
Journal of Thermal Engineering, Vol. 5, No. 2, Special Issue 9, pp. 29-45, February, 2019  
Yildiz Technical University Press, Istanbul, Turkey  
 

This paper was recommended for publication in revised form by Regional Editor Hakan Demir 
1Department of Mechanical Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik, Turkey 
E-mails: eacikkalp@gmail.com, emin.acikkalp@bilecik.edu.tr 
Orcid id: 0000-0002-5523-7895, 0000-0001-5356-1467, 0000-0002-6269-8606 
Manuscript Received 21 September 2017, Accepted 3 January 2018 

 

 

PERFORMANCE ASSESSMENT OF PHOSPHORIC ACID FUEL CELL - 

THERMOELECTRIC GENERATOR HYBRID SYSTEM WITH ECONOMIC ASPECT 
 

 

Fatma Gül Çelik1, Emin Açıkkalp1* , Hasan Yamik1 

 

 

ABSTRACT 

 Purpose of this paper is to evaluate phosphoric acid fuel cell (PAFC) - thermoelectric generator hybrid 

system with economic and thermoeconomic point of view. Firstly, basic equations of PAFC, thermoelectric 

generator and hybrid system are described. Secondly, basic performance parameters like power output, energy 

efficiency, exergy efficiency and exergy destruction rates are investigated. Finally, cost equations are set up to 

determine economic results of the considered system, in addition to that, these system are considered by using 

EXCEM analysis. According to results, the maximum total cost of the hybrid system is obtained j= 10900 am-2, 

exergy loss ratio to capital cost (ec) of the hybrid system increases dramatically after the point where is  j= 

11000 am-2. Maximum power density, maximum energy efficiency and of the hybrid system are 8735.340 wm-2, 

81.35% and 86.6% respectively. 

 

Keywords: Phosphoric Acid Fuel Cell, Thermoelectric Generator, Hybrid System, Economic 

Evaluation, EXCEM Analysis. 

 

INTRODUCTION 

 Fuel cell technology is the conspicuous technology because of their nearly harmless to environment, 

relatively higher efficiency and their flexible fuel option. Nowadays, one of the most important problem of 

engineers and scientists are design to systems that convert to energy as most efficiently that enable us 

environmental friendly usage of them. Efficiency of a heat engine are restricted by the Carnot efficiency, 

however, this limitations is not valid for fuel cells. Because, fuel cell generates electricity in fuel cell by 

electrochemical reaction. Irreversible fuel cells including Solid oxide fuel cells (SOFC), molten carbonate fuel 

cell (MOFC), proton exchange membrane (PEM) fuel cell, phosphoric acid fuel cell (PAFC) and direct carbon 

fuel cell (DCFC) are investigated [1-5]. Zhang et al. considered PAFC in [5], they investigated cell voltage for 

different parameters including temperature, resistances, power and efficiency of the fuel cell according to current 

density, load resistance and mole fraction. They defined the optimum operating conditions. 

 Another opportunity offered by fuel cells are that heat rejected by the fuel cell can be used in another 

process and fuel cell - heat engine/refrigeration hybrid systems may be designed. In last decade, irreversible fuel 

cell and hybrid systems have been gained attention. In ref. [6], a hybrid PAFC- absorption refrigerator system 

was investigated. Power densities, efficiencies are studied under different conditions like temperature, pressure 

and phosphoric acid mole fraction. General performance characteristics and optimum criteria of the hybrid 

system are shown. PAFC-heat driven refrigerator cycle was taken into account in ref. [7]. System was researched 

for power density and efficiency and variable parameters were defined according to current density and 

refrigeration temperature, finally optimum conditions and performance characteristics were obtained. 

Performance of different fuel cell hybrid systems can be found literature; in refs. [8-10] fuel cell- Stirling, in refs. 

[11-15] fuel cell – heat engine, in refs. [16-25] fuel cell- Brayton, in refs. [26,27] fuel cell-Braysson hybrid 

systems were investigated for different conditions and performance criteria. In addition, novel hybrid systems 

including fuel cell- thermionic generator and fuel cell – Super critical CO2 – Organic Rankine cycle can be seen 

in refs. [28, 29]. 

