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ABSTRACT 

In this paper, effects of thermo-fluidic parameters on the nonlinear dynamic behaviours of single-walled 

carbon nanotube conveying fluid with slip boundary conditions and resting on linear and nonlinear elastic 

foundations under external applied tension and global pressure is studied using homotopy perturbation method.  

From the result, it is observed that increase in the Knudsen number, the slip parameter,  leads to decrease in the 

frequency of vibration and the critical velocity while natural frequency and the critical fluid velocity increase as 

the in stretching effect increases.  Also, as the Knudsen number increases, the bending stiffness of the nanotube 

decreases and in consequent, the critical continuum flow velocity decreases as the curves shift to the lowest 

frequency zone. As the change in temperature increases, the natural frequencies and the critical flow velocity of 

the structure increase for the low or room temperature while at high temperature, increase in temperature change, 

decreases the natural frequencies and the critical flow velocity of the structure. Further, it is established that the 

alteration of nonlinear flow-induced frequency from linear frequency is significant as the amplitude, flow velocity 

and axial tension increase. The developed analytical solutions can be used as starting points for better 

understanding of the relationship between the physical quantities of the problem. 

 

Keywords: Thermo-Fluidic Effects, Non-Linear Vibration, Slip Boundary Condition, Fluid-Conveying 
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INTRODUCTION 

There have been increasing interests and rapid developments in the study of nanotube following the 

discovery of Iijima [1]. As part of the numerous applications, carbon nanotube (CNT) has been used for 

conveying/transporting fluid and the study of effects and the conditions of moving fluid on the overall mechanical 

behaviour of CNTs have been an area that has aroused significant and challenging research interests. Consequently, 

the dynamic analysis of flow-induced vibration of CNT has attracted a large number of studies in literatures in 

recent years [2-15]. Modeling the dynamic behaviours of the structures under the influence of some thermo-fluidic 

or thermo-mechanical parameters often results in nonlinear equations and such are difficult to find the exact 

analytical solutions. In some cases where decomposition procedures into spatial and temporal parts are carried out, 

the resulting nonlinear equation for the temporal part comes in form of Duffing equation (a second-order 

differential equation with cubic or quintic nonlinearity).  Since, it is difficult to find an exact analytical solution 

for the nonlinear equation, approximate analytical solutions are sought for. In such an adventure, perturbation 

method has proven to be a well-known and most versatile method in nonlinear analysis of engineering problems, 

but its limitations hamper its applications [16]. It is a method based on existence of or assuming a small parameter 

and in solutions, in most cases, are valid only for small values of the small parameter [16-20]. However, an 

overwhelming majority of nonlinear problems, especially those having strong nonlinearity, have no small 

parameter at all [16-20]. Also, there is no criterion on which the small parameter should exist and the determination 

of small parameters seems to be a special art requiring special techniques.  In order to overcome this difficulty, 

many different new methods have recently introduced such as Exp-function method, artificial parameter method, 

He’s Exp-function method, δ-expansion method, improved F-expansion method, quotient trigonometric function 

expansion method, cubication method, quantification method, Newton’s harmonic balancing method, variational 

iteration method, homotopy perturbation method, homotopy analysis method, Adomian decomposition method, 

differential transformation method [21-29] etc.  However, the development of analytical solutions by most of these 

new methods often involved complex mathematical analysis leading to analytic expression involving a large 

number terms. In practice, analytical solutions with large number of terms and conditional statements for the 

solutions are not convenient for use by designers and engineers [30, 31]. Consequently, in many research works, 

recourse has been made to numerical methods in solving the problems. However, the classical way for finding 

analytical solution is obviously still very important since it serves as an accurate benchmark for numerical 
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solutions. When such analytical solutions are available, they provide good insights into the significance of various 

system parameters affecting the phenomena. Approximate analytical solutions such as homotopy analysis method 

(HAM) is a reliable and efficient semi-analytical technique, but it suffers from a number of limiting assumptions 

such as the requirements that the solution ought to conform to the so-called rule of solution expression and the rule 

of coefficient ergodicity. Also, the use of HAM in the analysis of linear and nonlinear equations requires the 

determination of auxiliary parameter which will increase the computational cost and time. Also, the lack of 

rigorous theories or proper guidance for choosing initial approximation, auxiliary linear operators, auxiliary 

functions, and auxiliary parameters limit the applications of HAM.  Moreover, such method requires high skill in 

mathematical analysis and the solution comes with large number of terms. In practice, analytical solutions with 

large number of terms and conditional statements for the solutions are not convenient for use by designers and 

engineers [32]. 

