                               0 0

1 1 2 2T( , ) ( , ) ( )X ( ) ( )X ( )t x t x J t x J t x= + +                                                (23) 

 

where ( , )t x  satisfies the following PDE and boundary conditions 

 
2 3 2

0

1 2 3 42 2 2
A A A A ( , )T q F t x

tt t x x


      
+ − − + = −

   
   (24) 

 

0 : 0x
x


= =


      (25) 

 

1: 0x
x


= =


      (26) 

 

                                    
0 0

1 1 2 20 : (0) ( ) (0) ( ) 0t J X x J X x=  = − − =     (27) 

 

where 
2

0 0/ / 0 / / 0

3 4

1

( , ) k k k k k k

k

F t x J X A J X A J X
=

= − + , 
0 /

1A 1 ( )q = + − , 
2

2A Kn= , 
0 2

3A Kn = − , 
/

4A q= − , 

stroke sign means the derivative of the functions with respect to their arguments. 
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 The functions 
1,2X ( )x  satisfy the system of ODE and boundary conditions 

 

                                                                                   / /

1,2 1,2X X=                                                                             (28) 

 

                                                                          / /

1 20 : 1, 0x X X= = =                                                                    (29) 

 

                                                                           / /

1 21: 0, 1x X X= = =                                                                    (30) 

 

where 0 / 2

1 2A / (1 ( )) / KnA q  = = + − .  

 Solution of (28)-(30) can be easily found. Depending on sign of   two cases must be considered. 

Case 1a. 0   or / 01/q   + . Then, 

 

                                        
1

1 2

( )
X ( ) ( ( ) ( ) ( )), X ( )

( )

ch x
x cth ch x sh x x

sh


   

 

−

= − − =                             (31) 

 

Case 2a. 0   or / 01/q   + . Then, 

 

1 2

cos( )1
X ( ) ( ( )cos( ) sin( )), X ( )

sin( )

x
x ctg x x x


  

  
= + = −   (32) 

 

Case 3a. 0 =  or / 01/q  = + . Then (28) has no solutions satisfying (29), (30). 

 Now ( , )F t x  can be computed and solution of (24)-(27) can be found for each of the cases (31)-(32). Due to 

the boundary conditions (25)-(26), the solution can be found as Fourier expansion 

 

   
0

( , ) (t) cos( x)n

n

t x n 


=

 =      (33) 

 

 Then, (t)k  can be found from the equation 

 

  
0 / / 2 2 / 2 2

1 2 4 3(A A ) A n A ( )n n nn t     + − + − =     (34) 

 

where ( )
1

0

( ) ( , ) cos( )n t q F t x nx dx = − . 

The fundamental solution of (34) is determined by the sign of the expression 
2 2 2 0 2 2

1 2 4 3(A n A ) 4 (A n A )nD   = − − − , and different cases have to be studied. 

Case 1b. 0nD  . Then, 

 

1 2 1

1 2(t) (t)n nt t

n n n nC e C e
  − −

= + +       (35) 

 

where 

2 2

1 2

1 ,2 0

(A n A )

2

n

n n

D




− − 
= , 1 1 221

0 0

( ) ( ) ( )n n n

t t

t t

n n nt e e d e e d
         − −

 = −  . 

Case 2b. 0nD  . Then, 
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3 3 2

3 4 4 4(t) cos( t) sin( t) (t)n nt t

n n n n n nC e C e
   − −

= + +     (36) 

 

where 
2 2

2 1

3 0

n A A

2
n






−
= , 4 02

n

n

D



= ,  

3

3 22

4 4 4 4

4 0 0

( ) sin( t) cos( ) ( ) cos( ) sin( ) ( )
n

n n

t tt

n n n n n n n

n

e
t e d t e d


              



−  
 = − 

 
  . 

Case 3b. 0nD = . Then, 

 

3 3

5 6(t) ( ) (t)nt

n n n nC C t e
 −

= + +      (37) 

 

where 3 3 3 33

0 0

( ) ( ) ( )n n n

t t

t t

n n nt te e d e e d
           −

 = −  . 

