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ABSTRACT

Drastic variation in the thermodynamic properties of supercritical fluids near the pseudo 
critical point hinders the use of commercial computational fluid dynamics (CFD) software. 
However, with the increase in computational abilities, along with the use of Artificial Neu-
ral Networks (ANN), turbulence heat transfer characteristics of supercritical fluids can be 
very accurately predicted. In the present work, heat transfer characteristics for a vertically 
downward flow of carbon dioxide in a pipe are studied for a wide range of heat flux and mass 
flux values. Firstly, six different turbulent models available in the commercial CFD software 
- Ansys Fluent are validated against the experimental results. The k- ω Standard model with
enhanced wall treatment is found to be the best-suited turbulence model. When experimental 
results were validated in CFD, an average error of 1% in the bulk fluid temperature and 2% in
the wall temperature were recorded. Further, K- ω Standard Turbulence Model is used in CFD 
for parametric analysis to generate the data for ANN studies. Mass flux range of 238 to 1038
kg/m2s, and heat flux range of 26 kW/m2 to 250 kW/m2 are used to generate 81,432 data sam-
ples. These samples were fed into the ANN program to develop an equation that can predict
the heat transfer coefficient. It was found that ANN can predict the heat transfer coefficient
for the considered range of values within the absolute average relative deviation of 2.183 %.
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INTRODUCTION 

The highest temperature and pressure at which vapour 
and liquid coexist in equilibrium is termed a critical point. 
Fluids above the critical point exhibit peculiar property 
variations that can be used to improve heat transfer in 

fluids, in addition to this, Super Critical Carbon Dioxide 
(sCO2) as a working fluid, reduces work input at the inlet 
to the main compressor, due to its liquid-like behaviour [1]. 
Nusselt Number correlations applicable to super critical 
fluids finds lot of application in designing such systems. 
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Water, helium and carbon dioxide are widely used in super-
critical heat transfer applications. Carbon dioxide as the 
working fluid has advantages over other supercritical flu-
ids in terms of lower critical temperature (31.04°C), higher 
thermal stability and abundant availability. Understanding 
the heat transfer characteristics of supercritical carbon 
dioxide near the critical point is very crucial in designing 
the heat exchangers. 

Hall [2] has done extensive work on heat transfer 
behaviours near a critical point. In this work, Experimental 
results for forced convection, natural convection and mixed 
convection were presented along with theoretical meth-
ods and correlations for the Nusselt number. Heat trans-
fer enhancement and deterioration were showcased for the 
forced convection cases. Tanaka et al. [3] have proposed 
normal mode turbulent convection theory to obtain the 
wall temperature profiles for forced convection heat trans-
fer to fluids (liquids and gases) near critical point flowing 
in a circular tube. Higher heat flux values were considered 
for the study for which surface roughness had a significant 
effect on forced convection heat transfer to supercritical 
fluids. Turbulent heat transfer characteristics for supercrit-
ical carbon dioxide flow in a pipe of diameter 0.228mm are 
studied by Bourke et al. [4], this study considered a mass 
flow rates in the range of 0.127 kg/s to 0.697 kg/s, heat flux 
range of 8 kW/m2 to 350 kW/m2 and a pressure range of 
7.4 MPa to 10.32 MPa. These studies have shown, peaks in 
wall temperature specific to vertical upward flow and these 
peaks are not observed in vertical downward flows. The 
authors have also proposed new data for the enthalpy /tem-
perature relationship for carbon dioxide from 15 to 40°C 
for the above-mentioned operating values. 

