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ABSTRACT 

This paper gives the performance improvement of tractor radiator by Cu/water nanofluid through the 

mechanism of nanotechnology. It was found that the use of the nanofluid in heat transfer field can play a crucial role 

in increasing the efficiency of equipment. Miniaturization and increased operating speeds of heat exchangers 

warranted the need for new and innovative cooling concepts for better performance. The nano materials and its 

suspension in fluids as particles have been the subject of intensive study worldwide. Tractor Engine cooling is an 

important factor for their performance in the intended application. Here the tractor engine radiator cooling is enhanced 

by nanofluid mechanism of heat transfer for its improved performance in agricultural work. The experimental and 

numerical investigation for the improved heat transfer characteristics of a radiator using Cu/water nanofluid for 0.025, 

0.05 and 0.075% volume fraction is done with inlet temp of 50 - 60°C under the turbulent flow regime (8000 ≤ Re ≤ 

25000). The overall heat transfer coefficient decreases with increase in nanofluid inlet temperature of 50 - 60°C. The 

experimental results when compared with numerical shows enhanced heat transfer coefficient. The results also proved 

that nanofluid is better heat transfer fluid than the base fluid water. Experimental results emphasize the enhancement 

of heat transfer due to the nanoparticles presence in the fluid. Heat transfer coefficient increases by increasing the 

concentration of nanoparticles in nanofluid. The nanofluids are projected as alternative cooling fluid in heat 

exchangers through its nano mechanism. Further researches are required to study the effect of nanotechnology to 

enhance the heat exchanger performance over the next several coming years. 
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INTRODUCTION 

A decade ago, with the faster development in modern nanotechnology, particles of nanometre-size (normally 

less than 100 nm) are used instead of micrometre-size for dispersing in 

base liquids, and they are called nanofluids. This term was first suggested by Choi [1] in 1995, and it has become 

popular in many research fields. Many researchers have done investigation in heat transfer characteristics of heat 

exchangers through nanofluids with different nanoparticles and base fluid materials. The following survey provides 

the details of experimental results of nanofluids subjected to heat transfer application with their outcome in supporting 

nanofluids as one of the alternate fluid in heat exchanging and giving way for the miniaturization in the equipment 

development. Abu-Nada, et al. [2] used an efficient finite-volume method to study the heat transfer characteristics of 

natural convection for CuO/EG/water nanofluid in a differentially heated enclosure. His results show that the dynamic 

viscosity and friction factor increased due to dispersing the alumina nanoparticles in water. Chein and Chuang [3] 

reported experimentally on microchannel heat sink (MCHS) performance using CuO-water nanofluids as coolants for 

their improved heat transfer performance. The presence of nanoparticles creates greater energy absorption than pure 

water at a low flow rate and that there is no contribution from heat absorption when the flow rate is high which depicts 

the Brownian motion of nanoparticles the one of mechanism of nanotechnology. 

The thermal and physical properties of nanofluids were calculated using the following equations: the 

Brinkman equation [4] for viscosity, the Xuan and Roetzel equation [5] for specific heat, and the Hamilton and Crosser 

model [6] for thermal conductivity. The effect of thermophysical properties models on prediction of the heat transfer 

coefficient and the heat transfer performance and friction characteristics of nanofluid, were reported by 
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Duangthongsuk and Wongwises [7, 8]. The results showed that the various thermophysical models have no significant 

effect on the predicted values of Nusselt number of the nanofluid. The results also indicated that the heat transfer 

coefficient of nanofluid is slightly greater than that of water by approximately (6–11) %. Hwang, et al. [9] through 

experimental investigation of flow and convective heat transfer characteristics of Al2O3/water nanofluid, with 

convective heat transfer characteristics of Al2O3/water nanofluid with particles varying in the range of 0.01- 0.3% in 

a circular tube of 1.812 mm inner diameter with the constant heat flux in fully developed laminar regime reported 

improvement in convective heat transfer coefficient in the thermally fully developed regime. 