 The unknown coefficients in (35)-(37) can be found from the initial conditions 

 

    /0 : 0, 0n nt  = = =      (38) 

 

as 
1 1 / 1 1 /

22 1

1 2 3

1 2 1 2

2 2 /

3 3 3 /3

4 5 6 3

3 4

(0) (0) (0) (0)
, , (0)

(0) (0)
, (0), ( (0) (0))

n n n n n n

n n n n

n n n n

n n n

n n n n n n n

n n

C C C

C C C

 

   




 

 +  +
= = − = −

− −

 +
= = − = −  +

   (39) 

 

 Due to the dependence ( )nD n  all the cases 1b – 3b can be found in the set of solutions  
1

(t)
N

n n


=
. 

 

RESULTS AND DISCUSSION 

 Numerical computations of the heat propagation across a layer of biological material with distributed positive 

(chemical reactions) and negative (carrying away by blood flow) sources have been carried out on (23), (31)-(33), 

(35)-(37). The following model parameters correspondent to human skin, muscle and bone tissues [1, 11, 13, 20, 27] 

have been used: 

1) Common parameters: 37bT C= , 
31160 /b kg m = , 3650 3770 / kgbc J K= −  , 

30.5 3 / mbw kg s= −  . 

2) Skin: 0.25 2.5 cmh = − , 
31190 /kg m = ,  3600 3768 / kgc J K= −  , 0.235 0.42 /W m K = −  , 

3245 368 /metq W m= − , 0.001 s = . 

3) Muscle: 0.5 3.5 cmh = − , 
31190 /kg m = , 3600 3768 / kgc J K= −  , 0.44 0.5 /W m K = −  ,

3368 684 /metq W m= − , 0.4 0.5 s = − . 

4) Bone: 0.35 1cmh = − , 
31190 /kg m = , 3600 3768 / kgc J K= −  , 0.17 0.19 /W m K = −  ,

3220 300 /metq W m= − , 1 1.5 s = − . 

 The physiological limits of the parameters are determined by individual variations. Other parameters are 

determined by the frequency of optical radiation and the chemical reactions induced by it. Therefore, the sets of non-

dimensional values for 
0

metq , 
0

radq ,
0 0, [0,1]met rad    have been tested. The numerical computations have been carried 

out for n=10 harmonics; that provides fast convergence of the series with accuracy ~
510−

. The typical dynamics of 

the temperature curves is similar to the skin, muscle and bone tissues with different rates of the temperature rise and 
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relaxation determined by the thermal properties of the tissue. Since in the live tissues the noninvasive surface 

temperature measured over the skin surface is only available, the numerical results presented in Figure 3-5 have been 

computed for the skin parameters.   

The computed temperature curves T(t) during the heating and thermal relaxation are depicted in Figure 3a-c 

in the dimensional form for different tissue models. The Fourier heat conduction law based bioheat equation (17) 

describes an exponential temperature rise during the heating and single time exponential temperature decay during the 

thermal relaxation at different depths of the layer (Figure 3a). The decay is quite slow so the depth of penetration of 

the irradiation is overestimated when the model (17) is used [4]. The modified model (18) better describes the complex 

dynamics of temperature rise with a plateau (Figure 3b), that closer corresponds to the experimental data (Figure 2) 

than the classical Pennes model (Figure 1). The model (19) correctly describes not only the temperature growth but 

also its thermal relaxation with two characteristic exponents corresponding to the solutions (35), (38) depending on 

the model parameters.  

       The temperature distributions in the same layer modeled by (18), (19) at different intensity of heating are 

presented in Figure 4. 

