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ABSTRACT

The current study attempts to predict the outlet temperature of a hybrid nanofluid heat pipe 
using three machine learning models, namely Extra Tree Regression (ETR), CatBoost Re-
gression (CBR), and Light Gradient Boosting Machine Regression (LGBMR), in the Python 
environment. Based on 7000 experimental data (various heat input, inclination angle, flow 
rate, and fluid ratio), different training (95%–5%) and testing (5%–95%) split sizes, a closer 
prediction was attained at 85:15. The three attempted machine learning models are capable of 
predicting the outlet temperature, as evidenced by the less than 5% deviation from the experi-
mental results. Of the three attempted machine learning models, the ETR model outperforms 
the other two with a higher accuracy (98%). Further, the sensitivity analysis indicates the ab-
sence of data overfitting in the attempted models.
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INTRODUCTION

Heat pipes are one of the most efficient ways to transfer 
heat from one place to another. Heat pipes are a variety of 
heat exchangers frequently used in thermal energy recov-
ery, energy conversion systems, solar collectors, spacecraft, 
and electronic and electrical equipment [1]. According to 
Chi [1], the use of heat pipes is the most efficient method to 
transfer heat between two interfaces. Meanwhile, Xu et al. 
[2] summarized the working fluids, operation mechanisms,
and applications of heat pipes. In this juncture, Pathak et
al. [3] and Dave et al. [4] in separate studies altered the
working fluid, wick structure, and reported that the applied

heat flux is the principal factor influencing the thermal 
performance of a heat pipe. On the contrary, Mehta et al. 
[5] altered geometric variables (channel size and shape),
in a heat pipe, and concluded that the thermal resistance
strongly depends on geometrical parameters. Likewise,
Chernysheva et al. [6] analyzed the effect of external fac-
tors (device orientation, condenser cooling temperature,
and condition of heat exchange with the surroundings),
on the operating performance of a heat pipe. In a different
attempt, Shafieian et al. [7] developed a theoretical model
to determine the effect of operational variables on the ther-
mal performance of heat pipe solar water heating systems.
Similarly, Khan and Nadeem [8] developed a mathematical
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model to study the heat and mass transfer rates of the nano-
fluid in a stretching sheet. Likewise, Nadeem et al. success-
fully extended the mathematical model to a bio-convective 
micropolar nanofluid [9].

In the recent past, studies were conducted to investi-
gate the effects of different working fluids and wick struc-
ture in a heat pipe, which are summarized here. Liang et 
al. employed neon as a working fluid and reported rapid 
acceleration of temperature to room temperature [10]. In a 
different attempt, a biporous wick was introduced by Zhang 
et al. and reported improved performance [11]. In a simi-
lar study, Zu et al. successfully performed a visualization 
study on boiling heat transfer in a heat pipe with a wire 
mesh wick [12]. However, recently, researchers focused 
their attention on nanofluids, which contain nanoparticles. 
Martin et al. [13] reported improved thermal efficiency 
while employing Fe-CuO hybrid nanofluid in heat pipes. 
In this context, Chabani et al. adjusted porous trapezoidal 
enclosure in a hybrid nanofluid and reported increased 
thermal efficiency [14]. In a different attempt, Mebarek-
Oudina experimented with titania nanofluids in cylindrical 
annulus with a discrete heat source and opined that fluid 
properties impact the heat transfer rate [15]. In another 
study, the same research group employed the Buongiorno 
model to  detect the thermal properties of the nanofluid 
[16]. In a different attempt, Pandya et al. [17] introduced an 
axial grooved heat pipe filled with CeO2 + MWCNT/water-
based nanofluid and reported that the particle concentra-
tion significantly influences the thermal performance of 
the heat pipe. Similarly, Bumataria et al. [18] evaluated the 
performance of a cylindrical heat pipe with water-based 
CuO and ZnO hybrid nanofluid and reported that the incli-
nation affects the heat transfer rate significantly. Recently, 
Mebarek-Oudina and Chabani [19] wrote a review on the 
applications and heat transfer enhancement techniques 
employing nanofluids at different enclosures. Dharmaiah 
et al. [20] developed a mathematical model to analyze the 
heat transfer rate in a nuclear reactor. Meanwhile, a group 
of researchers from Pakistan, determined the performance 
of heat pipe with different nanofluids through a theoretical 
approach [21–25].

