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ABSTRACT 

The mixed convection flow in a differentially heated grooved channel filled with water based nanofluid under 

the influence of external magnetic field has been analyzed numerically in this study. Nanofluid’s thermal conductivity 

model has been modified to develop a new physical problem and finite element method has been implemented to solve 

the dimensionless governing equations.  Numerical simulations have been performed for different values of pertinent 

parameters. Fluid flow and temperature distributions have been exhibited in terms of streamlines and isotherms due to 

the variation of Richardson number, Hartmann number and concentration of nanoparticles in base fluid water. The 

results show that flow field and temperature distributions within the channel affected significantly with the effects of 

Richardson number, Hartmann number and concentration of nanoparticles. In addition, it is found that heat transfer 

rate increases and decreases respectively with the increase in strength of magnetic field which depends strongly on 

Richardson number. Moreover, heat transfer rate accelerates effectively for increasing volume fraction, Reynolds 

number and Richardson number. The present simulation has been validated by comparing the present results with other 

published works on the basis of special cases. 
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INTRODUCTION 

The mixed convection heat transfer in presence of external magnetic effects in closed or open enclosures were 

studied by many researchers because of its industrial and engineering applications including heat exchangers, cooling 

of electronic devices, heating and cooling system in building, solar collectors, nuclear reactors, chemical processing 

equipments, liquid metals, crystal growth, geothermal reservoirs, thermal insulations, drying technologies and other 

industrial processes etc. The efficiency of such thermal systems is closely related to the heat transfer mechanisms. 

Different techniques are used to improve the efficiency of heat transfer mechanisms. The utilization of nanofluids 

instead of traditional heat transfer fluids is a promising way to improve the heat transfer efficiency and also the 

geometrical modification of thermal managements. Thus, the applications of nanofluids and new designing of a process 

play vital role in engineering applications.   Considering these importance, a number of numerical and experimental 

studies have been reported by several investigators. 

Najam et al. [1] analyzed numerically unsteady mixed convection in a two dimensional channel with heating 

blocks positioned on the lower wall. Their results showed that natural convection cells are moving downstream for the 

obtained periodic velocities due to critical Reynolds numbers studied. They also noted that natural convection cells 

disappeared and heat transfer rate decreased with the higher values of Reynolds number.  Aminossadati and Ghasemi 

[2] conducted a similar investigation by considering discrete heat sources at different locations of the channel and they 

reported that the heat transfer improvement strongly depends on the cavity aspect ratio and position of the heat source 

for certain value of Richardson number.  Later on, they [3] considered nanofluid filled lid-driven triangular enclosure 

to analyze the heat transfer augmentation due to mixed convection flow and found that the addition of nanoparticles 

increase the heat transfer rate for all Richardson number  at any direction of the sliding walls. Shahi et al. [4] used 

finite volume approach to obtain numerical solution of mixed convection in a square ventilated cavity and found that 

average Nusselt number increases and bulk temperature decreases for increasing solid concentration.  Fereidoon et al. 
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[5] performed a similar study by considering inclined square double lid driven cavity. They demonstrated that heat 

transfer rate increased significantly with greater values of governing parameters than lower ones. Hussein and Hussain 

[6] presented a numerical study of mixed convection in a two sided lid driven parallelogramic cavity under the effect 

of magnetic field.  They found that heat transfer rate and fluid flow affected with increase in Richardson number and 

the direction of lid-walls of the parallelogramic cavity. They also confirmed the circulation of the rotating vortices was 

reduced with increase in magnetic field effect. The problem of heat transfer enhancement for corrugated channel was 

numerically studied by Tokgoz et al. [7] and they recommended the rate of turbulent intensity along the central axis of 

the channel and the thermal performance in this duct were increased due to the corrugated surfaces.  

Later on, Ogut [8] introduced second law of thermodynamics to analyze mixed convection in an inclined lid-

driven cavity in presence of magnetic field and pointed out the fluid flow and entropy generation decrease for increase 

in Hartmann number. After that, the heatline visualization technique was first time implemented by Zahmatkesh and 

Ardekani [9] to investigate the effect of magnetic field orientation on free convection flow of nanofluids in a square 

porous cavity. Their results demonstrated the heat transfer rate deteriorates for the increase in magnetic field strength. 

