
Journal of Thermal Engineering, Vol. 4, No. 5, pp. 2355-2370, July, 2018 
Yildiz Technical University Press, Istanbul, Turkey                                                                                                                  
 

This paper was recommended for publication in revised form by Regional Editor Bekir Sener 
1Department of Mechanical Engineering, Afyonkocatepe University, Afyonkarahisar, TURKEY 
*E-mail address: ceyhunyilmaz@aku.edu.tr  
Manuscript Received 9 November 2017, Accepted 5 January 2018 

 

 

COMPARISON OF THERMOECONOMIC COST CALCULATION FOR A BINARY 

GEOTHERMAL POWER PLANT 
  
 

C. Yilmaz1,* 

 

ABSTRACT 

This paper presents a comparison of the three thermoeconomic methodologies, SPECO (Specific exergy 

costing), MOPSA (Modified productive structure analysis) and Moran for an existing binary geothermal power 

plant in western Turkey. Exergy and exergoeconomic analyses of the Dora II binary geothermal power plant with 

9543 kW net power output is carried out by using actual plant data to evaluate plant performances and 

thermoeconomic costs. The objective of the study is to perform the advantages and disadvantages of the 

presented thermoeconomic methods with respect to the one other using a binary geothermal plant data. The 

presented thermoeconomic methodologies are used to reveal and compare the cost flows and products 

interactions between the system components. The overall energy and exergy efficiencies of the plant are 

calculated to be 47.3% and 13.5%. The unit exergetic costs of electricity are calculated to be 0.0436 $/kWh for 

MOPSA method, 0.0367 $/kWh for SPECO method and 0.0355 $/kWh for MORAN method, respectively. 
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INTRODUCTION 

Energy is the great deals of the phenomena in the world and it is a very important tool for the 

sustainability of life. Because we use it in every single thing we do. Especially developed and developing 

countries are required too much needs. Electricity is the most efficient and useful forms of the energy. Therefore, 

different kinds of resources and methods are used in energy production. In addition, many explorations and 

investigations are being to solve energy requirements. Environmental disasters and recent progress caused by the 

use of fossil fuels that have led us directly to the use of renewable energy sources for energy productions. 

Harmful effects of the environmental pollution on living and human health are increasing day by day. For that 

reason, there is a restriction to the use of the fossil fuels for the use of energy on a country basis. Renewable 

energy power production is attractive and feasible way to solve for the environmental pollutants and health 

problems [1]. Main renewable energy sources include solar, wind, hydropower, geothermal and biomass. 

Hydroelectric, geothermal and wind power generation are able to compete with fossil fuel based on electricity 

generation economically but solar electricity is still expensive. However, steady decrease in solar electricity cost 

and government incentives can help wider use of solar electricity. Biomass, solar, and geothermal electricity 

generation are also expected to increase in the coming years [2].   

Among renewable sources, geothermal energy has significant potential in electricity production for 

Turkey.  Geothermal energy is the water thermal absorbed energy by the ground within the earth interior energy. 

It is a renewable energy resource because heat is continuously transferred from within the earth to the water 

recycled by rainfall or reinjected back to the ground after use. Geothermal energy conversion is one of the most 

mature renewable energy technologies. Geothermal energy is mostly used for electricity production and heating. 

Today, the most common method is the binary geothermal power plant that allows electricity generation from 

low grade energy sources [3]. As it is considered to electricity production assisted by the geothermal energy.  

Because geothermal energy is the most popular and common renewable energy source in Turkey. Turkey is a 

developing country, so energy requirements are too high for industry and commercial applications. In particular, 

the use of renewable and domestic energy sources will be very important to solve our external dependency on the 

energy requirements. Turkey geothermal resources are mainly composed of low grade energy sources. But this is 

not a disadvantage with the progress of new technology. Binary systems that are developed with low boiling 

point as a working fluids makes possible to produce of electricity. Thus, electricity can be produced from low 

temperature geothermal water. A binary plant in Alaska uses a geothermal resource at 57ºC [4]. These plants 

operate on a Rankine cycle with binary working fluid (isobutene, pentane, isopentane, R-114, etc.) that has a low 
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boiling temperature. The unit electricity cost that can be produced from geothermal resources is 5 – 7 $/kWh for 

power plant capacity less than 5 MW. The electricity production cost is about 4 – 7 $/kWh for the plant capacity 

of 5 – 30 MW. Finally, electricity production cost is about 2.5 – 5 $/kWh for the geothermal power plants larger 

than 30 MW capacity [5].  