Despite the effectiveness of the experimental approach, 
its complexity and time-consuming nature encourage 
researchers to seek a quick and dependable solution. In 
recent years, there has been a rise in the use of software 
for predicting the thermal performance of a heat pipe. 
The more recent technology, machine learning, aids in the 

identification of potentially challenging correlations that 
may exist within the dataset, enabling us to acquire a better 
depiction of the process. Ahmad et al. [26] recommended 
the ETR model while predicting solar thermal energy effi-
ciency. Meanwhile, Xiang et al. [27] attempted a CBR model 
for predicting power load and reported less error variance. 
In a different attempt, Gong et al. [28] predicted the return 
temperature of district heating systems and recommended 
the LGBMR model for better prediction.

Based on the review of the literature, though studies on 
the usage of nanofluids in heat pipes have been attempted, 
the application of machine learning techniques to predict 
the performance of hybrid nanofluid heat pipes is scarce. 
In particular, the prediction of the outlet temperature in 
the heat pipe utilizing hybrid nanofluid has not yet been 
implemented using machine learning techniques like Extra 
Tree Regression (ETR), CatBoost Regression (CBR), and 
Light Gradient Boosting Machine Regression (LGBMR). 
Hence, ETR, CBR, and LGBMR models are employed to 
predict the outlet temperature of the heat pipe with hybrid 
nanofluid, and the deviation from the experimental results 
is reported.

MATERIALS AND METHODS

Preparation of Hybrid Nanofluids 
The silver nanoparticles were synthesized using a one-

step chemical reduction technique. Using the Lee-Meisel 
process, silver nitrate is reduced with trisodium citrate in 
double-distilled water at a volume concentration of 0.01% 
to yield silver nanofluid [29]. Alumina nanofluid was pro-
duced by a two-step ultrasonication process. a) Heating an 
aqueous solution of aluminum nitrate and b) urea to the 
appropriate concentration produced an alumina nanopar-
ticle [30]. By using ultrasonication, synthetic alumina 
nanoparticles were combined with double-distilled water 
at a volume concentration of 0.01% to produce alumina 
nanofluid. The traditional tests of UV absorption (Figure 
1) and size distribution (Figure 2) analysis were used to 
confirm the presence of silver and alumina nanofluids. The 
hybrid nanofluid charge in the heat pipe was 16 ml [1], 
and the fill percentage was 37.62%. Three Ag-Al2O3 ratios 
of 80%–20%, 70%–30%, and 60%–40% hybrid nanofluids 
were created, as detailed in Table 1, to study the thermal 
performance of heat pipe.

Table 1. Compositions of hybrid nanofluid

Working fluid Ag/ distilled water (ml) Al2O3/ distilled water (ml) Total hybrid nanofluid (ml)
(Ag 80%-Al2O3 20%)/ distilled water 12.8 3.2 16
(Ag 70%-Al2O3 30%)/ distilled water 11.2 4.8 16
(Ag 60%-Al2O3 40%)/ distilled water 9.6 6.4 16
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Experimental Setup
The heat pipe was designed using the procedure given 

by Chi [1], and the heat pipe’s capillary heat transport, 
sonic, entrainment, and boiling limitations were calculated. 
The calculated capillary heat transport limitation was 100 
W. Consequently, the heat input was limited to 100 W. The 
heat pipe was made of copper. The wick inside the heat pipe 
is made of stainless steel screen mesh. The inner surface of 
the heat pipe was rolled with two layers of stainless steel 
screen mesh. Copper end caps were used to perfectly seal 
the ends of the heat pipe. To create vacuum inside the heat 
pipe, a vacuum pump and a vacuum pressure gauge were 
utilized. The specifications of the heat pipe are shown in 
Table 2. The schematic diagram of the heat pipe with vac-
uum gauge is shown in Figure 3. Three hybrid nanofluid 
ratios were sequentially charged with 16 ml each inside the 
heat pipe’s cylindrical heat pipe. First, 80%–20% hybrid 