Li and Xuan [10] and Xuan and Li [11] studied experimentally the convective heat transfer and flow features 

for Cu-water nanofluids flowing through a straight tubeunder laminar and turbulent flow regimes with a constant heat 

flux. The experimental results showed that addition of nanoparticles into the base liquid remarkably enhanced the heat 

transfer performance of the base liquid. An automotive cooling system usually consists of radiator, water pump, 

thermostat, radiator pressure cap, and electric cooling fan Maple [12]. The radiator is the main component as it was 

designed to remove heat from an engine block by using specified coolants. Generally, the coolant of the radiator is 

either water or water and ethylene glycol (anti-freezing fluid), which flows inside the tubes. In fact, the coolants have 

poor heat transfer properties in nature. Another type of coolant is outside air which flows through the fins to cool 

down the temperature of water. Now a days, the researchers and engineers from automotive industries have been 

applying green technology concept and desiring for a compact engine system with low fuel consumption. 

Consequently, the study of nanofluids as an application in the automotive industries has developed throughly. By 

introducing nanofluids with superior thermophysical properties, the radiator size can be reduced but at the same time, 

it is offering identical heat transfer rate. The frontal area of a car could be redesigned to reduce aerodynamic drag so 

that less fuel consumption is required Leong et al.[13] and Wong et al.,[14]. 

Argonne researchers proved that despite nanofluids thermal conductivity depends on temperature and particle 

volume fraction, it still showing high thermal conductivity than conventional radiator coolants Choi, [15]. The heat 

transfer rate and thermal performance of Cu/EG coolant in an automotive radiator can be enhanced by increasing the 

particle volume fraction from 0 % to 2 % Leong et al., [13] The enhancement of heat transfer depends on air and 

coolant Reynolds number (Re) which is increasing with nanoparticle concentration. Mare et al. [16] experimentally 

proved that the convective heat transfer coefficient of CNTs nanofluid increased about 50 % in comparison to water 

for the same Reynolds number. Basically, there are five factors that can enhance the heat transfer; Brownian motion, 

layering at the solid/liquid interface, Ballistic phonon transport through the particles, nanoparticles clustering, and 

friction between the nanoparticles and fluid (Wang and Mujumdar, [17] Meanwhile, Xuan and Li [18] agreed 

dispersed phase of nanoparticles caused pressure drop slightly but the nanoparticles dispersion is stable either with 

surfactant or conventional fluid only. Razi et al. [19] investigated the heat transfer and pressure drop of CuO-base oil 

nanofluid flow inside horizontal flattened tubes under constant heat flux of 2600 W/m2 and proved that the pressure 

drop of nanofluids increased with nanoparticle concentration. There is also a withdrawn investigation of nanofluids 

natural convective heat transfer since the suspension of nanoparticles caused higher viscosity and pressure drop as 

compared to conventional fluid (Calvin and Peterson,[20] 

Roubert et al.[21] started a project in 2008 that employed nanofluids for industrial cooling that could results 

in energy savings & resulting emission reductions. [22] Singh et al. have investigated that the use of high thermal 

conductivity nanofluids in radiators can lead to reduction in the frontal area of the radiator by up to 10%. The fuel 

efficiency and also vehicle performance will increase by reducing the size of the components [23]. Vasu et al. have 

used aqueous alumina as a coolant on automobile flat tube plain fin compact heat exchanger. This project concluded 

that the heat transfer rate will decrease by increasing the air inlet temperature [24]. Tzeng et al. investigated the 

temperature distribution of rotary blade coupling transmission used in four wheel drive vehicles. They concluded that 

use of nanofluids in the transmission has a clear advantage from the thermal performance view point . Ravikanth et 

al. used the nanofluids in radiator to study the heat transfer performance. They used the CuO and Al2O3 for their 

study [25]. 