Although, there are large numbers of studies in solar, wind, and hydropower energies for electricity 

production, limited number of studies exists on using geothermal energy. Next it is provided an overview of 

some of the more relevant studies in literature.  Ganjehsarabi et al. [6] has been conducted an exergetic 

performance analysis of the Dora II geothermal power. They are evaluated the overall energetic and exergetic 

efficiencies of the plant to be 10.7% and 29.6%, respectively. Zare [7] has investigated and compared the 

performance of three organic Rankine cycles (ORC) for binary geothermal plants. He is evaluated to three 

organic Rankine cycles (ORC) configurations for the plants that considered product cost optimization and proper 

model selection. Ozgener and Yildirim [8] have conducted a review on the thermodynamic and exergoeconomic 

analysis of geothermal plants. Exergoeconomic analysis of Dora I and Dora II are calculated by them. They are 

evaluated simple thermodynamic and exergoeconomic analysis of the plant.  Especially comparisons of the two 

plant results are evaluated by simultaneously. Rašković et al. [9] have conducted a case study on the performance 

analysis of electricity generation by medium temperature geothermal resources. Their results of the study 

showed that the plant design based on the Rankine cycle has a higher efficiency and lowest cost of equipment 

and also, this type of plant is more feasible for the future geothermal plants in low grade geothermal resources 

area.  Coskun et al. [10] has performed a modified exergoeconomic model was proposed for the analysis of 

geothermal power plant and special case application that applied to the Tuzla geothermal plant. Their study is the 

first exergy cost calculation for Turkey geothermal plants. Besides of these, the existing electricity power 

productions of geothermal resources areas are considered for Turkey. They can be listed as follows: Denizli–

Kizildere (242°C), Aydin–Germencik (232°C), Canakkale–Tuzla (173°C), Aydin–Salavatli (171°C), Aydin–

Yilmazkoy (165°C), Kutahya–Simav (162°C), Manisa–Salihli (155°C), Izmir-Seferihisar (153°C), and Izmir–

Balcova (126°C) (Erdogdu, 2009). The current installed geothermal power plant capacity is 992 MW with recent 

developments and government incentives for Turkey [11].  

The thermodynamic analysis of the plant has been carried out and performance values have been 

conducted. There is no cost analysis study that was found for the system in the literature. It will be performed a 

study that includes the thermoeconomic analysis of the Dora II geothermal binary plant. The unit cost of 

electricity produced by using different thermoeconomic analysis methods is considered. The plant is analyzed 

and the obtaining cost results of thermoecenomic methods are compared by each other. Thermoeconomic cost 

analysis methods are developed by Lazzaretto and Tsatsaronis [12] that are specific exergy costing approach. 

 According to the specific exergy costing (SPECO) approach [13], fuels and products are defined 

systematically by registering exergy additions to and removals from each material and energy stream. This 

method consist of three main steps (1) identification of exergy streams, (2) definition of fuel and product for 

each system for each system components, (3) cost balance equations. This method has been largely and 

successfully used and applied to the thermal systems by the researchers in the area of thermoeconomics. Also, 

SPECO is the most real and applicable to the thermal system and easy and speed results can be obtained by the 

way. This approach is more flexible than other, allows engineers to actively participate in the cost assigning 

process and leads to results that are much closer to anticipated values. The approach is the simplest and most 

general approach among all versions of the exergoeconomic method presented in the study.  

Modified productive structure exergoeconomic cost analysis (MOPSA) approach is the first proposed 

by Kwak et al.[14]. The method is based on the exergy costing approach without flow stream cost calculation. In 

the MOPSA method, a cost balance equation is obtained by assigning unit exergy cost to each disaggregated 

exergy in the stream at any state. This method is considered physical and chemical parameters of the flow of 

each stream. The calculation of exergetic cost is more complicated as a result of this method. So, this method 

will give more accurate results for chemical process system plants. There is no need much detail of electricity 

production for the thermal systems.   