nanofluid was charged into the heat pipe. Secondly, the test 
has been carried out. Thirdly, by completing the exper-
iment, the hybrid nanofluid of 80%–20% has been fully 
drained, and the remaining experiments were conducted 
with 70%–30% and 60%–40% hybrid nanofluids. A 500 
W heater (Venus: copper coil with ceramic insulator) was 
positioned circumferentially at the outer edge of the heat 
pipe in the evaporator section.

The power supply for the heater is at 240 volts and 
50 Hz. A voltage regulator (Cresta autostat) was used 
to regulate the power supply, and a digital wattmeter 
(Cabs electra) was used to measure the amount of heat 
input. Black rubber foam was used as insulation in the 
adiabatic portion to reduce heat loss from the heat pipe. 
A cylindrical shell with a diameter of 35 mm was con-
structed for the condenser section, and water circulated 
naturally within it to serve as a coolant. The cylindrical 

Figure 2. Size distribution analysis of a) silver nanofluid and b) alumina nanofluid.

Figure 1. UV absorption characteristic test of a) silver nanofluid and b) alumina nanofluid.
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heat pipe and the atmospheric temperature were mea-
sured and monitored using nine T-type thermocouples 
(T1 – T9), as shown in Figure 3. The temperature data 
was measured, tracked, and collected every 30 s using an 
Agilent data logger (Model No. 34970A) with a desktop 
computer. The camera-friendly view and the schematic 
diagram of the experimental setup are shown in Figs. 4a 
and 4b, respectively. The heat input was varied from 40 
W to 100 W (in steps of 10 W), and the inclination was 
varied by 0°, 30°,  and 45°. The flow rate was varied by 
0.0033 kg/s and 0.0050 kg/s, and the fluid ratio was fixed 
at 0.6 (60%–40%), 0.7 (70%–30%), and 0.8 (80%–20%), 
respectively. These parameters were fixed by trial and 
error. The minimum and maximum values of each pro-
cess parameter are displayed in Table 3.

MACHINE LEARNING ALGORITHMS

Extra Tree Regression (ETR)
Extra tree, also known as much randomized trees, is 

an ensemble-supervised machine learning technique that 
trains models using the decision tree algorithm. The deci-
sion trees function with classification and regression tech-
niques. This approach is comparable to random forests but 
may be faster. Similar to the random forest technique, the 
additional trees algorithm generates numerous decision 
trees, but the sampling for each tree is random and with-
out replacement. As a result, each tree gets its own dataset 
with distinct samples. Additionally, each tree receives a ran-
dom selection of a predetermined number of features from 
the entire set of features. The choice of a feature’s splitting 
value is made at random, which is the most significant and 

(1: Heat pipe, 2: Inclination arrangement, 3: Water line, 4: Main power supply, 5: Voltage regulators, 6: Watt meters, 7: 
T – type thermocouples, 8: Agilent data logger, 9: Desktop computer, and 10: Vacuum pressure gauge)

Figure 4a. Photographic view of the experimental setup.

Figure 3. Schematic diagram of the heat pipe.
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distinctive property of additional trees. The approach ran-
domly chooses a split value for the data instead of finding a 
locally optimal value using gini or entropy. As a result, the 
trees are diverse and uncorrelated [31].

