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ABSTRACT  

This paper reports on the regeneration of the minority carrier lifetime in passivated emitter and rear cell 

(PERC) structured silicon solar cells. It is observed that minority carrier lifetime in the cells can degrade, recover and 

then stabilize with illumination level of ~1 sun (1000 W/m2) at 80oC. The exposure to ~1 sun illumination at 80oC 

enables the release of H from B-H bonds at ~1.3 eV energy to supplement the interstitial H in Si to passivate the B-O 

defects responsible for the minority carrier lifetime instability.  Passivation of these B-O defects is therefore, 

dependent on temperature and time, hydrogenation and high carrier injection level. It was interesting to note that 

sequential process or single regeneration step led to same conclusion that minority carrier lifetime in a p-type PERC 

cell first degrades, due to B-O complexes, recovers and then stabilize with time.  There is therefore, no need to 

degrade the cells in a separate step in order for regeneration to occur, because regeneration encompasses the three 

states: degradation, recovery and stabilization. 
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INTRODUCTION  

Boron-doped Czochralski (Cz) silicon (Si) wafers have been known to lose absolute efficiency up to 1-2% 

by light induced degradation (LID) [1] due to the formation of boron-oxygen (B-O) defects. Recombination-active 

B-O defects are activated under illumination or by applying a forward bias voltage in the dark because of high 

oxygen and boron concentration in the Cz silicon bulk material. While the exact form of the defect is still debatable, 

the recombination behavior of B-O defects is typically described by Shockley-Read-Hall (SRH) trap assisted 

recombination. These recombination centers are accountable for limiting the performance of solar cells by degrading 

the minority carrier lifetime. The recombination activity of B-O defects can be reduced to negligible values by; (i) 

reducing O concentration in Cz-Si wafer using magnetic fields during crystal growth, which will increase the cost of 

wafer (ii) using dopants other than B such as Gallium (Ga) or Indium (In), (iii) replacing p-type wafers with n-type 

causing to more complex processing steps (iv) reducing B dopants in the wafer leading to high resistance wafers. 

Since all replacement measures mentioned implicate new problems or cause a tradeoff in efficiency, many studies 

have been done to resolve the issue of LID.  Researchers have first suggested [2,3] that the defects can be deactivated 

by annealing the degraded Cz-Si solar cells at low temperatures (~200°C) or by using rapid thermal processing [3,4] 

at higher temperatures (~750°C). However, it was shown [6] that the cells that are treated with annealing process 

(with high or low temperature) are degraded again under illumination that proves annealing process is not permanent. 

Therefore, an approach that is capable of removing B-O defects permanently was first reported by Herguth [7] called 

three-state regeneration model (see Figure 1).  

Regeneration process occurs via illumination at elevated temperatures that provides thermal energy and 

carrier injection simultaneously. Regeneration differs from annealing process by promoting the carrier injection 

while at elevated temperatures (70°C-200°C). Studies [8,9, 15-17] have also shown that during regeneration, the 

presence of hydrogen (H) source, mostly anti-reflection coating (ARC) layer of SiNx:H,is necessary to passivate B-O 

defects. Therefore, the regeneration kinetic is expected to change by (i) minority carrier injection level (Δn), (ii) 

temperature (T), and (iii) presence of hydrogen. It is investigated in this paper how passivated emitter and rear cell 

(PERC) solar cells respond to the LID and regeneration. Since the LID manifests in silicon bulk, it is the minority 

carrier lifetime that it will impact first.  
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Figure 1. Original 3-state modeled proposed by [7] 

 

Therefore, in this work, the effective minority carrier lifetime (τ) of the Cz cSi PERC solar cell was closely 

monitored; after (i) contact co-firing, (ii) exposure to injection level of 0.1-sun at 40oC, (iii) recovery – exposure to 

~1 sun at 80oC, and (iv) regeneration. Conventional there-state model claims that there is a state C where B-O 

defects are inactive and may not be irreversible by regeneration process. However, based on this study, a new 3-state 

model is proposed where the transitions among states are different than that of first proposed model. In this model, 

separate degradation process is not required to reach state C from state A. And regeneration occurs directly between 

state A and state C. Based on lifetime stability, the three-state model is modified to rationalize the observation in this 

paper. 

 

EXPERIMENTAL DETAILS 

 

 
Figure 2. Schematic diagram of passivated emitter and rear cell (PERC) structured solar cell. 