In this paper, forced convection heat transfer coefficients are reported for pure water and water/Cu nano 

powder mixtures under fully turbulent conditions. The test section is composed of a typical farm equipment tractor 

radiator, and the effects of the operating conditions on its heat transfer performance are analyzed. 
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Nanofluid Preparation and Stabilization 

 Nano fluids preparation is the preliminary step in experiential studies. The essential requirements for the 

nanofluids are, it should be even, stable suspension, adequate durability, negligible agglomeration of particulates, no 

chemicals change of the particulates or fluid, etc., Nano fluids can be prepared by dispersing nanometer scale solid 

particles into base fluids such as water, ethylene glycol, oil etc., In the synthesis of nano fluids, agglomeration is major 

problem. The single step and two step methods are used to produce nano fluids.  

 

Two step method 

Two-step method is the most widely used method for preparing nanofluids. Nanoparticles, nanofibers, 

nanotubes, or other nanomaterials used in this method are first produced as dry powders by chemical or physical 

methods. Then, the nanosized powder will be dispersed into a fluid in the second processing step with the help of 

intensive magnetic force agitation, ultrasonic agitation, high-shear mixing, homogenizing, and ball milling. Two-step 

method is the most economic method to produce nanofluids in large scale, because nanopowder synthesis techniques 

have already been scaled up to industrial production levels. Due to the high surface area and surface activity, 

nanoparticles have the tendency to aggregate. The important technique to enhance the stability of nanoparticles in 

fluids is the use of surfactants. However, the functionality of the surfactants under high temperature is also a big 

concern, especially for high-temperature applications. 

The nanoparticles used in this study were Copper nanoparticles of approximately 40nm in diameter and 95% 

purity. The Cu/Water nanofluid are shown in Table 1, samples of 0.025, 0.05 and 0.075%, fluid were prepared without 

surfactants and subsequent ultrasonic irradiation for 2 h as shown in figure 1. These samples proved highly appropriate 

in terms of homogenous dispersion and long term stability the stability of the nanofluid remains for 3-4 hrs. Figure 2 

shows the SEM image of the Cu nanofluid. The particles are homogenously dispersed throughout the basefluid in an 

acceptable fashion. 

 

Figure 1. Ultrasonic vibration bath [34] 
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Table 1. Characteristics of copper nanoparticle and base fluid 

Properties  
Nanoparticle  

(Cu)  

Basefluid  

(water)  

Appearance Black powder  

Purity 99 %  

Grain size 40nm  

Specific surface area  80 m2/g  

Density (ρ) Kg/m
3

  8933  998.2 

Specific heat Cp (J/kg K)  385  4182 

Thermal Conductivity K (W/m k)  401  0.613 

Viscosity(µ) kg/m s --  0.001003 

 

    

(a)        (b) 

                 Figure 2.  SEM image of Cu/water 

Characterisation of Nanofluid 

Characterization analysis was carried out using a Scanning Electron Microscope (SEM) as shown in Figure 

2. (a) and (b) and an energy dispersive Atomic X Ray( EDAX). 

Experimental Setup 

The test rig shown in Figure 4 was used to measure the heat transfer coefficient in the tractor radiator. This 

experimental setup included a steel reservoir tank, an electric heater, a centrifugal pump, a flow meter, tubes, valves, 

a fan, a DC power supply, ten J-type thermocouples for temperature measurement, and a heat exchanger (tractor 

radiator). An electric heater (1500W) inside a steel storage tank  was used to represent the engine and to heat the fluid. 

A voltage regulator (0–220 V) provided the power to regulate the temperature in the radiator (30–120 °C). A flowmeter 

(1–15 LPM) and two valves were used to measure and control the flow rate. The fluid flow was measured through 

plastic tubes (0.5 in.) by a centrifugal pump (0.5 hp and 3 m head) from the tank to the radiator at the flow rate range 

of 1–15 LPM. The total volume of the circulating fluid (3 l) was constant in all experimental steps.  