The determination of Adomian polynomials as carried out in Adomian decomposition method (ADM), 

the need for small perturbation parameter as required in traditional PMs, the rigour of the derivations of differential 

transformations or recursive relation as carried out in differential transformation method (DTM), the lack of 

rigorous theories or proper guidance for choosing initial approximation, auxiliary linear operators, auxiliary 

functions, auxiliary parameters, and the requirements of conformity of the solution to the rule of coefficient 

ergodicity as done in HAM, the search Langrange multiplier as carried out in variational iteration method (VIM), 

and the challenges associated with proper construction of the approximating functions for arbitrary domains or 

geometry of interest as in Galerkin weighted residual method (GWRM), least square method (LSM) and 

collocation method (CM) are some of the difficulties that are not experienced in HPM. Furthermore, in the class 

of the newly developed approximate analytical methods, homotopy perturbation method is considered to relatively 

simple with fewer requirements for mathematical rigour or skill.  HPM solves differential equations, difference 

equation, differential-difference equations, fractional differential equation, pantograph equation and integro-

differential equation. It solves nonlinear integral and differential equations without linearization, discretization, 

closure, restrictive assumptions, perturbation, approximations, round-off error and discretization that could result 

in massive numerical computations. It does not require small parameter in the algebraic or differential equation as 

done in the other traditional perturbation methods (Regular and singular perturbation).  It provides excellent 

approximations to the solution of non-linear equation with high accuracy.  Also, most of the above methods are 

limited to small domains. Applying the methods to large or infinite domain problems are often carried out with the 

applications of before-treatment techniques such as domain transformation techniques, domain truncation 

techniques and conversion of the boundary value problems to initial value problems or with the use of after-

treatment techniques such as Pade-approximant, basis function, cosine after-treatment techniques, sine-after-

treatment techniques and domain decomposition techniques. Indisputably, such additional computations through 

the before- and after-treatment techniques increase the computational cost and time. Furthermore, the search for a 

particular value that will satisfy second the boundary condition in DTM, HAM, ADM, and VIM necessitated the 

use of software and such could result in additional computational cost in the generation of solution to the problem. 

This drawback in the other approximation analytical methods is not experienced in HPM. HPM is a powerful 

method that gives acceptable analytical and accurate results with convenient convergence and stability [16-20]. 

Therefore, in finding approximate analytical solutions to linear and nonlinear differential equations, HPM has fast 

gained ground as it appeared in many engineering and scientific research papers. Although, the improved HPM 

such as optimal homotopy asymptotic method (OHAM), optimal homotopy perturbation method (OHPM), 

homotopy analysis method (HAM), Optimal homotopy analysis method (OHAM) give higher accurate results than 

HPM but this comes with increased computational cost and time. In the class of the newly developed approximate 

analytical methods, homotopy perturbation method is considered to be relatively simple with fewer requirements 

for mathematical rigour or skill.  Therefore, in this work, homotopy perturbation method is used to study the effects 

of thermo-fluidic parameters on the nonlinear dynamic behaviors of single-walled carbon nanotube conveying 

fluid with slip boundary conditions. Galerkin’s decomposition procedure is employed to decompose the developed 

nonlinear partial differential equation of motion governing the nonlinear vibration of nanotube conveying fluid. 

Homotopy perturbation method is applied to develop approximate analytical solution for temporal part of the 

decomposed equation. Based on the verifications and validation carried out in this work, it could be stated that the 

analytical solutions as developed in this work can serve as a starting point for a better understanding of the 

relationship between the physical quantities of the problems.  
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Problem formulation based on nonlocal beam theory 

Consider a single-walled carbon nanotube conveying hot fluid, subjected to stretching effects and resting 

on linear and nonlinear elastic foundations under external applied tension and global pressure as shown in Figure 

1. Based on the Eringen’s nonlocal elasticity theory [31-35] and Hamilton’s principle, we arrived at the governing 

equation of motion for the single-walled carbon nanotube (SWCNT) as;  

 

 
Figure 1. a fluid-conveying single-walled carbon nanotube (SWCNT) resting on elastic foundation 
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The derivation of the governing equation (although, with some modifications to include effects of elastic 

foundation, axial tension, global pressure and temperature change in this paper) has been shown in the author’s 

previous paper [36]. 