Finite difference method based numerical study [10] of MHD mixed convection in a lid driven cavity with Joule 

heating effect indicated the heat transfer rate increased by the increasing Richardson number and volume fraction, and 

decreased by increasing of Hartmann number and Eckert number. Nasrin et al. [11] used Galerkin’s finite element 

method to simulate mixed convection in copper oxide-water nanofluid filled triangular wavy enclosure and reported 

that heat transfer rate is an increasing function of Reynolds number and volume fraction and decreasing function of 

Richardson number.  

Farsani et al. [12] investigated the heat transfer performance and the removal process for 

magnetohydrodynamic mixed convection in an open cavity. They found that heat transfer rate was accentuated due to 

increase in Grashof number and decelerated with increase in Reynolds and Hartmann numbers while opposite 

phenomena reflected in the removal process of fluid particles.   Abu-Mulaweh [13] presented a comprehensive review 

of the flow and heat transfer results for laminar mixed convection flow over vertical, horizontal and inclined backward-

facing and forward-facing steps and summarized that laminar mixed convection flow over a forward-facing step 

received very little attention comparing to that of the backward-facing step case because of  in the forward-facing step 

geometry, two recirculation regions developed which make it more complicated than the backward-facing step 

geometry. 

 Manca et al. [14] numerically studied mixed convection in a channel with an open cavity and their results 

showed that maximum temperature values decrease with the increase in Reynolds and Richardson numbers and the 

highest thermal performance in terms of both maximum temperature and average Nusselt number achieved in the 

opposing forced flow mode. Later on, Manca et al. [15] experimentally investigated this analysis [9] and found that 

Nusselt numbers increase when the ratio of the length to the height of cavity increase for a considered range of 

Richardson numbers. Rahman et al. [16] numerically studied the development of magnetic field effect on mixed 

convective flow in a horizontal channel. Their results indicated that considered governing parameters strongly affect 

the flow phenomenon and temperature field inside the channel.   

Later on, Rahman et al. [17] analyzed the heat transfer, temperature distribution and flow field in a channel 

heated from different sides and found that the highest heat transfer is obtained when the isothermal heater is located at 

the right vertical wall. Hossain and Floryan [18] investigated the basic characteristics of fluid movement and heat 

transfer process associated to the mixed convection in a horizontal channel where the flow was driven by a pressure 

gradient and the channel was periodically heated and highlighted that largest heat transfer across the channel occurs 

for the natural convection (Re = 0) and diminishes with an increase of the forced flow component (increase of Re).  A 

numerical investigation was performed by Rafi et al.  [19] to analyze the flow and thermal fields for steady two 

dimensional laminar mixed convection flow in a rectangular channel and better cooling performance observed for 

increasing the Reynolds number in pure mixed convection case.  

 Rashidi et al. [20] conducted a numerical investigation of mixed convection heat transfer of nanofluid flow 

in vertical channel with sinusoidal walls under magnetic field effect and they reported that average Nusslet number 

increases by increase in Grashof number for nanofluids with different volume fractions. It was also noted that the 

average Nusselt number and Poiseuille number increases by increasing the Hartman number. Carozza [21] performed 
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a numerical investigation on mixed convection in a two dimensional open ended cavity with different aspect ratios and 

focused that the enhancement of heat transfer rate depends on the increasing Re and the assisting configuration. Devera 

and Hyhlik [22] conducted an experimental study to investigate the thermal field in a horizontal rectangular channel 

with two types of bottom boundary conditions and concluded that mass transfer causes stronger transient behavior 

above the bottom surface and enhancing of heat transfer, but the overall character of the thermal field remains the same 

as in case of heat transfer only.  