Fang [5] has given a complete survey of a single phase 
in tube heat transfer relationships for supercritical car-
bon dioxide flows. This study highlights the need for new 
models to understand the heat transfer behaviour near 
the critical point. Duffey and Pioro [6] have conducted an 
extensive survey on experimental heat transfer studies for 
supercritical carbon dioxide flowing inside channels. This 
study mentions the data regarding the range of operating 
conditions (Heat flux, mass flux and operating pressure) 
the researchers have considered for the study over the years. 
This study concludes that the heat transfer behaviour at 
supercritical pressures is affected by flow orientations and 
the operating conditions. Also, the deteriorated heat trans-
fer typically appears at higher heat fluxes and lesser mass 
flux values regardless of the flow orientations. 

Jiang et al. [7] have proposed a technique for obtain-
ing the local heat transfer coefficient of carbon dioxide 
in a vertically small tube under cooling conditions. Their 
numerically predicted values of heat transfer coefficient 
agreed well within 10% error with experimental results. 
These results were obtained for the mass flux range of 0.5 to 
2.2 kg/h, pressure range of 7.4 MPa to 9.5 MPa and a heat 
flux range of 2.5 to 40 kW/m2. In this paper, the authors 
have reported peaks in heat transfer coefficient values for 

the cases considered near the pseudo critical pressure. 
These drastic variations in the heat transfer coefficient led 
to inaccurate predictions if the operating conditions are not 
within the considered range by the authors. Bae et al. [8] 
emphasised the need for separate correlations for normal 
and deteriorated heat transfer regimes. For the 6.32mm 
pipe diameter and the considered operating ranges (mass 
flux- 285 to 1200 kg/m2 s, heat flux – 30 to 170 kW/m2, 
operating pressure- 7.75 to 8.12 MPa) the proposed correla-
tion predicted the Nusselt number values within the ±30% 
deviation. Also, the authors have reported a slight drop in 
Nusselt number values for vertically downward flow when 
the buoyancy parameter is in the range of 10-7 to 3*10-5. 

Zhang et al. [9] used numerical methods to identify 
the best-suited turbulence model for the prediction of heat 
transfer behaviour in supercritical fluids. Reynolds stress 
models have given a better agreement with the various 
experimental results considered for the study. The average 
error using Reynold’s stress model is reported at 10.23 % 
for a q/G value of 0.23 and 9.11% for a q/G value of 0.155. 
Fang and Xu [10] by considering the 341 experimental data 
points from various experimental works have proposed a 
correlation whose relative deviation is 8.9 % which is 14.6% 
lower than the best existing correlations. Ye et al. [11] have 
used artificial neural networks (ANN) to develop a correla-
tion to predict heat transfer coefficient (h), with an absolute 
percentage error of 0.97%, but neglecting the significant 
effects of buoyancy and flow acceleration in their model, 
restricts the applicability of the proposed model in buoy-
ancy-driven flows. Wang et al. [12] conducted parametric 
studies on sCO2 at low mass fluxes and at high heat fluxes in 
a horizontal tube where the mass flux ranges from 400-500 
kg/m2 s and heat flux ranges from 30-200 kW/m2. The stud-
ies highlight the main reason for heat transfer deterioration 
as the buoyancy difference between the top wall and bot-
tom wall. Further studies have shown that the heat transfer 
coefficient is different for the upper wall and bottom wall, 
in a horizontal tube. The authors have compared the results 
with the correlation proposed by Liao – Zhao [13] and the 
results agree well with their experimental data. Recently, 
Rajendra Prasad et al. [14] used Artificial Neural net-
works for deriving the generalized correlations for Nusselt 
Number for supercritical carbon dioxide flowing upwards 
in a pipe, where the average deviation is less than 10%. 

Though many correlations are available in the litera-
ture to predict ‘Nusselt Number’, using numerical approach 
for supercritical-fluids-pipe-flow, the relative deviation of 
results such equations is more than 10% compared to the 
experimental results. Further, the applicability of these 
correlations is also limited to a narrow range of operating 
parameters. 