If the nanotube is slightly curved, then the governing equation for the nanotube becomes 
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Where Zo(x) is the arbitrary initial rise function. 

For nanotube conveying fluid, the radius of the tube is assumed to be the characteristics length scale, 

Knudsen number is larger than 10-2. Therefore, the assumption of no-slip boundary conditions does not hold and 

modified model should be used. Therefore, we have 
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Where Kn is the Knudsen number, σv is tangential moment accommodation coefficient which is considered to be 

0.7 for most practical purposes [37, 38]. 
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And Equation (2) could be written as  
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The initial and the boundary conditions 

In this work, different boundary conditions are considered for the nanotube. 

 

Clamped-Clamped (doubly clamped) 

Where the trial/comparison function are given as;  
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where
n  are the roots of the equation 
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The initial and the boundary conditions are 
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The applications of space function as given above for clamped-clamped will involve long calculations 

and expressions in finding M, G, K, C, and V, alternatively, a polynomial function of the form Equation (10) can 

be applied for this type of support system. 
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Applying the boundary conditions 
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For a =1, arrived at 4 25.20a  for the first mode 

 

Clamped-Simple supported 

The trial/comparison function is given as  
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n are the roots of the equation 

 

n ntan L tanh L   

 

The initial and the boundary conditions are  
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Alternatively, a polynomial function of the form in Equation (17) can be applied for this type of support system. 
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On using orthogonal functions, 4 11.625a  for the first mode 
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Alternatively, a polynomial function of the form in Equation (21) can be applied for this type of support system. 
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n are the roots of the equation 
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Alternatively, a polynomial function of the form Equation (26) can be applied for this type of support 

system. 
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The Spatial and Temporal Decomposition Procedures 

Using the Galerkin’s decomposition procedure to separate the spatial and temporal parts of the lateral 

displacement functions as  
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Applying one-parameter Galerkin’s solution given in Equation (1) and Equation (2) 
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dx dx

 
   

   
       

   
  

3 2
2 2

3 20
( ) 2 ( ) ( ) ( )

L

f o o

d d d
G x m v e a x e a dx

dx dx dx

  
 

     
       

     
  

   
4 2 2 2

2 2

1 14 2 2 20
( ) ( )

L

p o o p

d d d d
K x EI k x k k e a e a k dx

dx dx dx dx

   
 

 
     

 
  
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2 4
2 2

2 40
( ) ( )

1 2

L

f o

EA d d
C m u PA T x e a dx

dx dx

   




  
      

   
  

2 22 3
2

3 32 30

20 4
2 2 2

3 40

( ) 6 ( ) ( )
2

( )

3 ( ) ( ) ( )
2

L

o o

L

L

o o o

EA d d
N dx k x k e a x

L x dx dx x
V x dx

EA d
k e a x e a N dx

x L x dx

   



  



      
       

       
  

    
          







 

 

For the slightly curved nanotube, M, G, K and C are the same but  

 

2 222 3
2

3 32 2 3

0

2 44
2 2 2

3 4

0

( ) 6 ( ) ( )
2

( )

3 ( ) ( ) ( )
2

L

o o
o o

L

o
o o o

Z ZEA w w w d
N dx k x k e a x

L x x x x x dx x
V x

ZEA w w w
k e a x e a N dx

x L x x x x

 







            
          

              


        
       

         




0

4

L

o

dx

Z

x

 
 
  
 
  
  

   



 

and the circular fundamental natural frequency gives  

                                                                  
n

K C

M



                                                                              (30) 

where  

2 4
2

2 40
( ) ( )

1 2

L

o

EA d d
C PA T x e a dx

dx dx

   




   
     

   
  

 

For the undamped clamped-clamped, clamped-simple and simple-simple supported structures,  

G=0 and Equation (9) reduces to 

 

                                                              
3( ) ( ) ( ) ( ) 0Mu K C u Vu                                                     (31) 

 

which can be written as  

 

                                                                
3( ) ( ) ( ) 0u u u      

                                                            (32)
 

 

    where  

( )
,

K C V

M M
 


    

 

Method of solution by homotopy perturbation method 

Application of regular perturbation to the nonlinear Equation (32) breaks down at the time t of O(ε-2). 

