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ON THE TURBULENT PRANDTL NUMBER IN STABLY STRATIFIED  
TURBULENCE BY SECOND ORDER MODELS 

 

S. Naifer1,* , M. Bouzaiane1,2 

 

ABSTRACT   

The aim of this work is to investigate the behavior of the Turbulent Prandtl number by second order 

modeling of a stably stratified homogeneous sheared turbulence. By analytic solutions, we have confirmed the 

asymptotic equilibrium behavior of the turbulent Prandtl number. Then two between the most second order 

models of turbulence; the Classic Launder-Reece-Model and the sophisticated Craft Launder model are retained. 

A non dimensional form of transport equations have been obtained when non dimensional parameters are 

introduced to substitute second order moments. A numerical integration using the fourth order Runge kutta 

method has been conducted for different values of the gradient Richardson number Ri. In comparison with direct 

numerical simulation result’s of Shih et al. the obtained results by the Craft Launder model has shown for the 

turbulent Prandtl number the best agreement at moderate values of gradient Richardson number 0.15 < Ri < 0.28. 

The classic model has shown a great default for the different values of Ri. No any concordance with retained 

results of DNS has been obtained by this model. We show also that prediction of this model can be improved by 

introducing variation and optimization of model constants.  
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INTRODUCTION 

The problem of turbulent mixing in a stably stratified turbulence is a problem of often importance since 

stably stratified are present in the atmospheric boundary layer, oceans, lakes and many engineering flows. 

Homogenous turbulence in stratified shear flow has been investigated essentially through direct numerical 

simulations by several authors during the last three decades. Gerz et al. [1] and Holt et al. [2] have analyzed the 

behavior of a stratified homogeneous sheared turbulence as a function of the important parameter iR . The 

gradient Richardson number iR  indicates the importance of stratification effect to shear effect.Shih et al. [3-4] 

have accorded much attention to the turbulent Prandtl number than the other works and their results are retained 

in this work. This number is a widely used parameter in stably stratified homogeneous turbulence. 

More recently, Subhas and Derek [5] have argued these results and derived a new relationship for the 

turbulent Prandtl number in terms of the gradient Richardson number iR , and between the turbulent kinetic 

energy and scalar variance. The second order modeling of stratified homogeneous turbulence remains to our 

sense an important approach of studying homogeneous turbulence since its application to the great number of 

engineering flows and industrial applications [6-7]. In a previous work, we are interested to the prediction of 

equilibrium states in stratified homogenous turbulence with vertical or inclined shear [8-9]. We were focused 

essentially to the asymptotic behavior of dimensionless kinematic parameters such as the component of the 

anisotropic tensor and the non dimensional shear number KS .  

However to our best knowledge not previous results have been dedicated to the prediction of the 

turbulent Prandtl number behavior using second order models. This simple and important goal constitutes the 

motivation of this paper which is organized as follows. In section 2 we present the mathematical formulation of a 

stratified homogeneous turbulence by the transport equation of second order moments of turbulence. Some 

analytical comments are than proposed for the turbulent Prandtl number tPr  and the ratio ELML . In section 

3 the second order modeling of transport equations is described and the retained second order models of 

turbulence are introduced. A non dimensional form of the transport equation is also obtained, parameterized by 

http://share.here.com/r/mylocation/e-eyJuYW1lIjoiRmFjdWx0XHUwMGU5IGRlcyBTY2llbmNlcyBkZSBCaXplcnRlIiwiYWRkcmVzcyI6IkphcnpvdW5hLCBaYXJ6b3VuYSwgQmFuemFydCwgVHVuaXNpYSIsImxhdGl0dWRlIjozNy4yNTk1NjE5MywibG9uZ2l0dWRlIjo5Ljg3NzU0NDM0LCJwcm92aWRlck5hbWUiOiJmYWNlYm9vayIsInByb3ZpZGVySWQiOjU1MzM2NTA5ODEzNzM5Mn0=?link=addresses&fb_locale=fr_FR&ref=facebook
https://orcid.org/0000-0002-2111-9460


Journal of Thermal Engineering, Technical Note, Vol.6, No.3, pp.369-380, April, 2020 

370 

 

the gradient Richardson number iR . In section 4 the numerical integrations conducted and the principal results 

are discussed. The section 5 the principal concluding of this work is dressed. 