Catboost Regression (CBR)
CatBoost is a supervised machine learning technique 

that solves classification and regression issues by using 
decision trees. As the name implies, CatBoost has two key 
components: gradient boosting (the Boost) and categori-
cal data (the Cat) to work with data. Gradient boosting is 
a method where several decision trees are built iteratively. 
Each additional tree enhances the output of the previous 
one, producing greater outcomes. For faster implementa-
tion, CatBoost enhances the initial gradient boost tech-
nique. CatBoost bypasses a drawback of conventional 
decision tree-based approaches, where the data must often 
be pre-processed to transform categorical string variables 
to numerical values, one-hot encodings, etc. This approach 
can use a mix of category and non-categorical explanatory 
variables directly, without any preprocessing. In this algo-
rithm, preprocessing is included. The categorical features in 
CatBoost are encoded using a technique known as ordered 
encoding. When using ordered encoding, a value is gener-
ated to replace the categorical feature that takes into account 
the target statistics from all the rows prior to a data point. 
CatBoost uses symmetric trees, which is another distinctive 
feature of it. As a result, every decision node at every depth 
level employs the identical split condition [32].

Light Gradient Boosting Machine Regression (LGBMR)
The Light Gradient Boosting Machine is a gradi-

ent-boosting ensemble technique used to train decision 
trees. Both classification and regression problems can be 

Figure 4b. Schematic diagram of the experimental setup.

Table 2. Specifications of the heat pipe

Specifications Dimensions
Total length (mm) 1000
Inner diameter (mm) 17
Outer diameter (mm) 19
Thickness (mm) 2
Evaporator section (mm) 150
Adiabatic section (mm) 550
Condenser section (mm) 300
Condenser diameter (mm) 35
Mesh size 20,000 per mm2

Heating coil length (mm) 150
Pipe material Copper
Wick material Stainless steel
Wick structure Wrapped screen (Two layers)
Fill ratio (%) 37.62

Table 3. Range of the parameters

Parameters Range (Raw data)

Min Max
Heat input (W) 40 100
Inclination (o) 0 45
Flow rate (kg/ s) 0.0033 0.0050
Fluid ratio (Ag-Al2O3) 0.6 (60%-40%) 0.8 (80%-20%)
Condenser inlet temperature (K) 302.68 309.25
Atmospheric temperature (K) 301.27 308.00
Outlet temperature (K) 303.60 320.73
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solved with LGBMR. LGBMR is designed for high per-
formance in distributed systems. When using LGBMR 
to generate decision trees, just one leaf is split for each 
condition, depending on the gain, and the trees develop 
in a leaf wise manner. Sometimes, especially with smaller 
datasets, leaf-wise trees might overfit. Overfitting can be 
prevented by restricting the tree depth. A histogram of the 
distribution is used by LGBMR to bucket data into bins. 
For iteration, gain calculation, and data splitting, the bins 
are employed rather than each data point. Additionally, 
a sparse dataset can benefit from this method’s optimi-
zation. Another element of LGBMR is exclusive feature 
bundling, in which the algorithm bundles exclusive char-
acteristics to reduce dimensionality and make it quicker 
and more efficient [33].

Methodologies Adopted to Select the Training and 
Testing Sizes

In this study, the outlet temperature of a cylindrical 
screen-mesh heat pipe filled with hybrid nanofluid was 
analyzed and estimated using ETR, CBR, and LGBMR 
regression models. Heat inputs, inclinations, flow rates, 
fluid ratios, condenser inlet temperature, and ambient 
temperature were chosen as input parameters. The out-
put temperature is the target parameter. To determine 
the best split size, the dataset is divided into different 
training and testing sizes, ranging from 95%: 5% to 5%: 

95% in steps of -5%: +5% for all these regression models. 
R2 was used to determine the accuracy of every split size 
(Table 4).