Also, the traditional perturbation methods (regular and singular perturbation methods) are based on the existence of 

small parameter in the nonlinear equations and such are limited to analysis of weakly nonlinear equation. 

Unfortunately, the nonlinear equation as shown in Equation (32) does not have any small perturbation and it is strongly 

nonlinear.  Therefore, in this work, homotopy perturbation method is used to solve the equation. The homotopy 

perturbation method eliminates the “the small parameter assumption” as carried in the traditional perturbation 
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methods. It is a powerful method that gives acceptable analytical results with convenient convergence and stability 

[16-20].  

 

The basic idea of homotopy perturbation method 

In order to establish the basic idea behind homotopy perturbation method, consider a system of nonlinear 

differential equations given as, 

 

                                                                0,A U f r r                                                               (33) 

 

with the boundary conditions 

                                                           , 0,
u

B u r


 
  

 
                                                            (34) 

 

where A is a general differential operator, B is a boundary operator,  f r  a known analytical function and  is the 

boundary of the domain   

The operator A can be divided into two parts, which are L and N, where L is a linear operator, N is a non-linear 

operator. Equation (13) can be therefore rewritten as follows; 

 

                                                                  0L u N u f r                                                                  (35) 

 

By the homotopy technique, a homotopy    , : 0,1U r p R   can be constructed, which satisfies 

 

                                , 1 0, 0,1H U p p L U L U p A U f r p                             (36) 

Or  

                                       , 0H U p L U L U pL U p N U f r                                     (37) 

 

In the above Equations (36) and (37),  0,1p  is an embedding parameter, ou is an initial approximation of 

equation of Equation (33), which satisfies the boundary conditions. 

Also, from Equations (36) and (37), we will have, 

 

                                                             ,0 0oH U L U L U                                                              (38) 

 

                                                             ,0 0H U A U f r                                                                  (39) 

 

The changing process of p from zero to unity is just that of  ,U r p from  ou r to  u r . This is referred to 

homotopy in topology. Using the embedding parameter p as a small parameter, the solution of Equations (36) and (37) 

can be assumed to be written as a power series in p as given in Equation (40) 

  

                                                                
2

1 2 ...oU U pU p U                                                               (40) 

 

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best result. Therefore, setting

1p  , results in the approximation solution of Equation (33) 
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1 2

1
lim ...o
p

u U U U U


                                                              (41) 

The basic idea expressed above is a combination of homotopy and perturbation method. Hence, the method is 

called homotopy perturbation method (HPM), which has eliminated the limitations of the traditional perturbation 

methods. On the other hand, this technique can have full advantages of the traditional perturbation techniques. The 

series Equation (41) is convergent for most cases. 

 

Application of the homotopy perturbation method to the present problem 

According to homotopy perturbation method (HPM), we can construct an homotopy for Equation (32) as  

 

                            3, 1 0, 0,1H U p p U U p U U U p                               (42) 

Or equivalently,  

                     

                                                
3 0U U p U   

                                                                                (43) 

 

Supposing that the solution of Equation (33) can be expressed in a series in p : 

 

                                                   
2

0 1 2 ...U U pU p U   
                                                                    (44) 

 

According to HPM, a constant can be expanded as a power series of the embedding parameter p . 

So, constant α can be expanded as; 

 

                                                         
2 2 2 2

0 1 2 ...p p      
                                                               (45) 

 

On substituting Equation (44) and (45) into Equation (43), an approximate solution for Equation (43) can be 

expressed as: 

 

               
    

 

2 2 2 2 2 2

0 1 2 0 1 2 0 1 2

3
2

0 1 2

.... .... ....