In the present work, firstly CFD methodology adopted 
is validated against the existing experimental studies [16]. 
Later, using the validated CFD methods, a wide range of 
parametric studies with varying - heat flux and mass flux 
is carried out. A total of 81,432 data samples obtained from 
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18 different operating conditions are used to train ANN, 
which resulted in a more generalized correlation for a 
downward flow of supercritical carbon dioxide at the oper-
ating pressure of 7.631 MPa. This equation with the given 
weights and bias can predict the heat transfer coefficient for 
the whole range of operating conditions within 2.183 % of 
average absolute relative deviation.

METHODOLOGY

Geometric Modelling
Ansys Design modeler is used to create a vertical pipe 

with an inner diameter of 2 mm, the outer diameter of 
3.137 mm and a length of 290 mm as shown in Figure 1. 
The length and diameters of the pipe are grounded in the 
experimental works of Li et al. [16]. The inner wall of the 
solid domain is coupled to the outer surface of the fluid 
domain to establish a connection between solid and fluid 
domains. 

Mathematical Modelling

Conservation equations
Numerical solutions rely on the three fundamental fluid 

flow equations namely, conservation of mass, momentum 
and energy. Equations 1, 2, and 3 represent averaged forms 
of these equations in index form. Steady flow equations are 
used in the present work.

  (1)

  (2)

Here  is the laminar shear stress tensor is given by 

and the Reynolds stress is given by 

  (3)

here α is the thermal diffusivity  , where K is the 
thermal conductivity in W/m-K

Turbulent heat diffusion may be approximated as 

ANSYS Fluent has several turbulence models inbuilt 
to solve Reynold’s stress components. The k-ε std, k-ε 
Realizable, k-ε RNG, k-ω Std, k-ω BSL and k-ω SST models 
are the more popular turbulence models used in the previ-
ously available literature. 

Computational Fluid Dynamics (CFD) Modelling
Heat transfer characteristics of supercritical fluids are 

very different from that of normal fluids [5]. Numerical 
methods with the appropriate boundary conditions and 
solution algorithms, prove to be very effective in predicting 
heat transfer characteristics of supercritical fluids. In the 
present work, to evaluate the accuracy of turbulent models 
available in the software, six different models namely k-ε 
std, k-ε Realizable, k-ε RNG, k-ε Std, k-ω BSL and k-ω SST 
were chosen. A total of six simulations were performed as 
part of the validation.

Properties of supercritical fluids vary drastically near 
the critical point. These property variations can be incor-
porated into the ANSYS FLUENT by establishing an 
interface between FLUENT and NIST REFPROP [12] data-
base. Stainless steel 316L properties are used for the solid 
domain. The coupled scheme is used for Pressure-velocity 
equations. density, momentum, turbulent kinetic energy 
terms, turbulent dissipation rate and energy terms are 
solved using third-order spatial discretization. Body force 
weighted scheme for pressure spatial discretization is used 
to include buoyancy effects. 

Calculations are continued until the convergence crite-
ria are achieved as shown in Figure 2 and Figure 3. During 
the first few iterations, the convergence parameter (mass 
outflow – mass inflow) oscillates and as the iterations con-
tinue the magnitude of oscillation is reduced and mass con-
servation is achieved at around 450 iterations for the case 
shown below. As a second convergence criterion, outlet 
temperature is monitored during the iterations. Similar to 
the mass conservation criteria, outlet temperature fluctu-
ates during the first few iterations and once the results tend 
towards convergence of 10-3, the magnitude of fluctuations 
is reduced. 

Figure 1. Geometry (Top View).
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Mesh independence study
Before the detailed parametric studies, a mesh inde-

pendence study was conducted. Ansys-workbench pro-
vides mesh metrics to measure and monitor the quality 
of the mesh generated. A total of six meshed models are 
created with the 5 layers of inflation to see the variation of 
the bulk fluid outlet temperature with the increase in the 
number of elements. Grid independent results are obtained 
for 84,70,952 elements (Figure 4b) with an element size of 
0.0002m with 5 layers of inflation as shown in Figure 4a. In 

all the meshed models used in the analysis, target Y+ of 1 is 
set to capture the effects of viscous sub-layers. Mesh metric 
details are mentioned in Table 1. The addition of inflation 
layers greatly reduced the distance of the first element from 
the wall. The distance from the wall to the first element in 
the mesh is 0.000025m. The inflation layers provide accu-
racy in the final results by capturing small temperature dif-
ferences as well as drastic property variations between the 
wall and the fluid. 