Two J-type thermocouples (copper–constantan) were connected to the flow line to record inlet and outlet 

temperatures of the fluid. The tractor radiator has louvered fins and 40 flat vertical Aluminium tubes with a flat cross-

sectional area. The distance between the tube rows was filled with thin perpendicular Aluminium fins. For the air side, 

an axial force fan (1500 rpm) was installed close to the axis line of the radiator.  
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Figure 3. Designed experimental setup (from Ravisankar et.al [34]) 

 

 

Figure 4. Photographic view of experimental setup (from Ravisankar et.al [34]) 

 

Table 2. Geometrical characteristics of tractor radiator (from Ravisankar et.al [34]) 

Description  

Fin type Ruffled 

Fin thickness (cm) 0.01 

Hydraulic diameter Dh (cm) 0.3911 

Frontal air sized dimension(m) 0.45x0.40 

Number of tubes 40 

External total area (m2) 4.3 

Internal tube area (m2) 0.5049  
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Nanofluid Thermophysical Property 

Since we use nanofluids for the heat removal their thermo physical properties such as density of nanofluid, 

specific heat of nanofluid, thermal conductivity of nanofluid and kinematic viscocity,  the governing equation 

involved are calculated using the following equations [26, 27-29], (from Ravisankar et.al [34]) 

 

                 𝜌𝑛𝑓= ∅.𝜌𝑝+ (1−∅).𝜌𝑤                             
                                              (1) 

 

(𝜌∁𝑝)
𝑛𝑓

 =  ∅(𝜌∁𝑝)𝑝 + (1 − ∅)(𝜌∁𝑝)𝑤                            (2) 

 

𝜇𝑛𝑓 = 𝜇𝑤(123∅2 + 7.3∅ + 1)                                                    (3) 

 

𝑘𝑛𝑓 =
𝑘𝑝+(𝑛−1)𝑘𝑤−∅(𝑛−1)(𝑘𝑤−𝑘𝑝)

𝑘𝑝+(𝑛−1)𝑘𝑤+∅(𝑘𝑤−𝑘𝑝)
                                                 (4) 

 

Data Reduction 

Calculation of heat transfer coefficient 

In these experiments, the nanofluid flowing inside the tube transfers heat to the outside air flowing in the air 

flow channel. The air-side and the tube-side heat transfer rates can be calculated as: 

 

𝑄𝑎 = 𝑚𝑎∁𝑝,𝑎(𝑇𝑎,𝑜 − 𝑇𝑎,𝑖)                                                         (5) 

 

𝑄𝑛𝑓 = 𝑚𝑛𝑓∁𝑝,𝑛𝑓(𝑇𝑛𝑓,𝑖 − 𝑇𝑛𝑓,𝑜)                                                (6) 

 

where Qa and Qnf are the heat transfer rates at the air and nanofluid flows, respectively. The arithmetic average of the 

heat transfer rate is: 

 

𝑄𝑎𝑣𝑒 = 0.5(𝑄𝑎 + 𝑄𝑛𝑓)                                                              (7) 

 

The performance of the heat exchangers is analyzed by the conventional ε-NTU technique and the 

effectiveness, ε, is defined as: 

 

∈=
𝑸𝒂𝒗𝒆

(𝒎∁𝒑)𝒎𝒊𝒏(𝑻𝒏𝒇,𝒊−𝑻𝒂,𝒊)
                                                                 (8) 

 

The relationship of the effectiveness, the number of transfer unit (NTU), and the minimum heat capacity flow 

rate (mCp) min, at the air side could be [30]: 

 

∈=
1

∁∗ [1 − 𝑒−(𝑁𝑇𝑈)]                                                                   (9) 
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𝑁𝑇𝑈 =
𝑈𝐴

(𝑚∁𝑝)𝑚𝑖𝑛
                                                                       (10) 

 

∁∗=
(𝑚∁𝑝)𝑚𝑖𝑛

(𝑚∁𝑝)𝑚𝑎𝑥
                                                                            (11) 

 

Using Eqs. (9) and (10) the experimental overall heat transfer coefficient, UA, could be evaluated. 