.... 0

U pU p U p p U pU p U

p U pU p U

  



          

   
             

(46) 

 

Expanding the above Equation (46) and collecting all terms with the same order of p together, the resulting 

equation appears in form of polynomial in p . On equating each coefficient of the resulting polynomial in p to zero, 

we arrived at a set of differential equations iu and 
2

i  (i = 0, 1, 2,…) 

 

                                                           
0 2

0 0: 0p U U 
                                                                           (47a) 

 

                                                     
1 2 2 3

1 0 1 2 0 0: 0p U U U U     
                                                     (47b) 

 

                                     
2 2 2 2 3

2 0 2 1 1 2 0 0 1: 3 0p U U U U U U       
                                              (47c) 

 

where the initial conditions for iu  satisfy: 

 

                           0 0(0) , (0) 0, (0) 0, (0) 0, ( 1,2,...)i iU a U U U i    
                            (48) 
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Using the initial conditions in Equation (28), Equation (27a) can easily be solved and the solution gives 

 

                                                                0 0cosU a t
                                                                      (49) 

 

Substituting the solution of 0U in Equation (29) into Equation (27b), we have   

 

                              

3 3
2 2

1 0 1 1 0 0

3
cos cos3 0

4 4

a a
U U a t t

 
   

 
     

                                (50) 

 

On eliminating the secular term that appeared in Equation (30), we arrived at 

 

                                                                

2
2

1

3

4

a 
  

                                                                         (51) 

 

After eliminating the secular term, on solving Equation (47b) under the initial conditions of Equation 

(48), the solution for U1 is 

 

                                                      
3

1 0 02

0

cos3 cos
32

a
U t t


 


 

                                                     (52) 

 

Again, on substituting Equation (29) and (32) into Equation (27c), we have  

 

 

             
3 2 3 25 2 5 2 5 2

2 2 1 1
2 0 2 2 0 0 02 2 2 2 2

0 0 0 0 0

3 3 3
cos cos3 cos5 0

64 32 32 128 128

a aa a a
U U a t t t

   
    

    

   
          

   

            

(53) 

 

If we eliminate the secular term in Equation (53), we have 

 

                                                             

2 24 2
2 1
2 2 2

0 0

3

64 32

aa 


 
 

                                                               (54) 

 

Substituting Equation (51) into Equation (54), we have 

 

                                                                   

4 2
2

2 2

0

3

128

a 





                                                                            (55) 

 

Again, after eliminating the secular term of Equation (53), on solving the resulting Equation (53) using 

the initial conditions in Equation (48), we arrived at 

 

                                                  
5 2

2 0 04

0

cos5 cos
1024

a
U t t


 


 

                                                          (56) 

 

From Equation (24) and (45), if only the first-order approximate solution are searched for, when 1p  , 

we have the first-order approximate frequency and displacement solution as 
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2
2

0,1 0 1

3

4
th

a 
                                                              (57) 

 

                                                      
3

1 0 0 02

0

cos cos3 cos
32

th

a
U a t t t


  


  

                                        (58) 

 

If only the second-order approximate solution is searched for, when 1p  , from Equation (44) and (45), 

we have the second-order approximately frequency and displacement solution 

 

                                    

2
2 2 4 2

0,2 0

2 3 3 3

2 4 4 32
th

a a a  
   

 
      

                                    (59) 

 

                   

3 3 2 3 5 2

2 0 0 02 4 2 4

0 0 0 0

cos cos3 cos5
32 1024 32 1024

th

a a a a
U a t t t

   
  

   

 
     
 

                    

(60) 

 

Alternatively, if we substitute Equations (49), (52) and (56) into Equation (44), we have  

 

       
3 5 2

2

0 0 0 0 02 4

0 0

cos cos3 cos cos5 cos ...
32 1024

a a
U a t p t t p t t

 
    

 

   
        

   
          

(61) 

 

Setting 1p  , results in the approximation solution of Equation (61) and we have 

 

                  

3 5 2 3 5 2

0 0 02 4 2 4

0 0 0 0

( ) cos cos3 cos5 ...
32 1024 32 1024

a a a a
u t a t t t

   
  

   

 
      
 

                  (62) 

 

The trial/comparison functions, ( )x for different supports/boundary conditions are defined in Equations (7), (11), 

(14), (17), (18), (21), (22), (23) and (26).  