Hyperparameters Tuning of ETR, CBR and LGBMR 
Models 

Each model has a collection of hyperparameters that 
affect its accuracy, robustness, and capacity to learn from 
new datasets. The hyperparameters significantly influence 
the computation time as well. Tuning the hyperparameters 
is necessary in order to maximize the model’s performance. 
In this study, the models of ETR, CBR, and LGBMR, are 
tuned to achieve the best accuracy. It is carried out using 
the Optuna (a Bayesian optimizer) framework, which uses 
the R2 value as an accuracy benchmark to determine which 
model parameters are the best to tweak. The tuned hyperpa-
rameters for the models ETR, CBR, and LGBMR are shown 
in Table 5. Three performance indicators, namely mean 
absolute error (MAE), mean absolute percentage error 
(MAPE), and R2 value, were used to assess the outlet tem-
perature prediction accuracy. These metrics are employed 
to assess the variance between the outlet temperature that 
results from the experimental approach and the predicted 
outlet temperature. The performance indicators are com-
puted as follows:

Table 4. Training and testing combinations (optimal condition highlighted)

Training and testing 
combination (%:%)

Models

CBR ETR LGBMR
95:5 0.9856 0.9869 0.9726
90:10 0.9857 0.9870 0.9727
85:15 0.9859 0.9871 0.9728
80:20 0.9850 0.9865 0.9719
75:25 0.9849 0.9859 0.9714
70:30 0.9849 0.9861 0.9715
65:35 0.9841 0.9850 0.9712
60:40 0.9839 0.9846 0.9711
55:45 0.9831 0.9844 0.9706
50:50 0.9832 0.9840 0.9698
45:55 0.9822 0.9836 0.9683
40:60 0.9817 0.9825 0.9679
35:65 0.9815 0.9826 0.9675
30:70 0.9797 0.9817 0.9656
25:75 0.9788 0.9803 0.9645
20:80 0.9773 0.9779 0.9596
15:85 0.9742 0.9723 0.9546
10:90 0.9652 0.9632 0.9535
5:95 0.9471 0.9400 0.9384



J Ther Eng, Vol. 10, No. 2, pp. 286−298, March, 2024292

	 	
(1)

	 	
(2)

	 	
(3)

RESULTS AND DISCUSSION 

Experimental Results
The experimental condition (Q: 100W, I: 45o, ṁ: 0.0050 

kg/s, and R: 0.8) produced the highest outlet temperature 
of 320.726 K, whereas the operating state (Q: 40W, I: 0o, 
ṁ: 0.0033 kg/s, and R: 0.6) resulted in the lowest outlet 
temperature (303.6 K). The maximum outlet temperature 
is produced when the working fluid has the highest silver 
content (80%), consistent with the reports of Chavda and 
Bumataria [34]. Increases in the heat input, inclination, 
flow rate, and silver content resulted in a higher outlet tem-
perature compatible with the studies carried out by Ali et al. 
[35]. The operating parameters (Q, I, ṁ and R) significantly 
affect the outlet temperature.

Prediction of Outlet Temperature by the Developed 
Models: A Comparative Analysis

 The accuracy of the models is revealed by a scatter plot 
(Figure 5 a–c) between the actual and predicted output tem-
peratures. According to experimental results, all the machine 
learning models attempted displayed significant or foggy 
dispersion around the diagonal. The fogginess suggests a 
close correlation between the experimental and predicted 
values. The closer distance between the predicted values and 
the diagonal line is a sign of higher accuracy. Yang et al. [36] 
opined that the model performs well if the scatter points are 
close to the diagonal line; but poorly if the scatter points are 
distant from the diagonal line. The scatter distributions of 
the ETR and CBR models are more tightly packed towards 
the centre diagonal line compared to the LGBMR model. In 
terms of scatter distribution, the ETR model outperforms all 
others with the least amount of deviation from the diagonal, 
consistent with the studies carried out by Khan and Nadeem 
[37]. The performance and accuracy metrics for each of the 
three machine learning models are tabulated in Table 6.

The MAE and MAPE values in the LGBMR model 
are higher (Table 6), which results in lower R2 values. In 
terms of accuracy, the ETR model outperforms the other 
two machine learning models since it has lower MAE and 
MAPE values (0.0955 and 0.0310) and a higher R2 value 
(0.9890), which is consistent with the separate studies of 
Khan et al. [38] and Nadeem et al. [39]. As a result, the 
Extra Tree Regression model is recommended for predict-
ing the outlet temperature of the heat pipe when employing 
hybrid nanofluid.