In the Moran method, production cost deepens on fuel cost and exergetic efficiency of the plant and is 

affected by the ratio of the monetary flow rate of non-fuel items to the monetary flow rate of fuel items. In this 

method, it is not easy task to calculate the production costs if the plant produces multiple products or has 

multiple input fuels. Overall system as can be seen to a unique that assumption to produce unit product cost 

results approach is expressed by Moran method [15]. 
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In this study presents a comparison of the three thermoeconomic approaches that applied for the 

existing binary geothermal power plant of Dora II.  The geothermal plant of Dora II contains two binary unit 

systems that operate simultaneously. The unit cost electricity production from geothermal water is investigated 

by using the three well-known exergoeconomic methods. The first one of them is SPECO (Specific exergy 

costing) method, the second one is MOPSA (Modified productive structure analysis) method, and third one of 

them is Moran method. The plant has a total power capacity of 9.5 MW and installed in Aydin city of Turkey. 

The developed of the computer aided thermeoconomic model based on the three approaches are used to reveal 

and compare the cost flows between system components. The novelty of this study is the cost results calculations 

and comparisons by applying different thermoeconomic methods and also can be expressed as i) to performed 

thermodynamic analysis of the plant, ii) to evaluate system components and streams using the thermoeconomic 

analysis, iii) to conduct the exergy cost balance equations for each component and to evaluate the three possible 

thermoeconomic methods results of the plant and iv) to exhibit the advantages and disadvantages of the 

thermoeconomic methodologies with respect to the other approaches an existing binary geothermal power plant.   

 

SYSTEM DESCRIPTION AND WORKING PRINCIPLE 

The geothermal power plant Dora II presented in Figure 1 is an existing binary power plant which is 

located in the western Turkey in the city of Aydın and started to produce power in 2010. Dora II geothermal 

power plant considered has a power capacity of 9540 kW. The operating system is an integrated two level 

(ITLU) double conversion system. ITLU system is a simple Rankine cycle in which the boiling of the working 

fluid occurs at the two pressure levels. This operating system provides better utilization efficiency and allows 

geothermal water is to be cooled at lower temperature before reinjected to the ground that provides more heat 

absorption.   

 
Figure 1. Representative configuration of Dora-II binary geothermal power plant [16] 
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Dora II binary power plant uses the effective geothermal water temperature 160.1 ºC as the heat source 

of energy input for the electricity generation. Dora II plant has the geothermal water characteristic of liquid 

dominated resources at relatively low temperatures. The cycle operates on the combined two stages Rankine 

cycle with n pentane as the working fluid that has a low boiling temperature. Geothermal water energy is 

transferred to the cycle by the binary heat exchangers in which geothermal water enters at 160.1 ºC at a rate of 

168.9 kg/s and leaves 62 ºC. n - Pentane enters the binary turbines at 1650 kPa in high level and 720 kPa in low 

level unit. The highest temperatures of n - pentane at the inlet state of the turbines in the cycles are 145ºC and 

105ºC. n - Pentane is condensed in an air cooled condensers and pumped to the heat exchangers pressures. The 

pumps and turbines isentropic efficiencies are taken to be %85. The geothermal water passes through a series of 

binary heat exchangers where energy is transferred to the binary working fluid of n- Pentane before the 

geothermal water is reinjected back to the ground at 62ºC. The binary working fluid of n- Pentane is condensed 

through air cooled condenser, so there is no need to consumption of fresh water. And also, the schematic of the 

plant with state numbers and equipments are given Fig.1. These thermodynamic data are almost real 

experimental values of the plant [16].  The n- Pentane that has low boiling point temperature is vaporized to spin 

the turbines for production of electricity which connected to a power generator. All geothermal plants operating 

on the reservoir area used steam that is accompanied by significant amount of non condensable gases (NGC). 

When the concentration exceeded about 5% by weight of steam, two level cycle model can be used [11]. 

The production units are consisted of the closed loop cycles in themselves due to the totally reinjected 

of the geothermal water back to the ground. Thus, both the sustainability of the resources and bad environmental 

effects are eliminated. This system operating type as engineering that is a useful example for geothermal 

resources to be renewable and suitable. 

  

THERMODYNAMIC ANALYSIS OF THE PLANT 

The plant and components are assumed to be a steady- state flow process in thermodynamically and 

also, use the control volume that is used in the calculation of the plant. Mass, energy and exergy balance 

equations for the control volume at steady state with neglecting other forms of energy requirements can be 

written as follows [17]. 