 

Clamped-Clamped (doubly clamped) 

The approximate analytical solution is  

 

 

3 5 2

02 4

0 0

3 5 2

0 02 4

0 0

cos
32 1024

( , )

cos3 cos5
32 1024

n n

n n
n n

n n

a a
cosh x cos xa t

w x t cosh L cos L
sinh x sin xa a

sinh L sin Lt t

 
 

 
 

  
  

 

  
    

   
             
 

 (63) 

 

Or 
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 

3 5 2

02 4

0 0

3 5 2

0 02 4

0 0

cos
32 1024

( , )

cos3 cos5
32 1024

n n

n n
n n

n n

a a
cosh x cos xa t

w x t sinh L sin L
sinh x sin xa a

cosh L cos Lt t

 
 

 
 

  
  

 

  
    

   
             
 

 (64)

 

 

where n  are the roots of the equation 1n ncos Lcosh L    

 

Clamped-Simple supported 

The approximate analytical solution is 

 

 

3 5 2

02 4

0 0

3 5 2

0 02 4

0 0

cos
32 1024

( , )

cos3 cos5
32 1024

n n

n n
n n

n n

a a
cosh x cos xa t

w x t cosh L cos L
sinh x sin xa a

sinh L sin Lt t

 
 

 
 

  
  

 

  
    

   
             
 

 (65)                                        

 

n are the roots of the equation  n ntan L tanh L   

 

Simple-Simple supported 

 

                                  

3 5 2

02 4

0 0

3 5 2

0 02 4

0 0

cos
32 1024

( , )

cos3 cos5
32 1024

a a
a t

n x
w x t sin

La a
t t

 


  

 
 

 

  
   

  
  
 
 
 
 

                                  (66)                                                                                                          

 

Clamp-Free (cantilever) 

 

 

3 5 2

02 4

0 0

3 5 2

0 02 4

0 0

cos
32 1024

( , )

cos3 cos5
32 1024

n n

n n
n n

n n

a a
cosh x cos xa t

w x t cosh L cos L
sinh x sin xa a

sinh L sin Lt t

 
 

 
 

  
  

 

  
    

   
             
 

    (67)                                    

 

 

Or  

 

 

3 5 2

02 4

0 0

3 5 2

0 02 4

0 0

cos
32 1024

( , )

cos3 cos5
32 1024

n n

n n
n n

n n

a a
cosh x cos xa t

w x t sinh L sin L
sinh x sin xa a

cosh L cos Lt t

 
 

 
 

  
  

 

  
    

   
             
 

   

 (68)
 

 

n are the roots of the equation
 

1n ncos Lcosh L     

where in all the solutions shown above,  
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2
2 2 4 2

0

2 3 3 3

2 4 4 32

a a a  
  

 
     

 
,     

( )K C

M



 ,     

V

M
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While for the slightly curved nanotube, M, G, K and C are the same as above but  
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It should be noted that the definitions and the values M, K, C, and V are trial/shape function-dependent. 

Therefore, they are different for the different boundary conditions considered.  Also, by extension, the values of α 

and β in the solutions are different for the different supports analyzed.  

 

RESULTS AND DISCUSSION 

Based on the shape functions defined in Equations (7), (14), (18), (22) and (23), the first five normalized 

mode shapes of the beams for clamped-clamped, simple-simple, clamped-simple and clamped-free supports are 

shown in Figure. 2-5. Also, the figures depict the deflections of the beams along the beams’ span at five different 

buckled and mode shapes. 

Following to the polynomial functions developed in this work in Equations (11), (17), (21) and (26) for 

the hyperbolic-trigonometric functions defined in Equations (7), (14), (18), (22) and (23),  Figures 6-9 show the 

comparison of hyperbolic-trigonometric and the polynomial functions for the normalized mode shapes of the 

beams for clamped-clamped, simple-simple, clamped-simple and clamped-free supports. The figures depict the 

validity of the developed polynomial functions in this work as there are very good agreements between the 

hyperbolic-trigonometric and the developed polynomial functions. 
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Figure 2. The first five normalized mode shaped of the 

beams under clamped-clamped supports 

 
Figure 3. The first five normalized mode shaped of 

the beams under simple-simple supports 

 
Figure 4. The first five normalized mode shaped of the 

beams mode shaped of the under clamped-simple 

supports 

 
Figure 5. The first five normalized beams under 

clamped-free (cantilever) supports 

     
Figure 6. Normalized mode shaped of the structures 

under clamped-clamped supports for Hyperbolic-

Trigonometric and Polynomial functions 

 
Figure 7. Normalized mode shaped of the 

structures under simple-supports for Hyperbolic-

Trigonometric and Polynomial functions 
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Figure 8. Normalized mode shaped of the structures 

under clamped-free supports for Hyperbolic-

Trigonometric and Polynomial functions 

 