Hussein et al. [23] analyzed the thermal and flow fields characteristics of laminar steady mixed convection 

flow in a rectangular inclined lid-driven cavity filled with water-based nanofluids. They found that the local Nusselt 

number decreases with the increased inclination angle and solid volume fraction and the shape of the circulation vortex 

was sensitive to the inclination angle and addition of nanofluids. Mohammed et al. [24] reported numerical simulations 

for buoyancy-opposing laminar mixed convection using various types of nanofluids with 5% volume fraction over a 

backward-facing step in a vertical duct. Their results revealed that recirculation region developed behind the backward-

facing step in the case of forced convection and low buoyancy opposing level disappeared when the buoyancy-

opposing increased. They also noted that skin friction coefficient decreases as Reynolds number and Prandtl number 

increases. 

 Ahmed et al. [25] utilized finite volume method to investigate numerically the thermal and flow fields 

characteristics for laminar steady mixed convection flow in a square lid-driven enclosure filled with water-based 

micropolar nanofluids and found that enhancement of average Nusselt number depends on the length of heat source 

and solid volume fraction. Al-Rashed et al. [26] performed three dimensional numerical simulations on mixed 

convection in a cubical enclosure filled with nanofluid using vorticity-vector potential formalism. Their results 

indicated that thermal entropy generation increases by increasing the concentration of nanoparticles for all Richardson 

numbers, but the variation viscous entropy generation with concentrations depends on Ri values.   

Chau and Jiang [27] developed and implemented a three-dimensional numerical model based on an orthogonal 

curvilinear grid system in the horizontal direction and a sigma coordinate system in the vertical direction for the 

prediction of water quality constituents. Their results illustrated that the pollutants from the Pearl River Delta Region 

(PRDR) have certain impact on the Hong Kong seawaters, especially during the wet season when the discharge rates 

are high at the upstream ends. Afterward, they [28] developed a three-dimensional numerical pollutant transport model 

coupling with previously developed hydrodynamic models and observed a transboundary action between Guangdong 

province and Hong Kong special administrative region for the pollutants in the wastewater discharged from the Pearl 

River Delta Region.  

Wu and Chau [29] presented a mathematical model of water quality rehabilitation by utilizing rainwater to 

reduce significantly both the project investment and operation costs and also suggested appropriate drainage plan 

scheme to address the initial polluted rainwater problem. Ardabili et al. [30] reviewed the survey of the state-of-the-

art computational intelligenc (CI) approaches used in hydrogen production in terms of their context of application, 

accuracy and sensitivity to the model’s input datasets and provides in-depth insight into the different hydrogen 

production methods and modeling technique and focused their future  viewpoint to develop a multifactor system-based 

CI applied to hydrogen production methods to reach the high performance in estimating and modeling on hydrogen 

production data.  

Akbarian et al. [31] performed a numerical simulation of using natural gas in a dual-fueled constant-speed 

diesel engine and obtained results indicated that under different loads and pilot to gaseous fuel (PGF) ratios, the 

emissions of nitrous oxides and particle materials in the dual mode were lower than diesel engine. Ma et al. [32] 

developed a mathematical model describing gas-liquid valves’ motion and dynamical simulation of combined valves 

to analyze its working mechanism in reciprocating multiphase pump and provide theoretical foundation for the design 

of new type of multiphase pump. Das et al. [33] developed a model to study mixed convection problem under the 

influence of uniform transverse magnetic force and observed that nanofluid velocity inside the channel enhanced by 

the imposed magnetic force. It was also pointed out that the instability of the flow field moderated with considered 

particle concentrations and magnetic field for critical values of Rayleigh number. 

  Bansal and Chatterjee [34] studied numerically two-dimensional magneto- mixed convective flow in a lid-

driven square enclosure with centrally placed circular cylinder. They observed that drag coefficient increases for 
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magnetic strength as well as nanoparticle concentration and decreases with mixed convective strength, and the heat 

transfer enhancement affected by mixed convective strength as well as nanoparticle concentration. Gul et al. [35] 

studied heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel 

and found that the temperature and velocity distributions of ferrofluids depend strongly on viscosity and thermal 

conductivity together with magnetic field.  Magnetohydrodynamic mixed convection of hybrid nanofluid flow in a 

horizontal channel was numerically studied by Hussain et al. [36]. Their results highlighted that the mixed convection 

mode and rate of heat transfer increased with increasing Richardson number and decreased for magnetic effect. They 

also noted that the heat transfer rate augmented with increase in Reynolds number and nanoparticle volume fraction.  