The overall heat transfer coefficient can also be estimated from the following overall resistances [31] for the 

comparison with the experimental data: 

 

1

𝑈𝐴
=

1

𝜂𝑜ℎ𝑜𝐴𝑜
+

𝛿

𝑘𝑡𝐴𝑡
+

1

ℎ𝑖𝐴𝑖
                                                             (12) 

 

where h is heat transfer coefficient, A is surface area, kt is thermal conductivity of the tube wall, δ is wall thickness, 

ηo is surface efficiency, and the subscripts o, i, t denote the air-side, the tube-side and the tube wall, respectively. The 

surface efficiency is related to fin efficiency and it   is calculated as 0.53 for  the present experimental setup. The tube-

side heat transfer coefficient can be calculated by Dittus Boelter [32] correlation for the turbulent flow 

 

𝑁𝑢 = 0.0236𝑅𝑒0.8𝑃𝑟0.3                                                               (13) 

 

where Re is the tube-side Reynolds number based on tube hydraulic diameter, and Pr is Prandtl number.  

The air-side heat transfer coefficient can be calculated from Vithayasai et al. [30] correlation suggested for the radiator 

as: 

 

𝑁𝑢𝑎 = [10.145 × 𝐿𝑛(𝑅𝑒𝑎 − 46.081)] × 𝑃𝑟𝑎
0.33                       (14) 

 

RESULT AND DISCUSSION 

Impact of nanofluid on the overall heat transfer rate 

Figure 5 presents the overall heat transfer rate of the Cu/ water nanofluid as a function of nanofluid flow rate 

at various fan speeds . As can be seen, the overall heat transfer rate of the nanofluid increases significantly with an 

increase in temperature. The overall heat transfer rate at a constant nanofluid flow rate increases with nanoparticle 

concentration compared with the base fluid.  

 These increases in the overall heat transfer rate with the nanofluid can be explained by the increase of heat 

transfer efficiency due to the enhancement of thermal conductivity, the activation of convective heat transfer or the 

thinning of the thermal boundary layer. In addition, there will be one important mechanism for this enhancement on 

thermal conductivity of nanofluid in the piping flow. That is the non-uniform particle concentration in the cross-section 

of the tube. Ding and Wen [33] investigated the particle migration by shear rate gradient, viscosity gradient, and 

Brownian motion which causes non-uniformity in particle concentration. The results state that the overall heat transfer 

rate of the nanofluid is higher than the base fluid water and increases with the input temperature. 
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Figure 5. Overall heat transfer rate Vs Reynolds number for 0.025 % vol fraction 

 

Increasing heat transfer coefficient for different air flow rate 

 In Figure 6 the overall heat transfer coefficient increases for different fan speed( Fs1, Fs2, Fs3). The 

temperature is maintained constant at 50°C and 60°C for three different fan speed. The experimental results reveal 

that as the fan speed increases the overall heat transfer coefficient increases for a fixed volume concentration of 

0.025%. The results also show that as the Reynolds increases the overall heat transfer rate and the heat transfer 

coefficient also increases. 

 

Figure 6. Overall heat transfer coefficient Vs Reynolds number at the concentration of 0.025 vol% 
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Figure 7 shows the experimental data and the theoretical heat transfer coefficient. The comparison was made 

between the experiment and data and the well-known empirical relation correlation suggested by Dittus – Boelter 

respectively. In Figure 7 reasonably good agreement can be seen between the Dittus Boelter equation and the 

measurement over the Reynolds number range used in this study. The results prove that as the air flow rate increases 

the heat transfer coefficient increases for a fixed temperature and increasing Reynolds number  

 

  

Figure 7. Theoretical and experimental heat transfer coefficient for different Reynolds number 

 

 

Figure 8. Nusselt number Vs Reynolds number 
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It seems that the Nusselt number increases with an increasing Reynolds number, volume concentration and 

air flow rate as shown in Figure 8. The maximum values of the Nusselt number are 620 for the Cu/water nanofluid 

respectively. It appears that the Cu/water nanofluid is better than base fluid for heat transfer enhancement when 

compared with pure water.  

Effect of nanofluid concentration on overall heat transfer coefficient 

In Figure 9 the heat transfer coefficient for two different concentrations 0.025 %, 0.05% and 0.075% is 

compared along with the water the base fluid in the tractor radiator. The results reveal that as the nanoparticle 

concentration increases the heat transfer coefficient with 60% in 0.025 concentarion and 71% in 0.05% concentration 

and 88% in 0.075% concentration compared with base fluid at constant input temperature. The Cu/water nanofluid 

has better heat transfer performance than the base fluid water in the tractor radiator as seen from the graph.  