Thermoelectric generators may be an alternative for creating hybrid system with fuel cells. They have 

several advantageous like; they don't have moving part, noiseless and they are not required maintenance 
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frequently. A thermoelectric generator is used heat to generate electricity based on the Seebeck effect and 

similarly they can be utilized as cooler on the principle of the Peltier effect. Some authors have been researched 

about optimization of thermoelectric devices [28-45].In the open literature, one can find papers about fuel cell- 

thermoelectric generators hybrid systems. Chen et al, analyzed PAFC-thermoelectric hybrid system for the 

maximum power output conditions [46]. Zhao et. al. investigated direct carbon fuel cell-thermoelectric generator 

hybrid system [47]. Chen et al. analyzed a PEM- thermoelectric hybrid system in terms of power output and 

efficiency [48]. Another alternative to evaluate and design thermal cycles is finite time thermodynamics and 

constructional optimization. Some example of these may be found in [49-53] and these methods can be applied 

for the fuel cell hybrid systems widely. 

 In the open literature, authors are no aware of any study about PAFC- thermoelectric hybrid system in 

terms of economical and thermoeconomic aspects. Such techniques seek to determine of the appropriate 

allocation of economic resources so as to optimize the design and/or operation of a system; and/or the economic 

feasibility and profitability of a system [54]. In this paper, this shortage is tried to be completed. Firstly, 

thermodynamic relations are expressed for the fuel cell and thermoelectric generator. Secondly, PAFC-

thermoelectric generator hybrid system is analyzed with regard to power output, energy efficiency, exergy 

efficiency and exergy destruction rate. After these, cost of the hybrid system and thermoeconomic analysis are 

performed. EXCEM method [54] is chosen for the thermoeconomic evaluation. Results are obtained 

numerically, some important outcomes are discussed and suggestions are made.  

 

THERMODYNAMIC ANALYSIS  

PAFC is made of phosphoric acid as electrolyte and two electrodes which are anode and cathode. Air is 

provided to cathode and hydrogen is provided to anode and electrochemical reaction occurred in the fuel cell is 

H2+1/2 O2                         H2O + heat + electricity. This produced heat resulted from the electrochemical reaction that 

can be used in another process. Operating temperature of PACF is about 150-200 oC which can be used in 

cogeneration applications for buildings and low temperature processes. Schematic of the hybrid system is shown 

in fig.1. In this paper, PAFC - thermoelectric hybrid system is analyzed in terms of economical aspect. Firstly, 

equations for fuel cell are presented. Maximum theoretical potential or Nernst equation is [5]: 
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Overpotentials cause the irreversible losses. These are activation overpotential described as activation 

overpotential, concentration overpotential and ohmic overpotential are shown in eqs. (2-4) respectively [5]. 
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where j  is operating current density, jo is exchange current density, R is the universal gas constant, α is the 

charge transfer coefficient, ne number of electrons and F is the Faraday's constant, T  is the operating temperature 

of the fuel cell, m and n  are two constant, tele is the thickness of the electrode and κ is the conductivity of 

phosphoric acid solution. The Output voltage of the PAFC is expressed as [5]: 
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Figure 1. PAFC - thermoelectric generator hybrid system. 

 

Power output and efficiency of the PAFC are calculated as eqs. (6,7) [5]: 
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where A is the polar plate area,  H is the total energy provided to fuel cell per unit time and Δh is the molar 

enthalpy change at the operating temperature.  H is described in eq. (8) [5]: 
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Exergy efficiency of the PAFC is: 
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where G  Gibbs energy change per unit time and g is the molar Gibbs energy change.  G is defined as 

[1]: 
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Exergy destruction rate of the fuel cell is [3]:  
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Heat transfer occurred in the regenerator is [6]:  
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where θ heat conductance, εr, regenerator effectiveness and To is the ambient temperature. Heat released from the 

fuel cell is: 

 

                                                                             H , f f rQ PH Q  
                                                       (13) 

 

Secondly analysis of the thermoelectric generator must be performed. Heat input of thermoelectric generator can 

be defined in eqs. (14) and (16) [36]. These are equal as well as heat rejected from the PAFC in eq. (13). Heat 

rejected form the thermoelectric generator is shown in eqs. (15) and (17) [36].   
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Power supplied from the thermoelectric generator is: 

 

                                                                                 t H ,t L,tP Q Q 
                                                                (18) 