In addition, the efficiency of thermal managements can be improved by using modified configuration with 

additional surface area like baffle, fin, corrugate, groove etc. In this context, many researchers have been interested to 

work on the heat transfer enhancement by using different grooved enclosures. McGarry et al. [37] numerically 

investigated the flow structures and heat transfer enhancement for grooved channel flow in presence of curved vanes 

and explained that the best location of vanes increased the cooling rate and decreased pressure drop and vortices were 

generated due to the presence of curved vanes which were increased in size as the Reynolds number increased. Selvaraj 

et al. [38] experimentally analyzed the convective heat transfer coefficient in water and ethylene glycol mixture fluid 

through a grooved tube of different shaped. They reported that Nusselt number and thermal hydraulic performance 

were higher for the square grooved tube than the other studied and also grater Reynolds number.  

Heshmati et al. [39] utilized the finite volume method along with second order upwind technique to study the 

unsteady laminar forced convection flow over periodic grooved channel and concluded that 4% concentration of 

nanoparticles provides the highest heat transfer augmentation and skin friction coefficient. Sharma et al. [40] analyzed 

the flow and heat transfer complexities for mixed convection in a grooved channel in the presence of an adiabatic 

baffle which was placed at the top wall. They demonstrated that heat transfer varied upon the baffle height and fluid 

flow characteristics. Rabbi et al. [41] studied numerically magnetohydrodynamic mixed convection Poiseuille flow 

through a horizontal channel in presence of a rectangular obstacle using non-Newtonian power law fluid. They 

observed that heat transfer was optimum in Pseudo-plastic fluid (n < 1) than Newtonian fluid and dilatant fluid.  It was 

also pointed out that heat transfer was maximum at higher Hartmann number and Rayleigh number for pseudo-plastic 

non-Newtonian fluid flow.  

Ali et al. [42] numerically analyzed the effect of magnetic field on natural convection flow and heat transfer 

properties in a grooved enclosure filled with nanofluid. Their results indicated that the heat transfer rate increases with 

the increase in Rayleigh number and solid volume fraction of nanoparticales but decreases for increasing strength of 

magnetic field. Later on, they [43] performed a numerical study of magnetic field orientation on mixed convection 

flow in a grooved channel and highlighted that heat transfer rate affected significantly with the strength and inclination 

angle of applied magnetic field.  

Based on the above literature review, it is evident that no attention has been dedicated to investigate the effect 

of mixed convection flow in a nanofluid filled grooved channel with ventilation ports.  But it was established by many 

researchers that nanofluids are more effective in terms of heat transfer performance. Accordingly, the utilization of 

nanofluids within a new geometry like vented grooved channel with appropriate mathematical modification may have 

significant applications in thermal engineering fields. The purpose of this investigation is to numerically analyze the 

fluid flow and temperature distribution for mixed convective flow in a differentially heated vented grooved channel 

filled with nanofluid under the influence of magnetic field. The effects of pertinent parameters including Richardson 

number, Hartmann number and volume fraction of nanoparticales on the flow structure and temperature distribution 

have been investigated and discussed in the following sections. The findings from this study can be a useful guide to 

design relevant equipments like heat exchangers, cooling of electronic components, heating and cooling system in 

building, solar collectors, lubrication technologies, drying technologies and others thermal process.  Although the 

geometry here is fixed to a grooved channel, the substantial outcomes can be extended for other complicated 

geometries. 