 

Large-area (239cm2) commercial boron doped p-type 2.5 Ω∙cm Cz-Si wafers were used. A 3-busbar PERC 

structure was utilized in this experiment. As seen in Figure 2, p-type Si forms a p-n junction with n-type Si. N-type 

part forms the emitter which absorbs the incident photon and create an electron-hole pair when the cell is 

illuminated. To be able to capture more photons, the front surface is textured which forms a rough surface so that the 

incident light could have second chance should it be reflected. It is also coated with anti-reflection layer that acts as a 

passivation layer of dangling bonds of Si as well. On the back side there is another passivation layer (capping layer) 

to enhance the back surface reflection, which contributes to minority carrier collection from the bulk. Since the 

capping layer is a dielectric, laser processing is applied to make openings on the back side so that aluminum back 

electrode can make a contact with underlying Si.  The cell processing includes: (i) random texturing of both front and 
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back sides, (ii) POCl3 diffusion, (iii) edge isolation plus backside planarization and phosphorus removal, (iv) 

Al2O4/SiNX deposition on the backside, (v) SiNX on the front side, (vi) backside laser printing for Al holes, (vii) Al 

printing on the backside and dry, (viii) Ag/Al back pad and dry, (ix) front side Ag screen printing and dry and finally 

(x) contact co-firing in IR belt furnace with ~790°C peak temperature at 230 inches per minute belt speed which a 

typical peak temperature profile is shown in Figure 3. 

 
Figure 3. A typical firing profile for conveyor-belt furnace 

 

Three sets of solar cells were used in this experiment. The first set of cells was exposed to light generated 

with a halogen lamp of ~0.1-sun intensity at a temperature of 40 ±2°C (measured cell temperature) for a total time of 

120 hours. This ensured the cells were fully degraded. Then the same cells were subjected to 1-sun light intensity at 

~80°C temperature for 120 hours. Finally, the same set of cells was put under 0.1 sun light intensity to ascertain 

permanent recovery or stability. The second set was subjected to same setup by first, subjecting to ~1-sun intensity at 

~80°C temperature; and then to 0.1-sun at 40°C temperature. The third set was only exposed to 1-sun at 80°C for a 

total of 240 hours. The current-voltage (I-V) measurements were carried out to monitor the effect of LID on short 

circuit current (ISC), open circuit voltage (VOC), ideality factor (n) and fill factor (FF)). Also, the effective minority 

carrier lifetime was measured for each cell after 30 min, 1h, 3hrs 24hrs, 48hrs, 72hrs, 96hrs, and 120hrs. It is 

important to point out that lifetime measurements for every step is an average of three randomly picked-points on the 

same cell. 

 

RESULTS AND DISCUSSION 

 

 
Figure 4. Cells first degraded under illumination at 35°C~40°C but subsequently performed regeneration 

(70°C~100°C) and stabilization (35°C~40°C) 
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Figure 4 shows the trend of LID behavior of PERC samples for different phases – degradation, regeneration 

and stabilization. First, the cells when exposed to light intensity of ~0.1-sun for total time of 120hrs at <40°C, went 

through “degradation”. During degradation, the oxygen in the Si crystal form B-O complexes with boron dopant 

atoms. Thus, the effective lifetime of ~210μs initial value is degraded to around 140μs after 120 hours. Notice that, 

after ~30 hours, B-O defect formation is complete and hence a minimal change in the effective lifetime.  

Secondly, the same set of cells were exposed to 1-sun light intensity at 80°C temperature for “regeneration”. 

Throughout the regeneration, the H in the Si bulk is mobilized, that will be explained later, because of higher 

temperature and passivate the B-O defects. In addition, the higher injection level due to high intensity light (1-sun) 

during regeneration may help with exciting the defects from ground state to excited state, which increases the 

probability of passivation of B-O defects. Also, the mobility of H in the crystal structure with higher injection level is 

increased and hence the passivation. Therefore, the minority carrier lifetime of ~140μs is increased to ~240μs.  

Finally, the cells were exposed to 0.1 sun light intensity to affirm permanent recovery or stabilization. As 

seen in Figure 4, effective minority carrier lifetimes are higher than the initial values after regeneration and it is 

stable. 

The second set of cells skipped the degradation and is directly put under regeneration process (1-sun, 80°C). 

As Figure 5 suggests, a fast degradation phase occurs in the first hour and regeneration starts subsequently. These 

results show that there is no need for separate degradation step as suggested in other studies before regeneration. In 

fact, minority carrier lifetime of ~150μs increases to ~180μs after regeneration. Figure 5. also shows that the same 

cells have recovered and stable when exposed to 0.1 sun light intensity at 40oC afterwards. 