 

where β is Seebeck coefficient, T1 is the temperature of the hot junction, T2 is the temperature of the cold 

junction, N  is the number of thermoelectric units, I is the electrical current generating in semi- conductor couple, 

r is the electrical resistance, K  is the thermal conductance of the semi-conductance couple, kH and kL are the heat 

transfer coefficients and at is the heat transfer area of the heat exchangers. In this study, calculations are 

conducted for maximum power output of the thermoelectric generator. Optimum electrical current for maximum 

power can be defined as [36]: 
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Number of modules required to heat input can be calculated by equalizing eqs. (14) and (16): 
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Similarly T2 is solved by equalizing eqs. (15) and (17) and result is: 
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Finally,T1 is defined as using (13) and (16): 
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Thermoelectric properties depending on temperature are shown in (23) - (28) [35]: 
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where Tm is the mean temperature, L1 is the length of p type material, L2 is the length of n type material and, 

similarly, A1 is the area of p type material, A2 is the length of n type material. Efficiency and reversible power of 

the thermoelectric generator are shown in eqs. (29) and (30) respectively. 
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Exergy efficiency and exergy destruction rate are expressed in eqs. (31) and  (32) respectively. 
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Finally, thermodynamic parameters for PAFC- thermoelectric generator is shown in (33) - (36). These are power 

output, efficiency, exergy efficiency and exergy destruction rate respectively. 
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Firstly, hybrid system is investigated by using thermoeconomic method called EXCEM [54] where EC is ratio of 

thermodynamic loss rate (in this paper exergy loss rate, which is described as is ratio of rate, which is difference 

of exergy output  from the exergy input, is considered)  to capital cost [54]. 
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Where Z is the capital cost of the system and it is calculated by multiplying unit cost (c)  for per kW and power 

output of the considered system: 
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Another economic evaluation criteria is the total cost of the system and it is defined as [55]: 
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where kZ is capital cost to per unit of time [55]: 
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where CRF is the capital  recovery factor,   is the  maintenance factor and N is the operating hours in a year 

[55]. 
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In eq. (41), in represents interest rate and lt is the life time of the considered system. Fuel cost to per unit time is 

shown eq. (42), where cfuel is unit cost of fuel, LHV lower heating value of the fuel and fuelm is mass flow rate of 

the fuel [55]: 
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mass flow rate is calculated as eq (43): 
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In calculations, parameters in eqs.(38)-(43), specific cost of the PAFC (cf) is 4$/W[56,57], specific cost of  

thermoelectric generator (ct) is 11.92 $/W [58], interest rate is 10%, operating house in a year is 8200  hour [55], 

 is 1.06 [55], specific cost of the fuel (cfuel) is 10 $/GJ [59], lower heating value of the fuel is 120.7 MJ/kg. 

 

RESULTS AND DISCUSSION 

 Results obtained from calculations are shown in figs. 2-10. Parameters used in the calculations are listed 

in table 1 and 2 which is given from the refs. [5-7, 35-37]. Results are presented as power density (p = P/A) and 

exergy destruction density (exd=  Exd/A) for power output and exergy rate. 

One can be seen the change of power densities with current density in fig 2. As it is shown, all power outputs 

have an optimum (maximum) point. Power density of hybrid system reaches its maximum at j= 10200 Am-2 and 

it is equal to 8735.340 Wm-2. When investigating power densities for PAFC and thermoelectric generator, it is 

seen that they have optimum points too. These points are provided at j = 10100 Am-2 with 8538.440 Wm-2 for 

PAFC and at j = 12500 Am-2 with 351.036 Wm-2 value for TEG. Changes of hybrid system and PAFC are 

parabolic, however, TEG increases nearly linear about j=8500 Am-2 after this point it changes logarithmically 

and reaches its optimum. 
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Table 1. Parameters used in PAFC [5-7, 37]. 

Parameter Unit Value 

2 2H , H Op p
 atm 1. 0347 

2Op
 atm 0.21 

ne - 2 

α - 1 

jo Am-2 6x10-2 

tele m 1x10-6 

κ mhom-1 3.63 

m - 3x10-5 

n - 8x10-4 

F C/mol 96485 

R J/molK 8.314 

Δg J/mol -228610 

Δh J/mol -243342 

T K 473.15 

epr - 0.85 

To K 293.15 

 

Table 2. Parameters used in thermoelectric generator [35, 36]. 