PHYSICAL MODEL 

A two dimensional rectangular vented channel with square grooves of side length 0.2H is considered whose 

length is L and height is H. The bottom walls are kept at constant temperature Th and grooved walls are at temperature 
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Tc while other walls are considered as thermally insulated. The initial temperature of the working fluid is maintained 

at Tc and fluid enters through the inlet port of the channel with velocity ui and temperature Tc and then leaves through 

the outlet port by maintaining convective boundary conditions. The working fluid within the channel is water-based 

nanofluid containing uniform spherical copper-oxide nanoparticles. The thermophysical properties of base fluid water 

and copper-oxide nanoparticles are given in Table 1.  The boundaries of the channel are maintained no-slip conditions. 

The physical model of the present problem is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Thermo physical properties of base fluid and copper-oxide [44] 

Physical properties Base fluid Copper-oxide (CuO) 

)/( kgKJCp  4179 540 

)/( 3mkg  997.1 6500 

)/( mKWk  0.613 18 

)/1( K  2.110-4 0.085 10-4 

)/( mKW  0.05 10-10 

 

MATHEMATICAL ANALYSIS 

Considering Boussinesq approximation along with aforesaid assumptions, the governing equations for the 

physical problem can be written as follows [3, 4, 11, 12, 14, 16, 17, 32] : 
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Figure 1. Physical model of the vented grooved channel 
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The introduced relations of density, heat capacitance, thermal expansion coefficient, electrical conductivity, 

thermal conductivity and dynamic viscosity of the nanofluid are given below [11, 33, 36, 45, 46]: 

 

( ) sfnf  +−= 1                                                 
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The thermal conductivity model of nanofluids proposed by Maxwell’s [46] has been extended by 

incorporating Brownian motion model proposed by Cui et al. [47] to improve the thermal conductivity of nanofluids 

and the modified model of effective thermal conductivity of nanofluids is given below: 
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The appropriate boundary conditions based on the physical model can be written as: 

 

on the grooved walls : 0=u , 0=v , cTT =  

 
(5) 

on the inlet : y)-(0.5y61=iu , 0=v ,
 cTT =  

 
(6) 

on the outlet : 0=p and
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On the top horizontal walls: 0==vu , 0=




y
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(8) 

on the bottom horizontal walls: 0=u , 0=v , hTT =  

 
(9) 

The following dimensionless quantities are introduced into the governing equations ((1) to (4)) to obtained 

dimensionless governing equations. 
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Therefore, the dimensionless governing equations are:  
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According to the dimensionless scales (10), the associated boundary conditions are converted into following 

non-dimensional form: 

 

on the grooved walls: 0=U , 0=V , 0= . 
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on the top horizontal walls: 0=U , 0=V , 0=

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on the bottom horizontal walls: 0=U , 0=V ,  1=  
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EVALUATION OF AVERAGE NUSSELT NUMBER AND AVERAGE TEMPERATURE: 

Average Nusselt Number 

The heat transfer rate is characterized by local Nusselt number and average Nusselt number respectively, is 

an important factor of this study. The local Nusselt number ( uN ) is calculated for each heated sections whereas the 

average Nusselt number ( Nu ) is calculated for whole domain on the heated walls of the channel by using the following 

relations [36, 42]: 

 



Journal of Thermal Engineering, Research Article, Vol.7, No.1, pp.  91 - 108, January, 2021 
 

 

 98 

 

Yk

k
uN

f

nf




−=


 and 

=

+

−
=

4

0

12

28.0

1

i

x

x

i

i

dXuN
HL

Nu  

 

(20) 

Average Temperature 

The average temperature of the fluid flow domain within the channel is determined by applying the following 

equation:   

 

= VdVav )(  

 

(21) 

Here V  is used to indicate the volume of the enclosure. 

 

GRID SENSITIVITY TEST 

The grid independent test has been performed by considering different mesh systems for average Nusselt 

number at Pr = 6.2, Ri = 1, Re = 10, Ha = 20,  = 1% and Ec =10-4 and presented in Table 2 as well as in Figure 2, 

respectively. The computed average Nusselt number for the grid size of 41178 nodes 79640 elements indicates a little 

difference as compared to the result for other grid sizes. Accordingly, further refinements of grid test have no 

considerable effects on the computed results of average Nusselt number. Thus, the grid size of 41178 nodes and 79640 

elements is filled up the requirement of the grid convergence test and all the computations have been carried out at this 

meshing. 

