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ABSTRACT

Hybrid nanofluids (HNFs) have received the prominent attention of researchers due to their 
improved thermophysical properties than conventional liquids and single-phase nanofluids. 
Such high potential heat transfer fluids are obtained from the suspension of two or more 
dissimilar nanoparticles in a regular heat transfer liquid. Owing to the high heat transfer 
properties of hybrid nanofluid, these are widely used in industrial processes, manufacturing 
processes, and biomedical engineering. This framework presents a detailed review of hybrid 
nanofluids preparation, stability, thermophysical properties, and importance in various 
engineering fields. Furthermore, present analysis addresses the pH control and ultrasound 
intensity of hybrid nanofluid. Th is an alysis al so ma nifests a hy brid na nofluid pre paration 
method and suitable nanoparticles mixers for various industrial uses. This study reveals some 
future trends and possibilities related to HNF and a few suggestions regarding the scope in 
the future research in this area. A big impact with small particles for coming years. The hybrid 
nanofluid are having higher thermal conductivity which affects significantly to mac hining 
output response variables. By hybridizing the suitable combination of nanoparticles, the 
required heat transfer effect can be obtained still at low particle concentrations.
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INTRODUCTION

A nanofluid is developed with the integration of 
nanoparticle and base fluid. Choi [1] introduced the con-
cept of nanofluid. Nano is a Latin word used to denote 
10-9nm part of units. The nanofluid heat conduction
depends on several things such as geometrical shape, size

and stability of the nanoparticle, type of base fluid thick-
ness and temperature. The base fluids may be water, organic 
liquids (C2H2, refrigerants, etc.), oils, bio-fluids (blood, 
synovial fluid, etc) and other liquids. The materials used 
for nanoparticles must be chemically stable (metals: gold, 
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copper, metal oxides: Al2O3, SiO2, TiO2, oxide ceramics: 
Al2O3, CuO, metal nitrides, metal carbides, carbon in vari-
ous forms: carbon nanotubes, graphite, and diamond) and 
functionalized nanoparticles [2, 3]. The applications of 
nanofluids are found in various fields like electronics [4,5], 
solar energy [6-8], nuclear reactors [9–11], pool boiling 
[12, 13], automotive industry [14–16], medical [17–19], 
food industry [20, 21], machining processes [22–25], and 
in heating and cooling of buildings [26, 27]. In compari-
son to single nanoparticle fluids and traditional fluids, the 
nanofluids demonstrated improved thermal characteristics 
[28-36]. So, this field looks emerging for future studies.

In parallel to the continuation of these fluids, scientists 
also used a novel class of nanofluids called a “hybrid” nano-
fluid acquired by suspending nanocomposite or nanopar-
ticles of different metals into the base fluid as shown in fig.1. 
These HNFs are more stable and suitable than the mono 
nanofluids. 

There is no doubt that the thermal conductivity of base 
fluids enhanced with the addition of nanoparticles, but it 
also raised some problems in the form of pumping power, 
erosion, convection heat transfer, stability, and pressure 
drop due to the enhancement in viscosity resulting from 
the creation of clusters that increases the hydrodynamic 
diameter and reduces the specific surface area. The hybrid 
nanofluids exhibited higher viscosity as compared to the 
conventional fluids and most of the unitary nanofluids. 
However, it depends on the selected nanoparticles and their 
combinations. Hybrid nanofluids have better rheological 
properties and less clogging in pipes.

The main intention of this review is to get general idea 
of production, nature and use of hybrid nanofluids. Here 
many experimental and numerical works finished by sev-
eral investigators have been reviewed. At last, feasible appli-
cations and challenges are discussed.

PREPARATION OF HYBRID NANOFLUID

Nanofluid preparation is just mixing a nano powder 
in a liquid. But, in reality it is more critical to determine 
the stability of the nanofluid. For real time applications 

stability, durability and chemical unresponsiveness of the 
nano particles in the underlying fluid which is extremely 
significant. The technique that performs effectively to pre-
pare HNF is suspending nanoparticles of particular ele-
ments or the composite nanoparticles are suspended in a 
host fluid at definite ratio. To get a homogeneous and stable 
distribution sonication technique is customized. By mix-
ing a suitable surfactant the glomeration can be decreased 
further.