Parameter Unit Value 

kH,kL Wm-2 170 

at m2 1 

L1,L2 mm 6 

A1,A2 m2 0.0001 

 

 In figure 3 energy efficiencies are illustrated. As it is seen that they have no optimum point, their 

maximum values are obtained at minimum current density. Maximum efficiencies of hybrid system, PAFC and 

TEG are 81.35%, 81.28% and 5.51% respectively. Effect of TEG on the hybrid system increases at higher 

current densities, however, average effect of it on the hybrid system is about 2%.  

Variation of exergy efficiencies are in fig. 4. Curves in the fig 4. is very similar in fig.3. Maximum 

exergy efficiencies are obtained at minimum current density and the bigger current density means the lower 

exergy efficiency. Maximum exergy efficiency of hybrid system is 86.6%, 86.5% for the PAFC and 14.9% for 

the TEG. Comparing results of energy and exergy efficiencies, it can be seen that exergy efficiencies bigger than 

energy efficiencies. However, effect of the TEG on the hybrid system in terms of the exergy efficiency is same 

with effect of the energy efficiency. 

Exergy destruction densities changes are shown in fig.5. All exergy densities grow up with current 

density and this change nearly linear until j = 10000 Am-2, after this point they increase dramatically. Their 

maximums, which are at j = 12900 Am-2, 21473 Wm-2 for the hybrid system, 15925 Wm-2 for the PAFC and 

5548 Wm-2for the TEG. 

Total cost rate of the hybrid system, PAFC and TEG are indicated in fig. 6. Total cost rates of hybrid 

system and PAFC have an critical (maximum point) contrast to TEG. Total cost of hybrid system and PAFC 

increase until their critical point and then they begin to decrease. Their critical point are obtained at j = 10900  
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Figure 2. Variation of power density with current density. 

 

 
Figure 3. Variation of energy efficiency with current density. 

 

 Am-2 for the hybrid system and j = 10800 Am-2 for the PAFC and corresponding values are 

0.633 $h-1 and 0.606 $h-1 respectively. The maximum total cost value of TEG is obtained at j = 12900 Am-2 with 

0.389 $h-1.  
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Figure 4.Variation of exergy efficiency with current density. 

 

Figure 5. Variation of exergy destruction rate with current density. 

  

EC of the considered systems can be shown in fig.7.EC of all considered systems show similar tendency. EC of 

hybrid system and the TEG rise up nearly linear about j =11000 Am-2 and this change is very slow, after this 

point they increase importantly. Similarly EC of PAFC increases nearly linear until j =12000 Am-2 after this 

point, it grows up dramatically. Maximum values of hybrid system, PAFC and TEG are 2.782 W$-1, 10.922 W$-

1, 2.491 W$-1 respectively and change in them are 98.6%, 99.6% and 64.9% respectively. 
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Figure 6. Variation of cost rate with current density. 

 

Figure 7. Variation of EC with current density.  

p-η-φ curves  is shown in fig. 8. This chart may be called as performance curve.  In this graphic, energy 

and exergy efficiencies of hybrid system are investigated according to power density. In there, pmax, pη, pφ, ηmax, 

ηp,φmax, φp mean maximum power density, power density at the maximum energy efficiency, power density at 

maximum exergy efficiency, maximum energy efficiency, energy efficiency at maximum power density, 

maximum exergy efficiency and exergy efficiency at the maximum power density. ηp and φp are equal to 67.9%  
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Figure 8. p-η-φ curve for the hybrid system. 

 

Figure 9. p-�̇�-EC curve for the hybrid system. 

 

and 72.3%, these values correspond to 82.7% and 83.4% of their maximum respectively. pη and pφ are equal to 

each other and their values are 205.173Wm-2 and it is equal to only 2.3% of the maximum power density. 

p-C -EC curves can be shown in fig.9 where pC, pEC, 
maxC , pC ,  ECmax, ECp represent to power density 

at total cost rate, power density at EC, maximum total cost rate, total cost rate at power density, maximum 

exergy loss rate and EC at maximum power density respectively.  pC is equal to 8485.99 Wm-2 which is 97.1% of 

the maximum power density and  pEC is 8397.20 Wm-2 which is equal to 96.1% of the maximum power density.  
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Figure 10. η-�̇�-EC curve for the hybrid system. 

 

Similarly, pC , is 0.620 and it is 98% of the maximum total capital cost rate and ECp is equal to 0.0917 W$-1 

which is only 3.3% of the maximum EC. 