Table 2. Grid sensitivity test at Pr = 6.2, Ri = 1, Re = 10, Ha = 20,


= 1% and Ec =10-4   

Nodes 

(elements) 

9613 

(18412) 

23534 

(45366) 

35665 

(68918) 

41178 

(79640) 

46902 

(90758) 

avNu  3.538 3.908 4.115 4.141 4.152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPUTATIONAL PROCEDURE 

The numerical procedure of the present physical problem has been performed by implementing the finite 

element method of Galerkin weighted residual technique. In this procedure, the solution domain is divided into sub-

domains by considering non-uniform triangular meshing where the non-dimensional governing equations are 

discretized into finite element equations which are modified into integral equations with the help of Galerkin residual 

method.  The obtained equations are converted into linear algebraic equations by using Newton-Raphson method 

Figure 2. Grid sensitivity test. 
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clarified by Reddy [48] and finally Triangular Factorization Technique is used to obtain a smooth solution for the entire 

domain.  Detailed derivation of the application of this method is given by Taylor and Hood [49] and Dechumphai. [50]. 

 

VALIDATION OF NUMERICL PROCEDURE 

The present simulation has been validated by comparing the present results on the basis of identical problem 

of Nada and Chamkha [51], Waheed [52], Abdelkhalek [53], Khanafer [54] and   Sharif [55] for the computed average 

Nusselt number with various values of Reynolds number and Richardson number presented in Table 3. Moreover, 

Figure 3 represents a comparison of the streamlines and isothermal lines from the present simulation with those of 

Basak et al. [56] for numerical solution of mixed convection flows within a square cavity with linearly heated side 

walls at Pr = 0.015, Re = 10,  Gr = 103. Results have been found in excellent agreement with the mentioned previous 

work which shows that the numerical procedure provides accurate solution for the present problem. 

Table 3. Comparison of average Nusselt number for base fluid solution with previous   works at Pr = 0.70 

Re Ri a b c d e f 100))(( − cca  

1 100 1.00033 1.006367 1.00033 - - - 0 

100 0.01 2.04392 2.112957 2.03116 1.985 2.02 - 0.628 

400 0.000625 4.05362 4.069035 4.02462 3.8785 4.01 4.05 0.720 

500 0.0004 4.55663 4.602600 4.52671 - - - 0.660 

1000 0.0001 6.48981 6.426109 6.48423 6.345 6.42 6.55 0.086 
aPresent work; bNada and Chamkha [51] ; cWaheed [52] ; dAbdelkhalek [53] ; eKhanafer [54];  fSharif [55]. 

 

 

 

 

  
Figure 3. Comparison of streamlines (left) and isotherms (right) between present study (top) and Basak et al. [56] 

(bottom). 

RESULTS AND DISCUSSION  

The numerical results of streamlines, isotherms, average Nusselt number, average temperature and mid 

sectional velocities for magnetohydrodynamic mixed convection flow in a vented grooved channel filled with copper 

oxide-water nanofluid have been presented graphically and discussed elaborately in this section. The values of the 

dimensionless governing parameters such as Richardson number (Ri) , Reynolds number (Re), Hartmann number (Ha) 
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, concentration of nanoparticales ( ), Eckert number (Ec)  and Prandtl number (Pr) have been considered as Ri = 0.1 

to 100, Re = 10 to 200, Ha = 0 to 100,    = 0% to 5%,  Ec = 10-4 to 10-1 and Pr = 6.2. 

 

  

  

  

  
(a) (b) 

Figure 4.   Effect of Ri on (a) streamlines and (b) isotherms while Re=10, Ha = 20,   =1% and Ec = 10-4. 