 

 
a 

 
b 

 
c 

Figure 3. Computed curves T(t) on (a) the equation (17), (b) equation (18), (c) equation (19), where the curves 1-4 

correspond to different depths h/L=0.25;0.5;0.75;0.95 of the layer 
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a 

 
b 

Figure 4. The temperature T(t) curves for 20 min heating followed by 30 min thermal relaxation computed on (a) 

the model (18), and (b) model (19), at  
0

2 0J = ; the curves 1-4 correspond to 
0

1 4;3;2;1J =  accordingly 

 

The maximal values of the temperatures at the plateau (Figure 3c, Figure 4b) are determined by individual 

thickness h , intensity of microcirculation 
bw  and metabolic heat production 

metq . The thermal parameters of the 

tissues are more or less stable for different individuals and even in mammals [27]. Therefore, the computed solution 

allows identification of two individual parameters (
bw ,

metq ), while the thickness of skin and underlying tissues can 

be estimated by palpation [1]. Based on the individual (
bw ,

metq ) data, the patient specific safe dose of irradiation 

allowing the LLL or LED therapy without uncomforting or damaging temperatures in the treated tissues. 

 Comparative results on numerical computations of the temperature curves T(t) by the model with and without 

accounting for the distributed heat sources with corresponding experimental data obtained on the skin (Figure 5a), 

muscle (Figure 5b) and bone (Figure 5c) tissues with different 
bw  , 

metq  and the tissue parameters identified on the 

previous step on the averaged curves shows significant qualitative differences between two models. The most essential 

differences are marked in Figure 5 by arrows. The model without heat sources exhibited purely exponential 

temperature rise during the heating period and sudden exponential decay immediately after the heating had been 

stopped. It is single-time relaxation and the temperature decays exponentially and could reach low non-physiological 

values even at some realistic times t~1.5-2 h. When the hear sources activated by the photoinduced reactions are 

accounted for, the temperature rise (arrows 1 in Figure 5a-c) is not such acute as the exponential one and it is closer 

to the measurement data for all the surface tissues studied. The temperature decay clearly demonstrates two relaxation 

times: initial fast relaxation (arrows 2 in Figure 5a-c) provided by absence of the photoinduced heating due to the 

photoinduced exothermal biochemical reactions and activation of the microcirculation, but the transition to the 

relaxation is not sharp as in the exponential model because of the inertia of both biochemical processes and regulatory 

reactions of the activated microcirculation. The second phase of the relaxation is characterized by slow relaxation that 

produces high surface temperatures at t=50s than by the exponential relaxation due to presence of distributed metabolic 

heat sources, which maintains the surface temperatures on the physiological level close to the initial surface 
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temperature before the experiment evet at t>2 h that correspond to the steady state of metabolism of the skin and other 

surface tissues. 

 
a 

 
b 

 
c 

Figure 5. Temperature curves T(t) for (a) skin, (b) muscle and (c) bone tissues computed on the model with (thick 

lines) and without (thin lines) distributed heat sources, and measured on a volunteer (marked) 

 

CONCLUSIONS  

The heat conduction in the biological tissues is correctly described by the Pennes bioheat equation which accounts for 

both heat generation in the live tissues and heat removal by the circulating blood. Both phenomena are influenced by 
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the external heating of the tissues by LLL or LED with therapeutic purposes. Nevertheless, the basic heat propagating 

law included into the  

Pennes bioheat equation influence significantly the dynamics of the heat rise and decay during the heating and thermal 

relaxation of the tissue accordingly. Comparative analysis of the theoretical computed curves to the measured ones 

reveals the better correspondence of the G-K heat propagation las in the biological tissues. When the heat relaxation 

time is included into the model, the complex two-time temperature growth is correctly described, but the relaxation 

decay is oversimplified. When the additional ballistic-type heat propagation is accounted for, the realistic two-time 

heat decay curves during the thermal relaxation are described correctly. The comparative analysis of the theoretical 

and measured curves is essential for identification of the individual tissue parameters. Those parameters can be used 

for quantitative estimations of the safe therapeutic dose of the irradiation based on the computations of the damaging 

parameter [13] that will be a subject of further studies. 
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