 

 
Figure 5. Cells first regenerated under illumination at 70°C~100°C and stabilization (35°C~40°C) 

 

Figure 6 shows the results of the third set of cells that went through only regeneration step - 1-sun at 80°C 

for ~250 hours. In the first hour, the degradation takes place and immediately after degradation the effective lifetime 

starts to increase (recovery) and then stabilizes. Thus as Figure 6 portrays, regeneration process encompasses 

degradation, recovery and stabilization of the cell. 

 
Figure 6. Cells regenerated under illumination at 80°C  
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Internal quantum efficiency (IQE) of a randomly selected sample from the third set was measured before 

and after regeneration as shown in Figure 7. As seen, the two curves are perfectly matched, which implies that the B-

O defects caused by LID are annihilated after regeneration. 

 

 
Figure 7. Internal quantum efficieny comparion among the initial, after LID and after regeneration processes 

 

Table I shows the electrical output parameters of one sample from all three sets along with ideality factor. 

As observed from the table, the efficieny of first set of cells stayed under initial values, whereas the second and third 

set exceeded their starting efficiencies.  It is also well known that ideality factor (n-factor) is an indicator of 

recombination centers in the same way of B-O defects. n-factor of the cells are also shown in the Table I. As one can 

see, it didn’t return to initial values for the first set, which somehow implicates that there might be some non-

passivated defects left behind. 

 

Table 1.The electrical outputs of perc silicon solar cells after LID,regeneration and stabilization 

Cell ID 
 

n-factor 
VOC  

(mV) 

JSC  

(mA/cm2) 

FF 

(%) 

Efficiency  

(%) 

#13-initial 1.08 649 39.78 80.9 20.92 

#13-degradation 120h  1.18 639 39.38 79.4 19.99 

#13-regenaration 1.10 654 39.71 79.5 20.67 

#13-stabilization 1.11 655 39.68 80.3 20.87 

#10-initial 1.10 650 39.94 80.1 20.81 

#10-regeneration 120h 1.06 652 39.95 80.4 20.89 

#10-stabilization 1.06 652 39.94 80.05 20.84 

#16-initial 1.07 651 39.96 80.3 20.86 

#16-regeneration 120h 1.05 652 39.94 80.6 21.01 

 

The Kinetic of Regeneration Process 

The three-state model proposed by Herguth [7] suggests that inactive B-O defects (state A) get activated to 

state B by illumination with low intensity at low temperature. State B is a reversible state by annealing (with hot 

plate, RTP, laser etc.) to state A. Thus, there-state model claims that there is a state C where B-O defects are inactive 

and may not be irreversible by regeneration process (see Figure 1.). However, based on Figure 6, a 3-state model is 

proposed as shown in Figure 8, where the transitions among states are different than Herguth’s [7]. In this model, 
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separate degradation process is not required to reach state C from state A. And regeneration occurs directly between 

state A and state C. 

 
Figure 8. Modified three-state model of LID 

 

There are three major factors that drive the regeneration process; temperature, hydrogen in the Si bulk, and 

minority carrier injection level during regeneration. In addition, the cell structure may influence regeneration kinetic 

parameters. For example, PERC cells have higher injection level under same light intensity than Al-BSF in addition 

to higher concentration of H because of ARC layer on both sides. However, it should be noted that the passivation of 

the defect relies on the H retention rather than the total amount of H in the ARC films. 

 

Temperature Effect 
Elevated temperature is needed for regeneration process in order for B-O complex to be passivated by H. 

The activation energy (EA) for passivation is determined according to Arrhenius equation (Equation. 1). 

 

                                          𝑟 = 𝐴 ∙ exp (
𝐸𝐴

𝑘𝐵𝑇
)                                            (1) 

 

where r is the rate constant, A is frequency constant, EA is activation energy, kB is Boltzman constant and T is 

temperature. 

 

 

Figure 9. Arrhenius equation fitted-curve that shows the minimum temperature for defects to be transformed 
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As Arrhenius plot in Figure 9 suggests, the EA at temperatures below ~40°C is around 0.475±0.03eV [11] 

which is expected to be sufficient to activate the B-O defect formation under light soaking. On the other hand, the 

temperatures above ~80°C yielding ~1.32±0.08 eV is required to meet activation energy for passivation of B-O 

defects (regeneration process). Also, high temperature is known to enhance the excitation of the defects (B-O defects 

in this case) from ground state to excited state, which makes them easier to be passivated. 