Figure 4 illustrates the streamline and isotherm plots for different values of Richardson number with certain 

value of controlling parameters. Richardson number characterized the dominating phenomena of convection like 

forced convection dominant regime for Ri ≤ 0.1, mixed convection dominant regime for Ri = 1 and free convection 

dominant regime for Ri ≥ 1. Thus in Figure 4(a) for Ri = 0.1, forced convection is dominant inside the channel and 

two recirculation zones develop adjacent to the diagonal flow path where one is near the top of the inlet port rotating 

in counter clock wise direction and other is near the bottom of the outlet port rotating in clockwise rotation. For Ri = 

1, buoyancy forces and shear forces are contributed equally on the flow field inside the channel where the vortices are 

qualitatively similar. The influence of buoyant force increases as Ri increases which results the flow field is dominated 

by free convection and the upper vortex is elongated with greater strength while the lower vortex is shrink with lower 

strength which leads to expedite the heat transfer rate. It is seen that both vortices vanish and forming a larger 

recirculation zone with higher strength for greater effect of Ri ( Ri = 100) that occupies the enter region of the channel 

where streamlines are more concentrated near the horizontal heated walls which increases heat transfer rate there. 

Moreover, the streamline plots reveal that the flow strength is accelerated with increase in Ri where maxima are 

observed near the centre of the vortex. Furthermore, streamlines are bended close to the horizontal walls due to the 

presence of square grooves and single cells also appear near the entrance of lower grooves with increasing Ri which 

leads to enhancement of heat transfer rate there. On the other hand in Figure 4(b), it is seen that isotherms are emanated 

from the bottom to top as well as in the direction of exit port for lower Ri, and less influenced up to mixed convection 

dominant regime whereas in free convection dominant regime temperature lines are condensed near the bottom walls 
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and moves in wavy shaped with higher temperature gradient toward the exit port which supports the stronger free 

convection effect inside the channel. 

 

  

  

  

  
(a) (b) 

Figure 5. Effect of Ha on (a) streamlines and (b) isotherms while Ri=1, Re=10,   =1% and Ec = 10-4. 

Figure 5 displays the effect of magnetic field on streamlines and isotherms while the flow field is governed 

by mixed convection flow. In absence of magnetic field (Ha = 0), the streamlines are stretched out in the direction of 

flow that occupies the entire channel and complete cells also appear within the flow field.  The shape and strength of 

the flow circulation within the channel is modified with increase in Ha and produced two recirculation zones beside 

the main flow path. It is also found that the complete cells disappear with increase in Ha which reduces the heat transfer 

from the source. Moreover, in Figure 5 (a), it is observed that the vortices are elongated with higher strength and the 

diagonal streamlines are twisted for increasing Ha from 50 to 100 which causes a reduction in flow strength as well as 

heat transfer. The physical fact behind it is that active Lorentz’s force due to applied magnetic field reduces more shear 

force as compared to buoyancy force. Besides this, the isotherms densely distributed near the bottom walls as seen in 

Figure 5(b), which exposes greater temperature region near the bottom walls. In addition, the trend of isotherm contours 

changes slightly with increase in strength of magnetic field which indicates weaker convection heat transfer.  
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(a) (b) 

Figure 6. Effect of   on (a) streamlines and (b) isotherms while Ri = 1, Re = 10, Ha = 20 and Ec = 10-4. 

Figure 6 represents the streamlines and isotherm contours for different concentration of nanoparticles at Ri 

=1, Re =10, Ha = 20 and Ec = 10-4. From these figures, it is clear that the flow pattern is almost similar and isotherms 

are less affected with the variation of concentration of nanoprticles. Thus, the flow and temperature distributions inside 

the channel are more sensitive due to the effects relevant parameters other than the effect of volume fraction. Moreover, 

the magnitude of flow circulation decreases with the increase in volume fraction. Because, dispersed nanoparticles 

increase the density of nanofluid. On the other hand, the temperature distribution in Figure 6(b) is dominated by 

conduction mode of heat transfer due to the presence of nanoparticles of higher thermal conductivity.  