 

MATHEMATICAL FORMULATION GENERAL EQUATIONS  

In the case of a stably stratified homogenous sheared turbulence, the basic transport equation for the 

components 
ji

uu  of the Reynolds stress, the turbulent kinetic energy, the turbulent scalar flux and scalar 

variance may be obtained by standard method [2]: 

 

                                                                                ijijijijji BPuu
dt

d
                                                                        (1)   

                                                                                          

                                                                                           BP
dt

dK
                                                                                             (2)  

                                                                             

                                                                            iiiii BPu
dt
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






                                                                            (3)    

                                                                             

                                                                     2P
dt
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In these equations terms noted P  are production terms due to mean velocity and mean scalar gradients: 

                                                                       

                                                                     i,kkjj,kkiij UuuUuuP                                                                                   (5)   

                                                                                     

                                                                                       i,kki UuuP                                                                                                  (6)  

                                                           

                                                                        k,ijTkii UuSuuP                                                                                      (7) 

 

                                                                                        T2 Su2P                                                                                                (8) 

 

ij
 and 




i
 are the pressure strain correlation and pressure scalar gradient correlation terms: 

                                                                                                     

                                                                      i,jj,iij upup                                                                (9)   

                                                        

                                                                                           i,
0
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ij
B  and B  are buoyancy terms:  
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                                                                                 2i
2

0
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                                                                                                 (13) 

 

and   are dissipation due to molecular effects terms:       
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kk xx
2


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
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Now, analytical comments are developed for transport equations (1) - (4). The behavior of the turbulent 

Prandtl number 
t

Pr  and the ratio 
EM

LL will be investigated. In their direct numerical simulations, Holt et al. 

[2] have confirmed that the non linear and viscosity effects are very small comparing to productions terms at 

high shear  ( >>). If we take into account of this hypothesis in the transport equations (1) - (4), a linear set of 

differential equations are obtained and written in the following form: 

                                                                 

                                                                21
2

1 uuS2u
dt

d
                                                                     (18)   
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The Laplace transform is retained for integrating the linear differential system, the principal solutions 

are written as follows: 
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Where coefficients A, B, D are functions of initial values of turbulent parameters and the gradient 

Richardson number 
i

R . These solutions will now be used to study the asymptotic behavior (when  ) of the 

dimensionless parameters: the turbulent Prandtl number 
t

Pr  and the ratio 
EM

LL .  Firstly we deduce the 

expressions of these parameters: 
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And at high shear ( >>), we obtain respectively: 
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We conclude that at high shear ( >>), the two dimensionless scalar parameters tend to equilibrium 

states functions of the initial values of turbulent parameters and the gradient Richardson number 
i

R . This 

analytic solution is important since it confirms that at equilibrium, buoyancy terms equilibrate production terms. 

It confirms also the result of direct numerical simulation of Shih et al. [4] and the study of Subhas and Derek [5].  

This approach is only a qualitative one and a more quantitative study of the evolution of the turbulent Prandtl 

number 
t

Pr  and the ratio 
EM

LL  will be addressed in the following section when second order modeling of 

transport equations is retained. 

 
SECOND ORDER MODELING 

At this step of our work and with the aim of obtaining a closed set of equations, the second order 

modeling is the approach retained here. Second order models are retained for nonlinear terms of pressure strain 

correlation, pressure scalar gradient correlation and transport equation of dissipation.  

In a stratified shear flow, the correlations ij  and i  are classically [11] decomposed on three 

contributions:      

                                                         
3
ij

2
ij

1
ijij                                                                (34) 
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ii                                                          (35)                                                                                                                                 

                                                                                                                   

Where the contributions 1 are the return-to-the isotropy terms, the terms 2 represent the interaction 

between mean and turbulent flows. The terms 3 are terms due to buoyancy.                                                                                                                                                                 

Two between the most known second order models are retained for the pressure strain correlation and 

the pressure scalar gradient correlation and the evolution equation of the dissipation rate  . The classic second 

order model of Launder, Reece and Rodi (LRR) [12] in one hand and the sophisticated model of Craft and 

Launder (CL) [13] have been retained.  For its success in many different applications of stratified homogeneous 

shear flow [8-10], the Zeman Lumley model is retained for the third contributions of the pressure strain 

correlation and pressure scalar gradient correlation: 
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Where 5.03C   and 5.03C  . 

Introducing the non dimensional time St , a modeled form retained for the transport equations of the 

mentioned parameters ijb , SK , tPr  and ELML  are obtained by:  
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At this step, a numerical integration of the differential equations is started. Obtained results will be 

discussed in the following sections. 