 

                                                      ei mm              (1) 

 

                                          iiee hmhmWQ             (2) 

 

                            destiieeheat xEexmexmWxE               (3) 

 

where Q  andW  are net input and work output, the denotations i and e indices represent inlet and exit states, m  

mass flow rate, h specific enthalpy, ex specific exergy flow, destxE exergy destruction rate, and heatxE  the 

exergy rate with heat transfer at temperature T, which is given by 
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The specific exergy rate is given by 

 

                                             000 ssThhex             (5) 

 

where s is the specific entropy and the indices 0 denotes the dead state.  

  



Journal of Thermal Engineering, Research Article, Vol. 4, No. 5, pp. 2355-2370, July, 2018 

2359 

 

The thermal efficiency of a geothermal plant can be defined as a measure of how well the geothermal 

water energy is converted to the electricity work and also, same way exergy efficiency of the plant can be 

defined. Thermodynamic first and second low efficiency of the plants can be written as  
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where geonetW ,
  is the net power output from the plant, ingeoQ ,

  is the net energy input to the plant and ingeoxE ,
  is 

the exergy input to the plant from geothermal water. Here, 
geom  is the mass flow rate of geothermal water and 

“geo” index denotes the geothermal water specific enthalpy and entropy values and “0” index denotes the 

environmental dead states specific enthalpy and entropy values. parasiticW  is the parasitic work used in the plant 

for various internal and external uses. The parasitic work is mainly comprised of fan work consumption in the 

air-cooled condenser. It is assumed that about %20 of net work output is used satisfy the parasitic work 

requirements [17]. 

 

Table 1. Thermodynamic analysis results of the plant 

State Fluid P (kPa) T (ºC) m (kg/s) h(kJ/kg) s(kJ/kgºC) ex(kJ/kg) xE (kW) 

0 Geothermal water 84 14 - 58.87 0.2099 - - 

0’ n-pentane 84 14 - -374.6 -1.774 - - 

0’’ Air 84 14 - 287.5 5.658 - - 

1 n-pentane 1650 145 76.73 179.1 -0.3018 131 10054 

2 n-pentane 120 80 76.73 93.67 -0.2596 33.48 2569 

3 n-pentane 120 31.5 76.73 -335.2 -1.641 1.255 96.32 

4 n-pentane 1650 32.4 76.73 -332.1 -1.639 3.807 292.1 

5 n-pentane 1650 117.4 76.73 -114.1 -1.012 41.87 3213 

6 n-pentane 720 105 70.31 121.9 -0.3723 94.07 6615 

7 n-pentane 100 61.5 70.31 59.14 -0.3397 21.93 1542 

8 n-pentane 100 26 70.31 -347.9 -1.682 0.6102 42.91 

9 n-pentane 720 26.4 70.31 -346.5 -1.682 1.631 114.7 

10 n-pentane 720 100 70.31 -88.11 -0.935 45.64 3209 

11 Geothermal water 620 160.1 168.9 676 1.944 119.3 20154 

12 Geothermal water 620 130 168.9 546.6 1.634 78.81 13312 

13 Geothermal water 620 110 84.45 461.8 1.418 55.94 4725 

14 Geothermal water 620 60 84.45 251.7 0.831 14.55 1229 

15 Geothermal water 620 110 84.45 461.8 1.418 55.94 4725 

16 Geothermal water 620 64 84.45 268.4 0.8809 16.95 1431 

17 Geothermal water 620 62 168.9 260.1 0.856 15.73 2657 

18 NCG 620 160.1 5.085 2758 6.748 821.3 4177 

19 NCG 620 111.8 5.085 2707 7.118 761.67 293.7 

20 Air 101.3 14 2114 287.5 5.658 0 0 

21 Air 101.3 29.5 2114 303.1 5.71 0.4008 847.2 

22 Air 101.3 14 2191 287.5 5.658 0 0 

23 Air 101.3 27 2191 300.6 5.702 0.2867 606 
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Under these operating conditions, obtaining results are summarized and explained in Table 1. Each 

states of system are solved by simultaneously and denoted energy and exergy rates. Plant components energy and 

exergy values are calculated by fuel-product approach. So that can be supplied to define the exergy losses part of 

the system. These loses are effect by the system flow costs. Exergy cost methodologies are directly related to the 