 The computed average Nusselt number and average temperature for different values of the governing 

parameters have been presented in Figure 7 and Figure 8, respectively. In Figure 7(a), it is observed that the heat 

transfer rate characterized by average Nusselt number increases monotonically for increasing Richardson number. The 

increasing rate of heat transfer accelerates and decelerates respectively for increasing Hartmann number in forced 

convection dominant region and free convection dominant region. In addition, the heat transfer rate boosts up rapidly 

due to increase in volume fraction and Reynolds number and the variations are more prominent in buoyant force 

dominant region than forced and mixed convection region which are displayed in Figure 7(b) and Figure 7(c), 

respectively. These phenomena are consistent to the effects of pertinent parameters. Besides this, heat transfer profiles 

decline with an increase in Ec that is shown in Figure 7(d) but these profiles remain in upward direction with rising 

Ri. 

On the other hand, the mean temperature inside the channel rises for escalating Ha and  while Ri ≤ 10 seen in 

Figure 8 (a , b) whereas opposite trend visualizes with increase in Re for all values of Ri displayed in Figure 8(c), i.e. 

average temperature decreases significantly with increasing of Re. Moreover, a typical mean temperature variation is 

observed with increasing Ha and ϕ while Ri varies from 10 to 102. These are expected due to the physical consequent 

on governing parameters. In addition, Ec causes enhancement in average temperature that can be seen in Figure 8(d).  

Moreover, it is evident that the variation of average temperature is more noticeable in free convection regime as 

compared to forced and mixed convection regimes. 
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Figure 7.  Average Nusselt number plots against Ri, Ha, Re,   and Ec. 

 

 
 
 
 

 

 

 
 

Figure 8. Average temperature plots against Ri, Ha, Re,   and Ec. 
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Figure 9. Mid hight U and V velocities Plot for various Ri, Ha and  . 

Figure 9 demonstrates the vertical (V) and horizontal (U) velocity components along the mid section of the 

channel for different values of governing parameters. In Figure 9 (a), it is clear that the horizontal velocity profiles are 

space out remarkably for increase in pertinent parameters while the plane is located at x = 0.5L. Moreover, the velocity 

profiles are less varied in forced convection regime than free convection regime. Besides this, Figure 9(b) represents 

the variation of vertical velocity profiles for the effects of relevant parameters while the plane is located at the y = 

0.5H. The velocity components are seen to be increased with increase in Ri whereas decreased for higher concentration 

of nanoparticles. On the other hand, the velocity profiles are less perturbed with increase in Ha, because of increasing 

strength of magnetic field reduces fluid motion.  
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CONCLUSION 

In the present study, mixed convective flow of water based nanofluid in a vented grooved channel under the 

influence of magnetic field has been investigated numerically. Finite element method based on Galerkin weighted 

residual technique has been implemented to solve the governing equations. The numerical simulation has been carried 

out for a rage of physical  parameters including Richardson number (Ri), from 0.1 to 100, Hartman number (Ha), from 

0 to 100 and volume fraction ( ), from 0% to 5% and validity test has been performed to assess the accuracy of the 

present simulation and found in a good agreement. The findings of this study can be summarized as follows: 

 The fluid motion and heat transfer rate inside the channel accelerates with increase in Richardson number. 

 The increase in magnetic field strength and concentration of nanoparticles causes a reduction in fluid motion.  

 The temperature distribution within the channel affected significantly due to the greater Richardson number, 

Hartmann number and volume fraction. 

 Heat transfer rate increased remarkably with the increase in volume fraction and Reynolds number while 

reverse phenomenon was noticed for increase in Eckert number. 

 Heat transfer due to magnetic field strength strongly depends on Richardson number. 

 Nanofluid shows greater heat transfer enhancement than base fluid for all volume fraction of nanoparticles. 

With the growing demand for efficient cooling systems, many countries are trying to develop new technologies in 

order to increase the heat transfer mechanisms in a more proficient way. In this regard, the present study is performed 

to enlighten the scientific world to improve the efficiency of heat transfer systems via an enhancement in the thermal 

conductivity of the traditional heat transfer fluid and also geometrical modification and it is hoped that the findings of 

this study would be a useful source to the researchers for the betterment of existing thermal equipments. As the present 

study has been numerically accomplished, experimental work is required for perfection of the numerical findings.  
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