Figures 3. Report definition plot for outlet bulk fluid temperature.

Figures 2. Report definition plot for the difference between mass outflow and mass inflow).
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Validation of the Present Study
To evaluate the accuracy of our CFD methods and dif-

ferent turbulence models available in the software, a com-
parative study is conducted against the experimental results 
of Li et al. [16]. Seven different turbulence models are used 
to plot Bulk fluid temperature and inner wall temperatures 
against the experimental results as shown in Figure 5 and 

Figure 6. In all these cases a target Y+ of 1 is choosed to 
compare the different turbulence models. All the turbu-
lence models predicted the bulk fluid temperature within 
the error percentage of ± 2%, while, the error % in wall 
temperature prediction of other turbulent models is greater 
than 2%, except the k-w Std model whose wall temperature 
prediction is within 1% deviation. Hence the k-w Std model 
is used for the parametric analysis in this work. 

Nusselt number graphs from the experimental results of 
Li et al. [16] are used to verify the accuracy of the selected 

k-ω std turbulence model. Figure 7, shows the variation of 
the Nusselt number against the location for different turbu-
lence models. Compared to the other models for which the 
deviation is more than 150%, the k-ω std model predicted 
the Values of the Nusselt number with an average deviation 
of 25%.

Figure 4a. Meshed model.

Table 1. Mesh Metrics

Number of Elements Element Quality (Avg.) Skewness (Avg.) Aspect Ratio (Avg.) Orthogonal Quality (Avg.)
84,70,952 0.7638 0.083 2.3195 0.98588

Figure 4b. Number of elements v/s Bulk fluid temperature.
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Figure 6. Wall temperature variation along the pipe length. (Li et al. [11]: Downward Flow, P=8.80 MPa, Tin = 250C, Rein 
= 9000.)

 

Figure 5. Bulk fluid temperature variation along the pipe length. (Li et al. [11]: Downward Flow, P=8.80 MPa, Tin = 250C, 
Rein = 9000.)
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RESULTS AND DISCUSSIONS

With the validated Mesh model and the turbulence 
model, Wide ranges of mass flux, and heat flux cases are 
investigated in the present work. Based on the previous 
studies as shown in Table 2, the range of Heat flux and Mass 
flux values were considered in the present study. Mass flux 
is varied from 238 kg/m2s to 1038 kg/m2s (9 Cases), and 
heat flux from 26 kW/m2 to 250 kW/m2 (9 Cases).

Effect of Mass Flux
Figures 8, 9 and 10 show the effect of mass flux on the 

bulk fluid temperature, wall temperature and heat transfer 
coefficient respectively. As the mass flux increased outlet 
temperature of the bulk fluid decreased, also decreasing 

the wall temperature at higher mass values. This shows the 
clear improvement in heat transfer abilities at higher mass 
flux values. A peak in the wall temperature is observed at all 
the mass flux values for which pseudocritical temperature 
is achieved within the length of the pipe. At a high mass flux 
value of 638 kg/m2-s (Case D), a peak in the wall tempera-
ture is not present for the entire length. Drastic decrease of 
heat transfer coefficient is observed at locations where the 
wall temperature peaks indicating the presence of hot spots 
resulting in heat transfer deterioration. Hence, it is desir-
able to use the higher mass flux values in a flow, such that 
the peak for the wall temperature doesn’t occur at the entire 
length of the pipe and in turn, the issue of heat transfer 
deterioration will not be present (Case D). A total of 9 dif-
ferent mass flux cases ranging from 238 kg/m2-s to 1038 kg/ 

Figure 7. Local Nusselt Number variation along the pipe length. (Li et al. [11]: Downward Flow, P=8.80 MPa, Tin = 250C, 
Rein = 9000.)