Combination of a suitable surfactant can decrease the 
glomeration. Generally, Hybrid nanofluids can be made in 
2 distinct ways. There are two types of methods: one-step 
and two-step. Other innovative ways for synthesizing qual-
ity and stability in hybrid nanofluids for heat transmission 
and experimentation are also being developed.

(a) Single-step method:
In this method, production of nanoparticles and prepa-

ration of nanofluid are finished at the same time. Here, 
nanoparticles are synthesized and suspended in the base 
fluid in a single step. [37,38]. There are so many one-step 
techniques by which nanofluids are prepared, for example 
Laser ablation process [39], Electro discharge process [40], 
micro electrical discharge machining (micro-EDM) pro-
cess [41]. However, One-step physical method is unable to 
produce nanofluids in large scale because of too much cost, 
hence the chemical method with one step was developed. 
In chemical techniques When reduction processes or ion 
exchange occur, the base fluids contain additional ions and 
reaction products that are difficult to remove from the flu-
ids. Besides, nanoparticles generated by chemical processes 
have a propensity to agglomerate, which restricts the poten-
tial of the high surface areas of the nanoparticles. Thus, par-
ticle scattering must be carried out.

To avoid oxidation in high heat conductive met-
als this scheme is most suitable. In this process, uniform 
scattering of particles and high stability can be achieved. 
In addition, drying, storage, dispel of the nanoparticles 
can be prevented. The negative aspect of this method is 
not cost effective at mass production used for small scale 
production.

Figure 1. Graphical representation of Hybrid nanofluid.
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Table 1. Variety types of nanoparticles and base fluids used in developing nanofluids

Origin Nanoparticles Base fluids

Metals Cu* Water, EG, oil, acetone and water & EG mixture.
Ag* Water and toluene.

Au* Water and toluene.
Al* Water, EG, oil & kerosene

Oxides Al2O3* Water, EG, oil, water & glycerine mixture.

CuO* Water, oil, and R-134a*.

ZnO* Water, EG, & oil.

TiO2* Water, EG, oil, water & EG mixture and bioglycol & water mixture.

SiO2* Water, EG, glycerol, oil and glycerol & EG mixture.

Carbon-based MWCNTs* Water, EG, water & EG mixture and fullerenes oil.

DWCNTs* Water & EG.

SWCNTs* Water, Water & EG mixture.

Nanodiamond Water, EG, propylene glycol, midel oil, silicone oil, mineral oil, transformer oil and engine oil
Graphene Water, Water & EG mixture.

Graphite Water, texatherm oil.

(*) Note: Cu, Ag, Au, Al, Al2O3, CuO, ZnO, TiO2, SiO2, MWCNTs, DWCNTs, SWCNTs, and R-134a are mentioned to copper, silver, 
gold, aluminium, aluminium oxide (also known as alumina), copper oxide (also known as cupric oxide), zinc oxide, titanium oxide, 
silicon dioxide (Silica), multi-walled CNTs, double-walled CNTs, single-walled CNTs and 1,1,1,2-Tetra fluoro ethane respectively.

(b) Two-step method:
Firstly, physical and chemical procedures such as grind-

ing, milling, or the vapour stage approach are used to create 
hybrid nano powder. Secondly, hybrid nano powder which 
is prepared in the first step is distributed in the base liquid 
with the assistance of ultrasonic vibrator or shear mixing 
apparatus which is shown in Fig.3. This is not expensive 
to produce hybrid nanofluid in mass [42,43]. The main 
intricacy is agglomeration which cannot avoid because 

Figure 2. One‐step method for nanofluids fabrication.

Vander Waal and Cohesive forces exist with non-dependent 
nanoparticles. This agglomeration can deprive by means of 
suitable surfactant or by dissolving devices such as mag-
netic stirrer, homogenizer with high-pressure, ultrasonic 
bath and disrupter. 

Figure 3. The two‐step nanofluid fabrication procedure 
with an ultrasonicator device.
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Hybrid nanofluids with various nanoparticles and host 
liquids are prepared by any of the above two methods. The 
different types of base fluids and hybrid nanoparticles are 
given below and in table 2. 