 

NUMERICAL INTEGRATION AND RESULTS  

Two non linear systems of seven differential equations are obtained corresponding to the two retained 

models. The numerical integration is advanced in time using the fourth order Runge-Kutta method. Numerical 

integration has been advanced to long time evolution 12 . The principal results are now discussed : A plot of 

the turbulent Prandtl number tPr  for weak stratification, Ri= 0.05, 0.06 and 0.1, is shown in Figures 1. The 

Craft Launder model shows an overestimation of about 50% direct numerical simulations values. The LRR 

model indicates an under estimation of these values. 

 
a. for 05.0iR   

 

b. for 06.0iR   

 

 
c. for 1.0iR   

 

Figure 1. Time evolution of tPr  for Data of Shih et al. and LRR and CL models  

The estimation of the CL model becomes better for moderate values of Ri equals respectively to 0.15, 

0.18 and 0.25. The differences between predictions of  CL model and direct numerical  simulations values is  less 

important than in the case of weak values of Ri as indicated in Figures 2.An over estimation of 10% the direct 

numerical values for Ri = 0.18 and an under estimation of 10% values of direct numerical simulation for Ri=0.25 

has been observed by CL model. The LRR model does not indicate interesting behavior for the moderated or 
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weak stratification for the turbulent Prandtl number. A great difference between LRR model predictions and the 

values of the direct numerical simulation is observed for both weak and moderate stratification. 

 

 

 

a. for 15.0iR   b. for 18.0iR   

 

 

        c. for 25.0iR   

Figure 2. Time evolution of tPr  for Data of Shih et al. and LRR and CL models 

Figures 3 indicate plot of Prandtl number at high values of the gradient Richardson number Ri= 0.37, 

0.4 and 0.6. Here no concordance between models predictions and values of direct numerical simulations has 

been observed. An under estimation of 50% values of DNS of Shih et al. has been observed for Ri=0.37 and 

Ri=0.4 by Craft Launder model whereas no any concordance has been observed between the LRR model and 

values of direct numerical simulations of Shih et al. [4]. 

 

 
 

a. for 37.0iR   b. for 4.0iR   

 

 

 c. for 6.0iR   

Figure 3. Time evolution of tPr  for Data of Shih et al. and LRR and CL models 



Journal of Thermal Engineering, Technical Note, Vol.6, No.3, pp.369-380, April, 2020 

376 

 

Table 1 indicates equilibrium values of turbulent Prandtl number by models and direct numerical 

simulations. Here also acceptable concordance with values of DNS is obtained for moderate values of the 

gradient Richardson number Ri by the Craft Launder model. An over estimation and an underestimation is 

obtained by this model for weak and high stratification respectively.    

 

Table 1.  Equilibrium values of tPr  for different values of iR  

 

Ri 
 

t
Pr

 
( DNS  

(Shih et al.)) 

 
t

Pr
 

( LRR 

 Model ) 

 
t

Pr
 

( CL 

 Model ) 

0.05 0.7 0 1.39 

0.06 0.7 0 1.38 

0.1 0.8 0 1.32 

0.15 1 0 1.24 

0.18 1.05 0 1.19 

0.25 1.25 0 1.05 

0.37 1.6 0 0.81 

0.4 1.7 0 0.75 

0.6 - 0 0.418 

 

To improve performance of the LRR model, correction to model coefficient is retained by many authors. 

The first coefficient 1C  of the return to isotropy model of the pressure strain correlation ij  is generally the 

coefficient concerned in this modification. Here, we are interested to modify this coefficient 1C  with small 

variations around the known value 8.11C  . The equilibrium values of tPr  obtained as function of 1C  are 

presented on the following table: 

 

Table 2.  Equilibrium values of tPr  for different values of 1C  for 05.0iR  and 37.0iR   

  
t

Pr   

 05.0R
i
  37.0R

i
  

LRR 35.0C
1

  0.504 0.137 

LRR 4.0C
1

  0.423 0.109 

LRR 5.0C
1

  0.37 0 

LRR 1C
1

  0.177 0 

LRR 8.1C
1

  0 0 

LRR 2C
1

  0 0 

DNS 0.7 1.6 

 

Another optimization which we propose here is for the coefficient 1C  of the return to isotropy of the 

model of pressure scalar gradient correlation. We obtain the following table of equilibrium values of tPr  for 

different values of this coefficient: 

We see that the equilibrium value of tPr  is very sensitive to variation of the coefficient 1C  for the 

weak value 0.05 of the gradient Richardson number iR . When 1C  equal -0.5 and -1, a better approximation of 

the DNS value is observed by LRR model. The best approximation is observed for 5.01C  . For 37.0iR  no 

improve of the LRR model has been observed. The same observation is also available for variation of the 

coefficient 1C  of the return to isotropy model of pressure scalar gradient correlation. Variation of model 

coefficient can improve prediction of LRR model only for weak values of  iR . 
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Table 3.  Equilibrium values of tPr  for different values of 1C  for 05.0iR  and 37.0iR   