Table 2. Range of Parameters considered in the literature for experimental and numerical studies

Reference Paper Pressure  
(bar)

Heat Flux  
(kW/m2)

Mass Flux 
(kg/m2-s)

Flow 
Orientation

Hall and Jackson [2] 75.8 40–57 Rein = 113×103 Vertical
Tanaka et al. [3] 81 488; 640 120–240 Vertical
Petukhov et al. [17] 98 85–505 960 Vertical
Miropol’skiy and Baigulov [18] 79 67–224 670–770 Vertical
P.J Bourke et al. [4] 74.4–103.2 8–350 310-1700 Vertical
Bae et al. [8] 77.5 and 81.2 30–170 285–1200 Vertical
Kim et al. [15] 74.6 to 102.6 38 to 234 208 to 874 Vertical
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Figure 8. Variation of Bulk fluid temperature along the pipe length for different mass flux cases. Case 1: q’’=52000kW/m2, 
G=338 kg/m2-s, P=7.621 MPa; Case 2: q’’=52000kW/m2, G=438 kg/m2-s, P=7.621 MPa; Case 3: q’’=52000kW/m2, G=538 
kg/m2-s, P=7.621 MPa; Case 4: q’’=52000kW/m2, G=638 kg/m2-s, P=7.621 MPa.

Figure 9. Variation of wall temperature along the pipe length for different mass flux cases. Case 1: q’’=52000kW/m2, 
G=338 kg/m2-s, P=7.621 MPa; Case 2: q’’=52000kW/m2, G=438 kg/m2-s, P=7.621 MPa; Case 3: q’’=52000kW/m2, G=538 
kg/m2-s, P=7.621 MPa; Case 4: q’’=52000kW/m2, G=638 kg/m2-s, P=7.621 MPa.
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m2-s are considered to collect large data sets for Artificial 
neural network (ANN) studies. 

Effect of Heat Flux
Figures 11,12 and 13 show, the variation of bulk fluid 

temperature, wall temperature and heat transfer coefficient 
for different heat flux boundary conditions respectively. An 
increase in the wall heat flux resulted in higher bulk fluid 
temperatures at the exit, also a spike in the bulk fluid tem-
perature is observed at higher heat flux values. This spike 
is present for both bulk fluid temperature and wall tem-
perature at higher heat flux values of greater than 200 kW/
m2. Peaks in the wall temperature are predominant com-
pared to the peaks in Figure 12 shows the variation of heat 
transfer coefficient for different heat flux conditions, where 
there is a sudden decrease in heat transfer coefficient val-
ues at higher heat flux values and also this drop is followed 
by a recovery phase where the heat transfer coefficient will 
reach to its higher values. While this recovery phase was 
not present at different mass flux conditions. A total of 9 
different heat flux cases ranging from 26 kW/m2 to 250 kW/ 
m2 is considered to collect large data sets for Artificial neu-
ral network (ANN) studies.

Figure 14, shows the variation of the temperature dif-
ference between bulk fluid and wall along the length of the 
pipe and also the heat transfer coefficient. It is observed that 
the deterioration in heat transfer coefficient is due to the 

increase in temperature difference between the wall and the 
bulk fluid, this happens due to the sudden decrease in Cp 
values after the pseudo-critical point. As the temperature 
difference decreases, a recovery in heat transfer coefficient 
is observed irrespective of the heat flux values. The higher 
the wall heat flux, the greater the temperature difference 
and the lower the heat transferability. Hence it is desirable 
to use, higher values of mass flux for the cases where the 
heat flux values are very high. 