 Finally, η-- C -EC chart is indicated in fig.10 where ηC, ηEC, 
maxC , C  , ECmax, ECη are energy 

efficiency at the maximum total capital cost rate, energy efficiency at the maximum EC, maximum total capital 

cost rate, total capital cost rate at the maximum energy efficiency, maximum EC and EC the maximum energy 

efficiency respectively. ηC and ηEC are 61.7% and 4.1%, these values correspond to 75.8% and 5% of the 

maximum efficiency. In addition to that C  and ECη are 0.013 $h-1 and 0.039 W$-1, these values are 2% and 

1.4% of their maximum. 

 

CONCLUDING REMARKS  

In this paper, a PAFC-TEG hybrid system is investigated in terms of its performance, economical and 

thermoeconomic aspects. Some important results are listed follows: 

- Maximum power density of the hybrid system is 8735.340 Wm-2 at j= 10200 Am-2  

-Maximum energy efficiency of the hybrid system is 81.35% at low current densities, effect of TEG on 

the hybrid system 2% on average. Maximum exergy efficiency of the hybrid system is 86.6%, and it is obtained 

at low current densities similar to energy efficiency. 

- The maximum total cost of the hybrid system is obtained j= 10900 Am-2 and this cost is equal to 0.633 

$h-1 

-The maximum EC of hybrid system is 10.922 W$-1. 

- Exergy loss rate of the hybrid system increases dramatically at j= 11000 Am-2 and it is equal to 15925 

Wm-2. 

As it is shown where the maximum power density, the total cost rate is maximum too, until 11000  Am-2 

exergy lost rate does not change so importantly. In addition to these, energy efficiency, exergy efficiency and 

exergy destruction rate are high and the total cost rate, exergy loss rate have low values at the small current 

densities. According to these results, current densities should be chosen as low as possible in terms of economic 

aspects, economical and thermoeconomic analyses are recommended to be conducted for fuel cell hybrid 

systems.  
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NOMECLATURE 

A   polar rate area [m2] 
a   heat transfer area  [m2] 
c   unit cost for per kW [$kW-1] 

C   heat capacity [$h-1] 

CRF   Capital recovery factor 

EC   ratio of thermodynamic loss rate to capital cost  [kW$-1] 

exd                exergy destruction density  [Wm-2] 

Exd   exergy destruction rate  [W] 
F   Faraday constant  [Cmol-1] 

g   change of the  molar Gibbs free energy [Jmol-1] 

G   change rate of the molar Gibbs free energy  [W] 

h   change of the molar enthalpy [Jmol-1] 

H   change rate of the enthalpy [W] 
I   electrical current generating in semi-conductance couple [A] 
j   current density [Am-2] 

k   heat transfer coefficient [W m-2 K-1] 

K   heat conductance of the semi-conductance couple  [W m-1 K-1] 

L                 length of p and n type material [mm] 

LHV   lower heating value of the fuel  [kJ kg-1] 
m   a constant 

m   mass flow rate [kgs-1] 
n   number electrons and a constant 

N   number of thermoelectic units and operation hours in a year [hyear-1] 
p

  pressure [atm, kPa], power density [Wm-2] 

P   power [W] 

PAFC   phosphoric acid fuel cell 

Q
  heat rate [W] 

r   electrical resistance of  the semiconductor couple [Ω] 

R   universal gas constant [Jmol-1K-1] 
t   thickness [m] 

T   temperature [K] 

TEG   thermoelectric generator 

U   potential [V] 

Z   capital cost [$] 

Z   capital cost per hour [$h-1] 

Subscripts 

act   activation 

C   heat capacity  

con  concentration 

EC   ratio of thermodynamic loss rate to capital cost   

f   fuel cell 
m   mean 
e   electron 
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hy
  hybrid 

H   hot side 

2H
  hydrogen 

2H O
  water 

k   kth component 

L   cold side 
max   maximum 
o   environment condition and exchange current density 

ohm   ohmic 

2O
  oxygen 

ohm   ohmic overpotential 
p

  power 
r   regenerator 
rev   reversible 
t   thermoelectric module 
1  hot junction and p type material 

2   cold junction and n type material 


                         efficiency  

Greek letters 
                          charge transfer coefficient 


                        Seeback coefficient [VK-1] 

                          temperature dependent thermoelectric property  


                         temperature dependent thermoelectric property 
                          thermal conductivity of phosphoric acid solution [mhom-1] 


                         efficiency 

                          heat conductance [kWK-1] 

                         maintenance factor   


   exergy efficiency  
   effectiveness  
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