Table 5. Tuned hyperparameters.

Model Hyperparameters Range Optimal value

ETR

max_depth
max_leaf_nodes
min_samples_split
n_estimators

2-1000
2-1000
2-1000
2-1000

615
542
2
808

CBR

l2_leaf_reg
learning_rate
max_bin 
max_depth 
min_data_in_leaf 
subsample 

1e-3-10
0.006-0.018
200-400
5-15
1-300
0.4-1

0.04
0.006
215
13
52
0.6

LGBMR

lambda_l1
learning_rate
max_bin 
min_data_in_leaf
min_sum_hessian_in_leaf
num_leaves
path_smooth
verbose 

1e-5-1e-1

1e-3-10
80-300
10-80
1e-8-10
10-30
0.4-1.5
1-5

0.01
0.33
137
35
7.46e-7

11
0.43
4
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Figure 5b. Regression plots for CBR model.

Figure 5a. Regression plots for ETR model.

Table 6. Performance metrics of the models.

Model Metrics Dataset

Total Train Test Validation

ETR
MAE
MAPE
R2

0.0692
0.0225
0.9945

0.0636
0.0206
0.9957

0.0955
0.0310
0.9890

0.1333
0.0433
0.9804

CBR
MAE
MAPE
R2

0.0917
0.0298
0.9903

0.0902
0.0293
0.9908

0.0993
0.0322
0.9882

0.1339
0.0437
0.9790

LGBMR
MAE
MAPE
R2

0.1131
0.0367
0.9858

0.1110
0.0360
0.9863

0.1542
0.0500
0.9731

0.1440
0.0467
0.9725
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Sensitivity Analysis
To cross-validate the attempted models and ensure their 

accuracy, a sensitivity analysis was carried out. With 15 data 
points, Table 7 shows the outflow temperature under the 
experimental conditions. The proposed machine learning 
models (ETR, CBR, and LGBMR) are also shown together 
with the predicted values under the aforementioned condi-
tions. The validation data for the model’s accuracy are shown 
in a scatter plot (Figure 6 a–c) between the actual and pre-
dicted outlet temperatures. The scatter distributions of the 
ETR and CBR models are more tightly packed towards the 
centre diagonal line compared to the LGBMR model. Table 
7 presents the difference in error between experimental and 

predicted findings, while Table 6 displays, correspondingly, 
their performance metrics. The R2 values of the sensitivity 
analysis data and test data are 0.67% and 1.54% different 
from the training data, respectively, indicating the variance 
is not substantial. According to Shafiq et al. [40] and Singh 
and Gupta [41], if the deviation is less than 5%, the models 
are suitable for prediction, which is in agreement with the 
present study. It is concluded that the models are capable 
of producing reasonable predictions without experiencing 
significant overfitting. The optimal parametric conditions 
determined by the ETR model to attain maximum outlet 
temperature are Q-98.54 W, I-43.49o, ṁ-0.0044 kg/s and 
R-0.77.

Figure 6a. Regression plots for ETR model (validation).

Figure 5c. Regression plots for LGBMR model.
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CONCLUSION AND FUTURE 
RECOMMENDATIONS

•	 The optimal training and testing split sizes were 85% 
and 15%, respectively.

•	 With a deviation of less than 5%, attempted machine 
learning models effectively predict the output 
temperature.

•	 The ETR model was the most accurate, followed by the 
CBR and LGBMR models due to its ensemble learning 
algorithm and randomized selection of split values.

•	 It is recommended to employ a 0.77 fluid ratio with a 
heat input of Q = 98.54 W, an inclination of I = 43.49o, 

and a flow rate of ṁ = 0.0044 kg/s to attain higher outlet 
temperature. 