 
Figure 9. Normalized mode shaped of the 

structures under clamped- pinned supports for 

Hyperbolic-Trigonometric and Polynomial 

functions 

 

Figure 10 illustrates the effects of boundary conditions on the nonlinear amplitude-frequency response 

curves of the nanotube. Also, the figure shows the variation of frequency ratio of the nanotube with the 

dimensionless maximum amplitude of the structure under different boundary conditions. From, the result, it shown 

that frequency ratio is highest in the beam which is clamped-free (cantilever) supported beam and lowest with 

clamped-clamped beam. The lowest frequency ratio of the clamped-clamped beam is due to high stiffness of the 

beam with this type of boundary conditions in comparison with other types of boundary conditions.  

 
Figure 10. Effects of boundary conditions on the 

nonlinear amplitude-frequency response curves of the 

nanotube 

 
Figure 11. Effects of axial tension on the nonlinear 

amplitude-frequency response curves of SWCNT 

 

                  

Figure 11 shows effects of axial tension on the nonlinear amplitude-frequency response curves of pipe. It 

is observed that the increase of axial tension, the nonlinear vibration frequencies increases. It can be seen from the 

figure, in contrast to linear systems, the nonlinear frequency is a function of amplitude so that the larger the 

amplitude, the more pronounced the discrepancy between the linear and the nonlinear frequencies becomes.  
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Figure 12. Midpoint deflection time history for the 

nonlinear analysis of SWCBT when Kn=0.00 and U= 

500 m/s 

 
Figure 13. Midpoint deflection time history for the 

nonlinear analysis of SWCBT when Kn=0.01 and 

U= 500 m/s 

 
 

Figure 14. Midpoint deflection time history for the 

nonlinear analysis of SWCBT when Kn=0.03 and U= 

100 m/s 

 

 
 

Figure 15. Midpoint deflection time history for the 

nonlinear analysis of SWCBT when Kn=0.03 and 

U= 500 m/s 

 

 

Figure 12 shows the midpoint deflection time history of the SWCBT under no slip condition while Figure 

13, 14 and 15 shows the effects of slip on the dynamic behavior of the nanotube.  Figure 14 illustrates the midpoint 

deflection time history for the nonlinear analysis of SWCBT when Kn=0.03 and U= 100 m/s while Figure 15 

presents the midpoint deflection time history for the nonlinear analysis of SWCBT when Kn=0.03and U= 500 

m/s. 
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Figure 16. Effects of nonlocal parameter on the 

natural frequency of the nonlinear vibration 

 
Figure 17. Effects of nonlocal parameter on the 

natural frequency of the nonlinear vibration 

 

 
Figure 18. Effects of nonlocal parameter on the 

natural frequency of the nonlinear vibration for first 

and second modes 

 

 
Figure 19. Effects of nonlocal parameter on the 

natural frequency of the nonlinear vibration for first 

and second modes 

 

 
Figure 20. Effects of flow-velocity on the natural 

frequency of the structure vibration 

 

 

 
Figure 21. Effects of Knudsen number on the 

dimensionless frequency of simply supported single-

walled nanotube 

 

 

The studies and the investigations of the dynamic and stability behaviours of the structure are largely 

dependent on the effects of fluid flow velocity, amplitude on the natural frequencies of the vibration. Effects of 

nonlocal parameter, velocity and temperature on the vibration of the nanotube are shown in Figure 16-21. It is 

depicted that increase in the slip parameter leads to decrease in the frequency of vibration of the structure and the 
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critical velocity of the conveyed fluid. It should be pointed out as shown in the figures that the zero value for the 

nonlocal parameter, i.e. 0oe a  , represents the results of the classical Euler-Bernoulli model which has the 

highest frequency and critical fluid velocity (a point where the structure starts to experience instability).  When the 

flow velocity of the fluid attains the critical velocity, both the real and imaginary parts of the frequency are equal 

to zero.  Also, the figures present the critical speeds corresponding to the divergence conditions for different values 

of the nonlocal parameters. It is shown in Figures 16, 17, 18, 19 and 20, the real and imaginary parts of the 

eigenvalues related to the two lowest modes with different nanotube parameters. Effects of slip parameter, Knudsen 

number on the dimensionless frequency ratio of the nanotube are shown in Figures 21. It is depicted that increase 

in the slip parameter leads to decrease in the dimensionless frequency ratio of vibration of the SWCNT. It should 

be pointed out that the Knudsen number predicts various flow regimes in the fluid-conveying nanotube. The 

Knudsen number with zero value has the highest frequency as shown in the figure. As the Knudsen number 

increases, the bending stiffness of the nanotube decreases and in consequent, the critical continuum flow velocity 

decreases as the curves shift to the lowest frequency zone. 