The different types of base fluids:
1. Water
2. Ethylene glycol
3. Water + ethylene glycol mixture
4. Vegetable oil
5. PAO oil
6. Transformer oil
7. Naphthenic mineral oil
8. Paraffin oil
9. SAE oil
10. Dia-thermic oil

FACTORS AFFECTING THE HYBRID NANOFLUID:

1. Stability:
The significant property that affect the running of a ther-

mal system at desired capacity. The Vander Waal and cohe-
sive forces exist among the nano particles is the main cause 
for agglomeration. By heat transferring HNFs decreases 
the potential because of proneness to coagulation. The flow 
behaviour also decreases by amplifying frictional resistance 
which in turn increase the pressure drop. Not having of good 
stability of HNF can change the thermo physical properties 
which in turn effect the heat transfer rate. Stability analysis 
can be made by different methods such as Spectral Analysis 
method, Sedimentation method, Light Scattering method, 
Zeta Potential analysis, and Centrifugation method. Some 
common methods are developed in literature for minimiz-
ing the agglomeration. They are:

(i) Addition of surfactant (ii) Controlling pH with
electrostatic stabilization and (iii) Ultrasonic vibration. By 
adding appropriate surfactants many researchers prepared 
stable nanofluid.

Stability period of different nanofluid in various articles 
are given in table 3.

2. pH control:
Nanofluid stability depends on electro-kinetic prop-

erties. Because of the strong repulsive forces, the stability 

can increase the pH control. A good stability of water with 
CNTs can be attained with acid treatment [55]. Fovet et al. 
[56] examined Al2O3nano-fluid with assorted pH values
and noticed the variations in agglomeration by fluctuating
the pH value. For different samplings different pH value
exist. For example, the pH value which is apt for copper,
alumina distributed and graphite in water are almost 8, 2,
and 9.5, respectively.

3. Ultrasound intensity:
Ultrasound intensity acts a key role in changing the

shapes or structures of nanoparticles and its characteristics. 
By rising the ultrasound intensity, the exceptional cavita-
tions also escalates and the collapsed cavity generates a 
shockwave inside the solution. Thus, reduces the size of the 
particle and improving the nanofluid stability [57].

4. Thermal conductivity:
In literature so many studies describe an increase

in heat conductivity of the hybrid nanofluids. In recent 
times, Sundar et al [58] equated graphene and GO/Co3O4 
hybrid nanofluid. The result illustrations improvement of 

Table 2. The various types of hybrid nanoparticle were stated by eminent researchers:

Al2O3/Cu TiO2/SiO2 Ag/GNPs CNTs/Fe2O3 MWCNTs/Si GNPs/SiO2

Al2O3/CuO TiO2-CuO/C Ag/WO3 DWCNTs/ZnO MWCNTs/ZnO Cu/Zn
Al2O3/CNTs TiO2/Ag Ag/Si AQl2O3/Graphene MWCNTs/Ag Ni/ND
Al/Zn TiO2/SiC Ag/MgO MWCNTs/ Al2O3 MWCNTs/SiO2 TiO2/CNTs
AIN TiO2/Cu Ag/ZnO MWCNTs/GO MWCNTs/Fe3O4 TiO2/MWCNTs
Co3O4/ND TiO2/ZnO GNPs/Pt Co3O4/GO MWCNTs/MgO GNPs/Pt

Table 3. Stability period of different nanofluids

References Nanofluid  Stability 
period

[ 44] Al2O3-MWCNTs/thermal oil 7 days
[ 46] Sic-TiO2/diathermic oil 10 days
[ 48] MWCNTs-Fe2O3/H2O 60 days
[ 47] Cu-Zn/vegetable oil  03 days
[ 49] SiO2-graphene/naphthenic

mineral oil
 14 days

[ 50] Cu-TiO2/ H2O and EG  07 days
[ 45] Al2O3-Cu/ethylene glycol 03 days
[ 54] MWCNTs-ZnO/ H2O and EG 10 days
[ 51] GNPs-Pt/ H2O 22 days
[ 52] TiO2-SiO2/ H2O 14 days
[53] Carbon black/water 7 days
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the thermal conductivity of hybrid nanofluids is greater 
than that of graphene but viscosity remains same. This is 
because of the synergistic thermal property. A compari-
son is shown with some mono nanofluids in figure 2 and 
observed that an enhancement is noticed in the hybrid 
nanofluid thermal conductivity when compared to Carbon 
Nanotube/Ethylene Glycol nanofluid, clustering is pre-
vented in the fluid by adding of MgO in the working fluid. 
The thermal conductivity of different nanomaterials is dis-
played in Fig.4. Here we noticed that the thermal conduc-
tivity for carbon nano tubes is more when compared with 
other selected nanomaterials. The relation between stabil-
ity of nanofluid and its effective thermal conductivities are 
shown in Fig.5.