Development of Ann Model
Artificial Neural Network (ANN) has been an indis-

pensable tool in finding highly accurate correlations 
between independent variables and dependent variables 
inflow & thermal problems. This method comes under 
the broad umbrella of deep learning. ANN is a supervised 
learning technique, that requires the dataset to comprise 
both the independent and dependent variables. The neu-
ral network learns any non-linear relationship based on the 
supplied data. Once it has learnt the underlying relation-
ship, it is possible to predict the dependent variable on the 
data which is unseen by the network.

In the present study, a correlation is proposed between 
Nusselt number (Nu) and independent variables such as 
Prandtl number (Pr), Reynolds number (Re), Grashoff 
number based on heat flux (Grq), non-dimensional heat flux 

Figure 10. Variation of Heat Transfer Coefficient along the pipe length for different mass flux cases. Case 1: q’’=52000kW/
m2, G=338 kg/m2-s, P=7.621 MPa; Case 2: q’’=52000kW/m2, G=438 kg/m2-s, P=7.621 MPa; Case 3: q’’=52000kW/m2, 
G=538 kg/m2-s, P=7.621 MPa; Case 4: q’’=52000kW/m2, G=638 kg/m2-s, P=7.621 MPa.
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Figure 12. Variation of wall temperature along the pipe length for different heat flux cases. Case 1: q’’=26 kW/m2, G=238 
kg/m2-s, P=7.621 MPa; Case 2: q’’=104 kW/m2, G=238 kg/m2-s, P=7.621 MPa; Case 3: q’’=182 kW/m2, G=238 kg/m2-s, 
P=7.621 MPa; Case 4: q’’=250 kW/m2, G=238 kg/m2-s, P=7.621 MPa.

Figure 11. Variation of Bulk fluid temperature along the pipe length for different heat flux cases. Case 1: q’’=26 kW/m2, 
G=238 kg/m2-s, P=7.621 MPa; Case 2: q’’=104 kW/m2, G=238 kg/m2-s, P=7.621 MPa; Case 3: q’’=182 kW/m2, G=238 kg/
m2-s, P=7.621 MPa; Case 4: q’’=250 kW/m2, G=238 kg/m2-s, P=7.621 MPa.
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Figure 13. Variation of Heat Transfer Coefficient along the pipe length for different heat flux cases. Case 1: q’’=26 kW/m2, 
G=238 kg/m2-s, P=7.621 MPa; Case 2: q’’=104 kW/m2, G=238 kg/m2-s, P=7.621 MPa; Case 3: q’’=182 kW/m2, G=238 kg/
m2-s, P=7.621 MPa; Case 4: q’’=250 kW/m2, G=238 kg/m2-s, P=7.621 MPa.

Figure 14. Variation of Heat Transfer Coefficient and Temperature difference between wall and the Bulk Fluid (Tw-Tb), 
along the pipe length for different heat flux cases. Case 1: q’’=104 kW/m2, G=238 kg/m2-s, P=7.621 MPa; Case 2: q’’=182 
kW/m2, G=238 kg/m2-s, P=7.621 MPa; Case 3: q’’=250 kW/m2, G=238 kg/m2-s, P=7.621 MPa.
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(q+) for the downward flow of supercritical carbon dioxide 
in a circular tube. This task has been achieved by scripting 
in Python language using the library called TensorFlow 
version 2.6.0. The code is executed on Google’s cloud com-
puting platform known as Collaboratory. A vast dataset con-
sisting of 81414 samples obtained from CFD simulations is 
used to train the network. This data repository is prepared 
by calculating the above variables along the axis of the tube 
under variable mass flux and variable heat flux conditions. 
The whole dataset is split into training and testing sets in 
the ratio of 7:3. Subsequently, the testing set is further split 
into testing and validation sets in the ratio of 8:2. This dis-
tribution is necessary to make sure that the trained model 
performs with the same accuracy on unseen data too. 