unit state exergy vales of each stream of the system. Exergetic cost values are assigned for each stream of flow 

chart of the system. All flow exergetic cost possibilities are solved by simultaneously that can be extracted 

unknown flow cost parameters. Some cost values are assumed before the system simulated in the computer 

environment. So these values real literature operations values for that reason that are assumed by the open 

literatures. Thermodynamic energy and exergy analyses are very important thing for that reason through the 

thermoeconomic analysis. Due to the thermodynamic analysis is the key of primary carrier of thermoeconomic 

calculation of the system. Thermodynamic analysis results are obtained under these real operating conditions of 

the modeled system that are given in Table 1. 

 

THERMOECONOMIC ANALYSIS OF THE PLANT 

A cost balance for a system is usually performed at a steady state for each of the system equipment as a 

control volume assumption that can be denoted for balance equation by [18] 
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Here; 

 

                                            xEcC               (9) 

 

c is the associated average cost per unit of exergy stream in $/kJ, C  is the stream associated with the 

corresponding exergy stream, 
Q

kC and 
W

kC are the cost rates associated with heat and power from the 

components in $/h, respectively. The term of 
T

kZ  is the summation costs rate for the each equipment investment 

cost and also, operating and maintenance costs in hourly levelized of $/h. Here are personalized 

recommendations based on economic latest evaluated values in thermoeconomic analysis. The total value of 

equipment levelized cost value is expressed as [18] 
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The calculation of values of the equation parameters can be calculated to use by levelized cost method. 

These are given as follows [18].  

The present worth factor for a particular plant equipment can be written as 
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The salvage value: 
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Annual capital investment cost of the component (Ck) 

 

CRFPWC kk            (14) 

 

Capital recovery factor (CRF) 
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Annualized equipment cost of the plant 
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System hourly operation and maintenance cost of the each component in the plant is determined from 

the overall system annual operation and maintenance cost 
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          (17) 

where τ is the annual operation time of the plant in hourly, OMC is the yearly operation and maintenance cost of 

the plant. The economic life period of the plant n is assumed to be 20 years and yearly interest rate, i of the plant 

investment is taken to be %7 for the plant. Sk is the salvage value of the each equipment of the plant that can be 

assumed to be a SV %20 of the purchase equipment cost. The sale value of the system at the end of its service 

lifetime is called salvage or scrap value [19]. 

 

THERMOECONOMIC COST RELATIONS 

In the cost formation process of an engineering system, many different approaches have been used to 

analyze for different engineering applications. These are classified and selected to the using areas. Because each 

application has unique features that allow it to achieve appropriate results, depending on its research area. For 

energy systems applications, thermodynamic based exergoeconomic methods would be more appropriate. 

Thermodynamically based cost assessment has become a challenge for feasibility studies. According to the 

results of the best appropriate models and the best working conditions are determined.  Accordingly, the most 

common methods applied in the literature for energy systems are considered for the investigation. In this section 

the brief information on SPECO, MOPSA and Moran methods is given to obtain the exergy based cost equations 

for the existing binary geothermal power plant. 

 

Specific Exergy Costing (SPECO) Method 

The SPECO method is based on the cost association of all flows in the system depending on the exergy 

analysis. This method is fallowing procedures as: (i) definition and assignment of exergy streams of each state of 

the plant, (ii) the fuel and the product are identified for each component of the system and (iii) equations of the 

cost assignments. In the cost of exergy, each exergy flow is associated with a cost value. Exergy transfers by the 

entering and exiting streams of the plant and by power and heat transfer rates can expressed as [13] 
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        qqq xEcC              (21) 

 

Accordingly, for a component receiving heat transfer and generating power, it may be written as 

 

       
i

ii

T

k

i
kiiq,kq,kkw,k

e
kee ExcZxEcxEcWcxEc        (22) 

 

where ci, ce, cw and cq denote average costs per unit of exergy in dollars per gigajoule ($/GJ). 

 

Modified Productive Structure Analysis (MOPSA) 

 In this method, the thermomechanical exergy stream may be decomposed into mechanical and thermal 

components of exergy as [14] 
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where the subscripts i and j denote, respectively, exergy flow streams entering or leaving the plant component.  