 

Hydrogenation (Defect Passivation) 
Passivation of the B-O defects relies on the H that resides in SiNx ARC layer, which diffuses into Si bulk 

during contact co-firing. Although the effective passivation does not depend on the total amount of H content in the 

SiNx ARC but on the amount, that are retained in the bulk Si. After contact co-firing step before the regeneration 

process, the H in Si bulk can exist in four different states namely: (i) Si-H; bonded to dangling bonds and/or to a 

defect site, (ii) B-H pairs (iii) molecular hydrogen as H2 that is likely in the absence of defect sites and (iv) interstitial 

atomic H that occupies M-sites or bond-center (BC) as shown in Figure 10. [14]. Of these states, atomic H has the 

lowest dissociation energy of ~0.3eV [12], and ~3.55 eV, ~1.8 eV for Si-H and B-H, respectively. If sufficient energy 

is provided to Si bulk, the H dissociates from its bonds and resides in BC position that can be mobilized even at 

room temperature. Thus, for the H to passivate the B-O defects during regeneration process, it should be already 

mobilized or at least the bond can be broken readily with small amount of energy. 

As noted in Figure 4, for the degradation step when the cell is exposed to 0.1 sun at 40oC, the activation energy is 

only ~0.5eV.  Under this condition, the generation rate of B-O complex surpasses the passivation with available H in 

the Si bulk so that the minority carrier lifetime decreases and stabilizes at low value. However, when the cells are 

exposed to 1-sun at 80°C in the regeneration step, which corresponds to ~1.3 eV energy, the H in B-H pairs are 

released to passivate the defects as well. This leads to the lifetime improvement as seen in the recovery before the 

stabilization where the defects are completely saturated with H. It is shown [13] that detaching the H from B-H pairs 

is improved by carrier injection level changing its charge state from H+ to H0 whereby the dissociation energy of 

~1.79±0.04 eV in the dark decreases to ~1.14±0.07 eV under illumination. Therefore, the regeneration conditions are 

capable of both mobilizing atomic H and detaching the H in B-H pair.  

 

 
Figure 10. Illustrations of H bonds in the crystalline Si bulk structure  

 

Injection Level 
 

During regeneration, as the samples are illuminated at ~1-sun, the minority carrier injection level (Δn) 

increases. According to the non-equilibrium mass action law given in Eq. 2 and one-diode model in Eq. 3, Δn is 

mostly controlled by bulk lifetime (𝜏𝑏) and surface recombination velocity (SRV). 

 

          𝑛 ∙ 𝑝 = (𝑛0 ∙ ∆𝑛) ∙ (𝑝0 ∙ ∆𝑝) = 𝑛𝑖
2 ∙ exp⁡(

𝑞𝑉
𝑘𝑇⁄ )                     (2) 
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                                       𝑉𝑂𝐶 =
𝑘𝑇

𝑞
∙ ln (

𝐽𝑆𝐶

𝐽0
+ 1)                                   (3) 

 

where n and p are the non-equilibrium electron and hole densities, n0 and p0 are equilibrium densities, ni is the 

intrinsic density, kT is thermal energy, q is the charge of electron, JSC is short circuit current density, J0 is saturation 

current density and V is voltage.  

In principle, higher minority carrier injection level increases the mobility of H in the Si bulk, which is 

responsible for the defect passivation and hence the minority carrier lifetime recovery. In addition, higher injection 

level helps to excite the B-O defects from ground state to excited states, which increases the possibility of 

passivation. Since VOC is a measure of Δn, it can be noted that regeneration rate is higher in the structures such as 

PERC solar cells that have high VOC.  

 

CONCLUSION 

LID can be supressed in PERC structured silicon solar cell through regeneration, which requires the 

exposure of the cells to ~1 sun illumination at ~80oC for extended period of time. Under this illumination level, the 

cells first degrade as the rate of B-O complexes generation rate surpases the H generation and passivation rates. 

However, as more H released from B-H bonds are made available, passivation rate increases and hence the minority 

carrier lifetime increases and finally stabilizes. Thus, whether the cells are illuminated with ~0.1 sun at 40oC to 

degrade first, and then exposed to ~1 sun at 80oC, or subjected to ~1 sun at 80oC directly, the same level of 

stabilization can be attained. The stabilization of the minority carrier lifetime in the solar cells thus require hydrogen 

to passivate the B-O complexes. It can therefore be understood that regeneration encompasses degradation, recovery 

and subsequent stabilization. And critical to regeneration are temperature and time, hydrogenation, and carrier 

injection levels. 
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