5. Viscosity:
The hybrid nanofluid viscosity depends upon the

selected nanoparticles, concentration, and temperature. 
Dardan et al. [59] exhibited viscosity and its relationship 
with the temperature variations and solid volume frac-
tions of Al2O3 – MWCNT/SAE40 oil hybrid nanofluid. 
According to his outcomes, viscosity responsiveness to 
temperature was small and it affects a lot to the solid vol-
ume fraction. This is because when temperature rises, the 
intermolecular connections between molecules weaken, 
lowering viscosity. However, its impact is more significant 
at a lower temperature and high particle volume fraction. 
Due to the van der Waals forces between nano-additives, 
larger nano-clusters form, which can prevent oil layers 
from moving on top of each other. It could result in a larger 
increase in viscosity.

Some important facts about the augmentation of viscos-
ity of hybrid nanofluids are:

• High volume fraction of nanoparticles triggered the
development of nano-clusters of greater size due to

Vander Waals forces existing among the particles that 
could cause the viscosity augmentation by reducing 
the movement of fluid layers [60].

• Enhance in volume fraction of nanoparticles caused
internal shear stress to enhance which will, in turn,
increases the hybrid nanofluid viscosity [61,62]

• An enhance in hydrodynamic diameter of nanopar-
ticles results adsorption and clustering will tend to
enhance the viscosity [63].

• High resistance between two fluid layers due to the
existence of nanoparticles caused enhancement in
viscosity of hybrid nanofluid [58, 64]. At lesser con-
centration of nano particles, this resistance is little,
whereas high for higher concentration.

Kinds of hybrid nanofluids flows:
a. Turbulent flow: Hybrid nanofluids has a synergistic

effect by which they offer all the properties of its com-
ponents. Nano lubricants and turbulent hybrid nano-
fluid has many applications in heat exchangers was
specified by Minea [65], Teng et al. [66] and Nabil et
al. [67].

b.	Laminar flow: TiO2-CNT was used by Kalidasan et
al. [68] in heat exchanger under laminar flow condi-
tion which is a hybrid nanofluid. Owing to its high
stability it was suggested for heat transfer applications 
[69]. The laminar flow of hybrid nanofluid performed
better.

APPLICATIONS OF HYBRID NANOFLUIDS:

Hybrid nano fluids have many applications:
1. Electro-mechanical application:

In electrical equipment and electrical power trans-
formers where oil is cooled the thermal conductivity
and dielectric properties of the operational liquid can 
be enhanced by adding nano diamond to the mineral
oil as an additive, with no changes in the electrical
insulation of the liquid, the lifespan and power of the
transformer can be enhanced with minimum mainte-
nance and decrease the break downs because of over-
heating. In 1995, Choi discovered a heat transfer fluid 
called nanofluid and tested it in transformers and the
out puts of his study [70] was for cooling transform-
ers alumina nanoparticles are used in thermal oils.

Figure 4. Thermal conductivity of selected nanomaterials.

Figure 5. The relationship between the stability of 
nanofluids and their effective thermal conductivity (TC).
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2.	HVAC [heating, ventilation, and  air conditioning
application:
Jiang et al. [71] firstly worked on the effect of CNTs
on refrigerants and explained that CNT nano-
refrigerants thermal conductivity is plentiful further
than CNT–water nanofluids and as the diameter of
CNTs decreased, increase in thermal conductivity is
noticed. Also, adding nanoparticles raise the coeffi-
cient of the heat transfer to the system [72].

3.	Renewable energy application:
Usage of Energy is inexorable. Renewable energy is
gorgeous further admired and eco-friendlier. Sun be
the very important source for it. Solar energy pre-
dominantly used in production of electricity and also
in water heating and drying of agricultural products.
By using hybrid nanofluids as the working fluid. [73-
76] the ability of the solar collector for water heater
can be increased.