 

 

Figure 9. Heat transfer coefficient vs concentration of nanofluid. 

 

 Concluding Remarks 

The convective heat transfer performance and flow characteristics of copper nanofluid flowing in a radiator 

heat exchanger has been experimentally investigated. Experiments have been carried out under turbulent conditions. 

The effect of particle concentration and the Reynolds number on the heat transfer performance and flow behaviour of 

the nanofluid has been determined. Important conclusions have been obtained and are summarized as following: 

 

Overall heat transfer coefficient  

 Increases with the decreasing inlet temperature of the nanofluid and enhanced with the addition of 

nanoparticles with base fluid. The heat transfer coefficient increases by 16% from 0.025% to 0.05% 
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concentration and from 0.05% to 0.075% concentraion by 19% enhancement. The heat transfer coefficient 

increases by 31% from minimum concentration of 0.025% to maximum concentration of 0.075%. The overall 

heat transfer coefficient enhanced significantly in the nanofluid compared with the pure water. 

 The overall heat transfer coefficient increases with the enhanced volumetric flow rate of the nanofluid and 

increasing the air flow rate. As similar trend followed (from Ravisankar et.al.[34]). 

The best operating conditions include minimum temperature, maximum concentration of nanofluid, maximum flow 

rate of nanofluid and maximum flow rate of air. By introducing nanofluids as alternate coolant, the radiator size can 

be reduced but at the same time, it is offering identical heat transfer rate. The frontal area of the vehicle could be 

redesigned to reduce aerodynamic drag so that less fuel consumption is obtained. 

 

Suspected nanofluid mechanism 

The thermal performance of nanoparticles increase through its thermophysical property, The superior of 

nanofluids thermophysical properties in consequence of the nanoparticles dispersion have been demonstrated to the 

world. The Brownian motion of nanoparticles is suspected in favoring for the enhanced heat transfer in radiator as the 

geometry is cross flow type, which makes the nanoparticle to often contact the walls of tubes in removing the heat.   

Nowadays, the stage of research is changing from investigating the thermophysical properties based on the 

nanoparticles types and nanoparticles volume fraction to the development of nanofluids in diverse industries to make 

it useful as a new energy-efficient heat transfer fluid in real world application. 

Recommendation for future work 

The research work also draws the attention of the many researchers to concentration on  farm equipment 

development for the improved productivity in crop cultivation. The thermal management of heavy vehicles like tractor 

and earth moving equipment through nano mechanism are essential areas for future researchers.   
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NOMENCLATURE 

A Cross section area (m2) 

Dh Hydraulic diameter ( m) 

h Convective heat transfer coefficient(kW/m2 K) 

k Thermal conductivity (W /mK) 

m Mass flow rate (kg/s) 

Nu Nusselt number 

Pr Prandtl number 

Q Heat transfer (W) 

Re Reynolds number 

T Temperature (K) 

(Cp)nf Nanofluid specific heat capacity (J/kgK) 

ρbf Density of base fluid (kg/m3) 

ρp Density of particle (kg/m3) 

(Cp)p Particle heat capacity (J/kgK) 

Kp Thermal conductivity of  particle (W /mK) 

Kbf Thermal conductivity of  base fluid (W /mK) 
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µnf Viscocity of nanofluid (kg/m s) 

C* Cp min / Cp Max 

L Tube length in (m) 

U Overall heat transfer coefficient (W /m2K) 

µ Dynamic viscosity (kg/m s) 

ρ Density(kg/m3) 

φ Volume fraction of nanoparticles (%) 

δ Tube thickness (m) 

ε Effectiveness 

bf Base fluid 

nf Nanofluid 

p Particle 

w Water 

a Air 

b Bare 

i Inlet , tube side 

o Outlet, air side 

Cu Copper 

NTU Number of transfer unit 
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