The thermal component of the exergy stream is given as: 
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With decomposition of an exergy stream defined in Equation 23, the exergy balance may be written as 

follows 
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 The fifth term in the Equation 24 represents the rate of entropy loss, and may be referred to as 

negentropy [14]. The term 
CHExE  in Equation 24 denotes the rate of exergy flow of fuel in the plant. Assigning 

unit exergy cost to each decomposed exergy in the stream, the cost-balance equation corresponding to the 

exergy-balance equation given in Equation 24 may be written as 
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The term 
T

kZ  includes all financial charges associated with owning and operating the kth plant 

component. Equations 24 and 25 are two basic relations used in the MOPSA method for exergy costing of 

products. 
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Unit System of One Product (Moran) Method 

In this method, the system has a single input that is a fuel and a single output that is electricity. In this 

approach, the cost of fuel consumed at any time interval is considered to be an important part of the total cost for 

that period. For such a system, it is convenient to express the annual cost of the product as the sum of fuel cost, 

plant installation cost and operating and maintenance cost. The cost of the product due to the second law 

(exergy) efficiency for the plant can be described as follows [15], 
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In the geothermal power plant the geothermal water is assumed as a fuel. The direct cost of the 

geothermal exploration work (Cgeothermal =2,532,221 $), can be estimated based on the Aydın-Salavatlı geothermal 

power plant zones. According to the World Bank Group (2004), the direct cost for typical low-temperature 

geothermal resource exploration work varies between 400 and 1,000 $/kW. It includes a preliminary geological 

survey based on geological photos or a remote sensing scan, detailed geological and/or geochemical surveys, 

geophysical surveying and/or shallow thermal gradient well drilling, drilling of test wells and reservoir modeling 

[20]. Thus, the levelized specific cost of the geothermal water, cgeo ($/kg), is determined as,  
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where CRF is the capital recovery factor, top is the operating time in a year and, is the flow rate of  geothermal 

water in the plant. 

 

RESULTS AND DISCUSSION 

Using low temperature resources, geothermal power plants generally have low energy efficiencies.  

Consequently, the energy efficiency of the binary plant is calculated to be 13.5% based on the energy input to the 

n pentane Rankine cycles, according to the states at 11 and 17.this means that more than 80% of the energy of 

the geothermal water in the reservoir is discarded as waste heat. Exergy rate input in the plant is calculated to be 

20,150 kW by approximation of exergy transferred from geothermal water to the system. The net power output 

in the plant is calculated to be 9543 kW. Using the exergy change of geothermal water is taken to be as the 

exergy input to the cycle. The exergy efficiency of the plant can be evaluated as 47.35% for the binary power 

plant. 

Exergy destructions of the components of the Dore II binary geothermal power plant are given in Figure 

2. The most destructive components are air cooled condensers, representing 1621 kW and 1123 kW of the total 

exergy destruction in the cycle, respectively. The causes of exergy destruction in the plant include heat 

exchanger losses, turbine-pump losses, the exergy of the geothermal water reinjected, and the exergy of n 

pentane lost in the air cooled condensers. For binary geothermal power plants using air as the cooling medium, 

the condenser temperature varies as the ambient air temperature fluctuates throughout the year and even 

throughout the day. As a result, the power output decreases by up to 50% from winter to summer with exergy 

destructions. 

The total investment cost rates of the binary geothermal power plant components are given in Table 2. 

The unit cost of the n-pentane is 3.5 $/kg by taking LHV of n-pentane as 45,227 kJ/kg, the specific unit exergetic 

cost of the working fluid is calculated to be 77.30 $/GJ [21]. The exergetic cost rate of the working fluid at the 

exit of pump is obtained as 26.80 $/h by taking the data given in Tables 1 and 2. The exergetic cost rates and the 

specific unit exergetic costs of the states are given in Table 1 referring to Figure 1. These values are calculated by 

solving the equations with developed by SPECO approach that results are listed in Table 3. The unit exergetic 

cost of production electricity in the plant is calculated to be 10.22 $/GJ by SPECO approach. 
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Figure 2. Exergy destructions in the components of Dore II binary power plant 

 

As an important criterion in thermoeconomic assessment in component level is the exergy destruction 

cost rates. The values of destructions cost rates, under the real operating conditions (for n pentane as the working 

fluid), are presented in Figure 3 for the components of the plant. According to the Figure 3, air cooled 

condensers have higher values of exergy destruction cost rates compared to the other components. 