•	 The sensitivity analysis showed that the attempted 
machine learning models did not exhibit data overfit-
ting.	
This study shows that the ETR, CBR, and LGBMR 

machine learning regression models have good potential 
for predicting the outlet temperature of a cylindrical screen-
mesh heat pipe filled with hybrid nanofluid. However, addi-
tional research needs to be done with more experimental 
data on various geometrical, fluid properties, operational, 
and ambiance variables to find a responsible design tool for 
the use of hybrid nanofluids in heat pipes.

Figure 6b. Regression plots for CBR model (validation).

Figure 6c. Regression plots for LGBMR model (validation).
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NOMENCLATURE 

Abbreviations
ṁ	 Flow rate (kg/s)
CBR	 CatBoost Regression 
ETR	 Extra Tree Regression 
Exp.	 Experiments
I	 Inclination (o)
i	 Index number
IDE	 Integrated Development Environment
LGBMR	 Light Gradient Boosting Machine Regression 
MAE	 Mean Absolute Error
MAPE	 Mean Absolute Percentage Error
MWCNT	 Multi-Walled Carbon NanoTubes
n	 Number of data points
Q	 Heat input (W)
R	 Fluid ratio
R2	 Determination of Coefficient
Ta	 Atmospheric temperature (K)
Ti	 Condenser inlet temperature (K)
To	 Outlet temperature (K)
ye	 Actual value
ye,mean	 Actual mean value
Yp	 Predicted value

Chemical symbols
CeO2 	 Cerium oxide
CuO	 Copper oxide
Fe	 Iron
ZnO	 Zinc oxide
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Table 7. Error differences among the models.

Exp. 
No. Q (W) I (o) ṁ (kg/s) R Ti  

(K)
Ta  
(K)

To (K)
Error (K)

Exp. (K)
Predicted

ETR CBR LGBMR ETR CBR LGBMR
1 100 0 0.0033 0.6 306.166 306.743 311.299 311.1673 311.4969 311.3897 0.1317 -0.1979 -0.0907
2 70 30 0.0033 0.6 305.082 304.276 308.235 308.0489 308.3760 307.3438 0.1861 -0.1410 0.8912
3 40 30 0.0033 0.6 305.701 304.126 307.086 307.0938 307.3620 306.9828 -0.0078 -0.2760 0.1032
4 80 30 0.0033 0.6 306.413 306.426 309.949 309.7319 309.8757 310.2944 0.2171 0.0733 -0.3454
5 70 30 0.005 0.6 305.136 305.262 307.139 307.2407 307.2541 307.2430 -0.1017 -0.1151 -0.1040
6 70 45 0.005 0.7 305.532 304.066 307.207 307.4195 307.5238 307.2505 -0.2125 -0.3168 -0.0435
7 80 30 0.0033 0.7 307.129 305.009 310.432 309.8402 310.0689 309.2999 0.5918 0.3631 1.1321
8 100 30 0.005 0.7 305.693 305.004 308.557 308.4822 308.5933 307.2975 0.0748 -0.0363 1.2595
9 40 45 0.005 0.8 303.651 302.453 304.752 304.6577 304.6581 304.6567 0.0943 0.0939 0.0953
10 70 45 0.005 0.6 306.262 306.052 308.329 308.4966 308.5376 308.3559 -0.1676 -0.2086 -0.0269
11 100 45 0.0033 0.6 306.417 305.883 311.869 311.0391 311.0606 311.2994 0.8299 0.8084 0.5696
12 50 30 0.0033 0.8 305.723 303.430 307.652 307.1697 307.5975 307.5059 0.4823 0.0545 0.1461
13 60 30 0.0033 0.8 304.396 303.401 306.912 306.7549 306.9852 306.9221 0.1571 -0.0732 -0.0101
14 70 30 0.005 0.6 305.183 304.809 307.175 307.2418 307.4062 306.9168 -0.0668 -0.2312 0.2582
15 80 45 0.0033 0.7 305.909 305.269 308.940 309.1136 309.1979 309.2761 -0.1736 -0.2579 -0.3361
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