The neural network learns the relationship between the 
dependent variable and the independent variables by iter-
atively updating the model parameters (weights & biases) 
based on the backpropagation algorithm. According to this 
algorithm, the model learns the mapping function i.e., the 
model parameters by minimizing the loss function. It is 
very common to use Mean Squared Error (MSE) as the loss 
function and the same is used in the present study also. The 
MSE loss is given by equation (4). 

   (4)

The ANN developed here has four inputs and a single 
output as shown in Figure 15. The most important hyper-
parameters in ANN modelling are the number of hid-
den layers, number of neurons in each hidden layer, loss 
function optimization algorithm and the learning rate. 

An increase in the number of hidden layers helps to cap-
ture low-level input features influencing the output. While 
increasing the number of neurons helps in capturing highly 
non-linear relationships. Increasing the number of hidden 
layers and the number of neurons leads to the utilization 
of higher computational resources like memory and time 
since the number of parameters to be learnt by the ANN 
model is increased. A deep neural network architecture 
having 4 hidden layers and 15 neurons in each hidden layer 
was the best model based on several experiments as listed in 
Table 4 and the corresponding results are tabulated. ReLU 
(Rectified Linear Unit) activation function is applied to the 
output of each neuron in all the hidden layers and a linear 
activation function is applied to the neurons in the output 
layer. This model gave an R2 score of 0.997 on the training 
set and 0.996 on the test set. The overall training time for 
this model was about 9 minutes. The complete details of the 
model are presented in Table 4.

Figure 15. A rendering of the ANN used in the development of the Nusselt number correlation.

Table 3. ANN model details

Input parameters Pr, Re, Grq, q+

Output parameter Nu
Number of hidden layers 4
Number of neurons per layer 15
Activation function ReLU
Optimization algorithm Adam
Number of data samples 81414
Learning rate 0.001
Total number of weights & bias 811
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Figure 16 shows the graph between the Nusselt number 
predicted by ANN and the Nusselt number obtained from 
flow simulation using Ansys Fluent. 97.226 % of the data 
samples lie within the error band of +/-5% and 2.050 % of 
the data samples lie between the error band of +/- 5 % and 
+/- 10%. The Absolute Average Relative Deviation (AARD 
%) is equal to 2.183 %. 

  (6)

Mathematically, the ReLU function is defined as,

  (7)

Figure 17 illustrates the decay of the MSE loss function 
over the number of training epochs (epoch is the number 
of times that all the data has been cycled through). The 
model converged at a training loss of 15.813 and a vali-
dation loss of 10.256. It is evident from the graph that the 
model is not exhibiting the commonly faced problems in 
ANN modelling such as overfitting or underfitting since 
the training and validation curves are overlapping each 
other.

Table 4. Performance metrics monitored during hyperparameter tuning

Model Assessment Parameters Number of neurons in each of the 4 hidden layers

10 15 20 25 30
R2 score of training dataset 0.996 0.998 0.998 0.997 0.998
R2 score of testing dataset 0.985 0.996 0.997 0.989 0.998
AARD% 3.885 2.183 1.967 1.847 1.495
Max AARD% 52.685 63.266 51.658 60.942 53.17
% of data samples with error < 5% 83.436 97.226 97.054 96.111 98.483
% of data samples with error > 5% & < 10% 14.441 2.050 2.395 2.486 1.179
% of data samples with error > 10% 2.122 0.723 0.550 1.402 0.337

Figure 16. The graph showing the percentage deviation.
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To illustrate the prediction performance of the ANN 
model developed in the present study, the variation of the 
output variable (Nusselt number of supercritical CO2) with 
the pipe location is graphically represented in Figure 18, for 
the constant mass flux of 238 kg/m2s and a heat flux of 250 
kW/m2. The Nusselt number predicted by ANN closely fol-
lows the Nusselt number given by CFD simulations. Figure 19 

shows the Performance comparison between ANN, CFD and 
Experimental Values. Near the pseudocritical region, due to 
the sudden increase in the thermal conductivity value, CFD 
results show a large increase in Nusselt Number values for 
small length. Except for the small region, CFD results, ANN 
Predictions and experimental results agree well. This indicates 
that the model is now ready to be tested on unseen data. 