The cost structure of the system can be obtained by applying Equation 12 to each component of the 

plant in MOPSA method. Thus, the unit exergetic cost of electricity produced in the plant is calculated to be 

12.12 $/GJ by this method. By using Equation 15, and the data provided by ref [21], capital recovery factor 

(CRF) is obtained as 0.094, and then the unit cost of the geothermal water (cgeo) is calculated to be 4.56×10-5 

$/kg. By taking the total sum of the capital and operating and maintenance costs as 384.503 $/h in Table 2, the 

unit exergetic cost of electricity produced in the plant is calculated to be 9.88 $/GJ by Moran method. 

The electricity production costs obtained for the existing binary geothermal power plant by SPECO, 

MOPSA and Moran methods are given in Table 4. The results indicated that the relative deviation in the 

production costs evaluated from SPECO and MOPSA methods is about 15.6%. The relative deviation between 

SPECO and Moran methods is also about 3.6%, but the relative deviation between MOPSA and Moran methods 

is about 18.6%. The unit cost of electricity for the binary geothermal system is lower when Moran method is 

used. 

 

 
Figure 3. Exergy destruction cost rates of the Dora II binary geothermal power plant components  
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Table 2. The cost rates associated with capital investment and operation and maintenance costs for the 

subcomponent of the plant [18] 

Components  PEC ($) 
IC

kZ ($/h) 
OMC

kZ ($/h) 
T

kZ ($/h) 

Turbine-1 3,508,000 139.458 26.563 166.021 

Turbine-2 3,508,000 139.458 26.563 166.021 

Condenser-1 198,870 7.90 1.50 9.40 

Condenser-2 198,870 7.90 1.50 9.40 

Pump-1 76,000 3.021 0.575 3.596 

Pump-2 76,000 3.021 0.575 3.596 

Heat exchanger-1  65,940 2.621 0.50 3.120 

Heat exchanger-2 65,940 2.621 0.50 3.120 

Preheater-1 138,750 5.515 1.05 6.565 

Preheater-2 138,750 5.515 1.05 6.565 

Cooling pump 95,000 3.776 0.719 4.495 

Other plant equipments 55,000 2.186 0.416 2.602 

Total PEC 8,125,120 322.992 61.511 384.503 

OMC 513,183.3($/year)  

 

Table 3. The exergy flow rates, cost flow rates and the unit exergy costs associated with each stream of the plant 

by SPECO approach  

State xE (kW) C ($/GJ) C ($/h) 
1 10,054 1.505 54.49 

2 2569 1.505 13.92 

3 96.32 77.30 26.80 

4 292.1 37.40 39.33 

5 3213 4.12 47.68 

6 6615 1.471 35.03 

7 1542 1.471 8.167 

8 42.91 77.30 11.94 

9 114.7 45.60 18.82 

10 3209 2.361 27.28 

11 20,154 0.15 10.18 

12 13,312 0.15 7.188 

13 4725 0.15 2.552 

14 1229 0.15 0.6637 

15 4725 0.15 2.552 

16 1431 0.15 0.7727 

17 1330 0.15 0.7182 

18 232.29 0.15 0.1254 

19 216.54 0.15 0.1169 

20 0 10.11 0 

21 847.2 6.77 20.64 

22 0 10.11 0 

23 606 4.85 10.58 

IturbW ,
  6557 8.75 206.6 

IIturbW ,
  4414 12.13 193 

IpumpW ,


 

241.4 10.11 8.932 

IIpumpW ,


2 

88.83 10.11 3.287 

plantW  9543 10.11 400 
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 The Moran method is simpler than the SPECO and MOPSA methods, but the result is worthy of the 

results of these two methods. Also the Moran method can be used only in one case and it is when the power plant 

produces only one product, but we can use the MOPSA and SPECO methods for power plants that produce more 

than one product. The SPECO method is simpler than MOPSA method and its result is also near to the result of 

the Moran method. Therefore, it can be selected as the best of the methods presented. Power output linearly 

increases with the geothermal water temperature as shown in Figure 4. Maximum power outputs are more 

sensitive at lower temperature than at higher temperatures because the thermodynamic efficiency of the cycle 

sharply decreases with temperature. 