4.	Application in Manufacturing process:
In Grinding process high amount of energy is con-
verted to heat and a reason for damage to the work
piece, for example, cracks, burning of work piece,
phase transformations so forth. Hybrid nanofluids’
tribological feature enables for better cooling and
lubricating in the grinding process, as well as cost-
effective production [25, 77].

5.	Cooling in Automotive:
In automobiles the braking system mainly depends
on the motion of the fluid which diffuse energy. While 
braking heat is produced which in turn absorbed by
the breaking fluids results reduction in the kinetic
energy of the automobile. The nanoparticles in the
base fluid shows better properties like, more vis-
cous, high conductive nature, high boiling point and
also cut down the incidents like vapor-lock and also
improve safety during driving [78-82]. Similar studies 
can be seen in the mentioned references [67, 83].

6.	Application in heat exchanger:
At low concentration, the metallic nanoparticles are
hybridized with the intention that the rate of heat
transfer is improved with low cost. Due to this rea-
son, CNT-TiO2 hybrid nanofluid is suggested for
heat transfer applications. The uses, production, and
thermophysical properties of hybrid nanofluids were
briefly reviewed in these studies. (see [84, 85]).

7.	Application in miniaturized cooling systems:
One important advantage of hybrid nanofluids are in
the miniaturized cooling systems that supply mag-
netic field agitation of the nanofluids to enhance
the heat transfer rate of the system. The influence of
magnetic field on different hybrid nano fluids with
different geometries was discussed by many authors
[86–88].

Because of their large absorption potential due to their 
high surface area, hybrid nanoparticles have various uses 

in sectors such as medicine (genomics, pharmacogenom-
ics, drug delivery, optics, surgery, general medicine), agri-
culture (tissue engineering, prosthesis), industry (fabric 
sciences, energy), and the environment (physical sciences, 
health sciences). Applications of hybrid nano fluids are por-
trayed in Fig.6.

CONCLUSIONS, CHALLENGES AND FUTURE 
WORKS:

The nanofluid technology has vastly expanded to meet 
industrial ethics, and increased investments to scale down 
designs that may be made healthier and gain additional 
profits with the use of unique hybrid nanoparticles are 
immobile incomplete to explore. The current review perusal 
introduces preparation, performance, factors affecting, and 
applications of hybrid nanofluid. The thermal characteris-
tics of such a fluid are superior to the conventional fluid 
and mono nano particle fluid. It was also determined that 
as temperature and volume fraction raise, so do the features 
of hybrid nanofluid.

The heat transfer concert of hybrid nano fluids is very 
much appealing, but some encounters exist in their devel-
opment. They are: 

• There is lack of uniformity among the outcomes of
various researchers

• There is deficiency of theoretical model which fore-
cast the activities of the hybrid nanofluids; while
preparing a nanofluid, dissimilar methods tends to
different results and volume fraction.

• In hybrid nanofluid synthesis, the nano particles used
are mostly hydrophobic. Some times their character-
istics are affected while making them into hydrophilic. 
As a result, thorough investigations are required to
calculate thermophysical and hydrodynamic perfor-
mance for clear engineering applications.

Figure 6. Applications of hybrid nanofluids.
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c. Hybrid nanofluids have markedly higher thermal
conductivity than traditional fluids and mono nano-
fluids of individual ingredients.

There are various inconsistencies between the research-
ers on the mentioned causes behindhand peculiar behav-
iour of these new type of heat transfer fluids many key 
issues must be addressed in a methodical manner.

The following are some main concerns:
a. There are huge gaps between experimental results and 

theoretical expectations, as well as between experi-
mental results from different researchers for the same
type of nanofluids.

b. A lack of standard and appropriate nanoparticle sus-
pension characterization.

c. Insufficient understanding of intricate phenom-
enon and Thermodynamic network and rheologi-
cal alterations in hybrid nanofluids are complicated
mechanisms.

d.	Preparing stable and homogeneous nanoparticle sus-
pensions for long-term stability is a significant issue
for real-time applications.

So, more attention has to be given in finding the higher 
boundaries of volume fraction and the proportion of the 
nanoparticles in the liquid. Nevertheless, to be aware of 
the complex mechanism with hybrid nanofluids following 
heat transfer optimization and real-world applications with 
hybrid nanofluids. 
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