Effects of change in temperature on the natural frequencies are given shown in Figures 22 and 23. As the change 

in temperature increases, the natural frequencies and the critical flow velocity of the structure increase for the low 

or room temperature while at high temperature, increase in temperature change, decreases the natural frequencies 

and the critical flow velocity of the structure. 

Effects of elastic foundation parameters on the vibration of the nanotube are shown in Figures 24-27. It is depicted 

that increase in the Winkler and Pasternak foundation parameters increases the frequency of vibration of the 

structure and the critical velocity of the conveyed fluid.   

 

 
Figure 22. Effects of change in temperature on the 

natural frequency of the nonlinear vibration at low 

temperature 

 
Figure 23. Effects of change in temperature on the 

natural frequency of the nonlinear vibration at high 

temperature 

 
Figure 24. Effects of Winkler foundation 

parameter on the natural frequency of the nonlinear 

vibration at low temperature 

 
Figure 25. Effects of Winkler foundation parameter on 

the natural frequency of the nonlinear vibration at high 

temperature 
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Figure 26. Effects of Pasternak foundation 

parameter on the natural frequency of the nonlinear 

vibration at low temperature 

 
Figure 27. Effects of Pasternak foundation parameter 

on the natural frequency of the nonlinear vibration at 

high temperature 

 
Figure 28. Comparison between the obtained 

results and the exact solution for the linear 

vibration 

 
Figure 29. Comparison between the obtained results 

and the numerical solution for the nonlinear vibration 

 

 

In order to verify the model, Figures 18 and 19 show the comparison of the results of exact analytical 

solution and the results of the present study for the linear models while Figure 13 presents the comparison of 

numerical results models and the results of present work for the nonlinear models. The results show that good 

agreements are established between the solutions. 

 

CONCLUSION 

In this work, thermo-fluidic parameter effects on the nonlinear vibration of carbon nanotube conveying 

fluid under elastic foundations has been investigated using homotopy perturbation method. From the analysis it is 

established that increase in the Knudsen number, the slip parameter, leads to decrease in the frequency of vibration 

and the critical velocity while natural frequency and the critical fluid velocity increase as the in stretching effect 

increases.  Also, as the Knudsen number increases, the bending stiffness of the nanotube decreases and in 

consequent, the critical continuum flow velocity decreases as the curves shift to the lowest frequency zone. As the 

change in temperature increases, the natural frequencies and the critical flow velocity of the structure increase for 

the low or room temperature while at high temperature, increase in temperature change, decreases the natural 

frequencies and the critical flow velocity of the structure. Further, it is established that the alteration of nonlinear 

flow-induced frequency from linear frequency is significant as the amplitude, flow velocity, and aspect ratio 

increase. The analytical solutions can serve as benchmarks for other methods of solutions of the problem. They 

can also provide a starting point for a better understanding of the relationship between the physical quantities of 

the problems. 
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NOMENCLATURE 

A Area of the structure 

E Young Modulus of Elasticity 

G Shear Modulus 

I moment of area 

kp   Pasternak foundation coefficient 

k1   linear Winkler foundation coefficient 

k3 nonlinear Winkler foundation coefficient 

Kn   Knudsen number,  

lo,  l1, l2 independent length scale parameters 

L length 

Mp mass of the structure 

mf  mass of fluid 

N  axial/Longitudinal force 

P Pressure 

r radius of the structure 

t time 

T tension 

( )u t
 generalized coordinate of the system 

w  transverse displacement/deflection 

x axial coordinate 

Zo(x) is the arbitrary initial rise function. 

Σv tangential moment accommodation coefficient 

( )x
 trial/comparison function 

 υ Poisson’ ratio   

 μ     damping coefficient 

Δθ   change in temperature   

α      coefficient of expansion 
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