 

Table 4. The comparison of electricity production costs of the system for different methods 

Method celectcity ($/GJ) celectcity  ($/kWh) 

MOPSA 12.12 0.0436 

SPECO 10.22 0.0368 

Moran 9.88 0.0355 

 

 Some parametric studies are given below. The variations of the geothermal water temperature on the 

thermodynamic and economic parameters of the system have been investigated. 

 

 

Figure 4. Exergy destruction cost rates of the Dora II binary geothermal power plant components  

 

Figure 5 shows the variation of electricity production cost with respect to the different power outputs by 

SPECO, MOPSA and Moran methods. The mass flow rate and temperature of the geothermal water are the two 

important parameters in cost calculations and the change of the unit cost of electricity is crucially dependent on 

the temperature of the geothermal water. 

Figure 6 shows the variation of electricity production cost with respect to the different geothermal water 

temperatures by three methods considered. As can be seen from the Figure 6, the production cost of electricity 

logarithmically decreases with the increase of geothermal water temperature. The reason is that more energy 

absorbed is obtained from the same geothermal water. 
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Figure 5. Exergy destruction cost rates of the Dora II binary geothermal power plant components  

 

 

Figure 6. Variation of electricity production cost with respect to the different geothermal water temperatures by 

SPECO, MOPSA and Moran methods 

 

CONCLUDING REMARKS  

Energy system installation cost evaluation methods are based on cost allocation rules.  In order to build 

up the cost formation of a thermal system, the general cost relations which link the flows of exergy inputs and 

outputs between system components must be obtained. 

 In this study, the unit costs of the electricity produced by an existing binary geothermal power plant are 

compared in terms of three exergoeconomic methods. To the best of authors’ knowledge, this study is 

the first one for the comparison of these well-known exergoconomic methodologies by using the actual 

operational data of an existing binary geothermal power plant.  
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 Under these realistic conditions, exergy rate input of the plant is evaluated to be 20,150 kW. The net 

power output in the plant is calculated to be 9543 kW. The exergy efficiency of the plant can be 

evaluated as 47.35% for the binary power plant. 

 The unit exergetic electricity production costs in the plant are calculated to be 0.0436 $/kWh for 

MOPSA method, 0.0367 $/kWh for SPECO method and 0.0355 $/kWh for Moran method, respectively. 

 If the methods are evaluated within themselves, the lowest cost is always the Moran method and the 

highest cost is the MOPSA method that is evaluated. The SPECO method gives a cost result between 

these two methods.  

 According to the results of study, specific exergy costing (SPECO) method is the best suitable approach 

to forecast and determined the production of electricity cost by two level binary geothermal plants.  

 The SPECO method is much simpler in terms of feasibility and observation for energy system 

operations. The Moran method approximation is very simple and assumed to be a unit system. So, the 

results are not exactly sensitive. Because, the system has been model according to the one inlet and one 

exit flows. The MOPSA method approximation is the most complicated. The method is considered 

chemical properties and different entropy definition of each stream. Therefore, the analysis is more 

complex for different flows and chemical plant systems. But there is no need too much detail for the 

basic thermal systems 
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NOMECLATURE 

c cost per exergy unit, $/GJ 

C  cost associated with exergy flow, $ 

CRF capital recovery factor 

C  cost rate associated with exergy, $/h  

ex specific exergy, kJ/kg 

xE  rate of exergy flow, kW 

h enthalpy, kJ/kg  

HE heat exchanger 

i interest rate, % 

LHV  lower heating value, kJ/kg 

LC  levelized cost, $/yr 

m  mass flow rate, kg/s 

PEC  purchased equipment cost, $ 

PH  preheater 

PW  Present worth 

PWF Present worth factor 

s entropy, kJ/kg K 

S Salvage value, $ 

T temperature, °C 

NGC  non condensable gases 

W   power, kW 

kZ  capital cost rate unit, $/h 

η energy efficiency 

ɛ exergy efficiency 

τ  capacity factor of system 

$ United State Dollars, US$ 

0 standard state 
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e exit state 

geo geothermal water 

i inlet state 

in inlet 

k system component 

x material stream 

out outlet 

q heat 

·  time rate 

BQ  Steam 

CHE chemical 

CI investment cost 

CC  carrying charges 

CHE chemical 

m material 

OC  operation maintenance 

N operating period, year 

P mechanical 

T thermal 

W power 
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