Table 5. Description of model parameters

Symbol Description Matrix Shape

y Output vector of ANN model, Nusselt Number (Nu) 1 x 1

X Input vector to the ANN model, [Pr, Re, Grq, q+] 1 x 5

b1 Bias vector for the 1st hidden layer 15 x 1

b2 Bias vector for the 2nd hidden layer 15 x 1

b3 Bias vector for the 3rd hidden layer 15 x 1

b4 Bias vector for the 4th hidden layer 15 x 1

bo Bias vector for the output layer 1 x 1

Wi-1 Weight matrix between the input layer and 1st hidden layer 5 x 15

W1-2 Weight matrix between the 1st and 2nd hidden layer 15 x 15

W2-3 Weight matrix between the 2nd and 3rd hidden layer 15 x 15

W3-4 Weight matrix between the 3rd and 4th hidden layer 15 x 15

W4-o Weight matrix between the 4th hidden layer and output layer 15 x 1

 Figure 17. Learning curves.
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CONCLUSION 

Heat transfer characteristics of the vertically downward 
flow of supercritical carbon dioxide in a pipe are validated 
using the commercially available software ANSYS Fluent. 
The k-ω STD model with enhanced wall treatment along 
with third-order discretization for density, momentum, 
turbulent kinetic energy, turbulent dissipation rate and 
energy terms is found to give better accuracy in calculating 
bulk fluid temperature and wall temperature. The average 
error % in the bulk fluid temperature and the wall tempera-
ture is 1% and 2% respectively. 

Parametric studies for the mass flux (238 kg/m2s to 1038 
kg/m2s ) and heat flux (26 kW/m2 to 250 kW/m2 ) shows 
that, increasing the mass flux at a given heat flux at the wall 
would result in a smaller peak of wall temperature resulting 
in fewer chances of the presence of hot spots, A very large 
dataset consisting of 81,432 samples under varied operating 
conditions such as mass flux, and heat flux, are considered 
in the development of the ANN model to predict the heat 
transfer coefficient. A deep neural network architecture 
consisting of 4 hidden layers and 15 neurons in each layer 
was judged to be the generalized model after trying multi-
ple architectures and comparing their goodness of fit. This 
model has an R2 score of 0.998 and an AARD of 2.183%. 
The Authors strongly recommend the use of these ANN 
models to predict the heat transfer coefficient in the range 
of operating conditions prescribed in the studies. 

NOMENCLATURE 

Cp Specific heat, kJ kg-1

D Pipe diameter, m
T Temperature in K
u Fluid velocity in m/s
G Mass flux, kg m-2 s-1

τ Shear Stress in N/m2

g Acceleration due to gravity, m s-2

Grq Grashoff number based on heat flux, gβD4qρ2/μ2k
h Heat transfer coefficient, W m-2 K-1

k Thermal conductivity, W m-1 K-1

N Total number of samples in the training dataset 
Nu Nusselt number, hD/k
P Pressure, Pa
P* Critical pressure of CO2, Pa

Figure 19. Performance comparison between ANN, CFD 
and Experimental Values.

Figure 18. Performance comparison between ANN model and CFD model.
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Pr Prandtl number
q Heat flux, Wm-2

q+ Acceleration parameter, qβ/GCp
Re Reynolds number
yact Output variable obtained from CFD simulation
ypred Output variable prediction of ANN model

Greek Symbols 
β Thermal expansion coefficient, K-1

μ Dynamic viscosity, kg m-1 s-1

ρ Density, kg m-3

Subscripts/ Superscripts 
i,j,k Direction Cosines
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