 

  
t

Pr
 

 

 05.0R
i


 
37.0R

i


 
LRR 8C

1



 0.673 0 

LRR 6C
1




 0.338 0 

LRR 6.3C
1




 0.102 0 

LRR 2.3C
1




 0 0 

LRR 9.2C
1




 0 0 

DNS 0.7 1.6 

 

It is essentially here to precise that coefficients 1C  and 1C  of return to isotropy terms are generally 

the only coefficients which we can modify.  The values of the others coefficients of the linear terms of pressure 

strain correlation and pressure scalar gradient correlations are exact. They cannot be modified since they are 

submitted in addition to kinematic constraints (continuity and symmetry...) to the strong form of realisability 

condition [13]. 

Figures 4 show the plot of the ratio ELML . No concordance has been observed for the case of weak 

stratification between predictions models and the direct numerical simulation values. An acceptable agreement 

between predictions models and DNS at high values of the gradient Richardson number 37.0iR  , 0.4 and 0.6. 

More precisely, for different values of gradient Richardson number iR , the ratio ELML  reaches a constant 

value from   greater than 6. For the Craft Launder model, we observe in table 4 an over estimation of 

asymptotic values of about 50% for the values 37.0iR   and 0.4.  An excellent agreement with the value of 

DNS of Shih et al. has been observed for the value 0.6 of the gradient Richardson number.  

The default of the LRR model is here clear also no concordance has been observed between LRR model 

and DNS values.   

  

a. for 37.0iR   b. for 4.0iR   

 

 

c. for 6.0iR   

Figure 4. Time evolution of  ELML  for Data of Shih et al. and LRR and CL models 
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Table 4.  Equilibrium values of ELML for different values of iR  

 

Ri 
 

EM
LL

 
(DNS (Shih  

et al.)) 

 
EM

LL
 

(LRR 

 model) 

 
EM

LL
 

(CL 

 model) 

0.37 1.12 0 1.73 

0.4 1.14 0 1.68 

0.6 1.36 0 1.38 

 
CONCLUDING REMARKS  

In this work, we are interested to the study of the evolution of scalar parameters in stably stratified 

homogeneous sheared turbulence using second order models of turbulence. The turbulent Prandtl number is the 

principal parameter concerned. The ratio EL/ML  of mechanical length scale to scalar length scale is also 

investigated. At a first step, we have confirmed by analytical linear solutions, deduced from Laplace transform 

and available only at high shear that the two mentioned dimensionless parameters have a general tendency to 

asymptotic equilibrium states, observed by the DNS of Shih et al. In the second step, two second order models 

have been retained for pressure strain correlation and pressure scalar gradient correlation to model transport 

equations. The fourth order Runge-Kutta method has been retained for integrating two non linear systems of 

seven differential equations. 

The obtained results have shown an acceptable concordance between the Craft Launder model and DNS 

values at moderate values of the gradient Richardson number 0.15, 0.18 and 0.25. A great default of the LRR 

model has been observed here with the values of the DNS of Shih et al. It confirms the default of this model in 

stratified homogeneous turbulence observed in our previous work [8]. To improve its prediction, we make 

variations of the coefficients 1C  and 1C  of the terms of return to isotropy of pressure strain correlation and 

pressure scalar gradient correlation. Only at weak value of the gradient Richardson number 05.0iR   a better 

approximation of the DNS values of Shih et al. [4] has been observed. For the moderate value of gradient 

Richardson number 37.0iR   no improve of the LRR model has been observed for variations of coefficients 

1C  and 1C . To improve predictions of LRR model and CL model, at high gradient Richardson number, we 

think that introduction of correction function by analogy as that introduced by Speziale et al. [14] and Younis et 

al. [15] in the case of turbulence, with rotation can make an important direction of investigation in a future work.  

 

NOMENCLATURE 

   3K2uub
ijjiij
  Reynolds stress anisotropy tensor 

i
g  Gravitational acceleration [m/s2] 

K  Turbulent kinetic energy [m²/s2] 

  SK2L
21

M
  Mechanical length scale [m] 

T

21
2

E
SL 







   
Scalar length scale [m] 

 

P  Production due to mean kinematic and scalar gradients 
p  Pressure [N/m2] 

p  Fluctuation of the pressure [N/m2] 

t
Pr  Turbulent Prandtl number 

2
Ti

SSgR   Dimensionless Richardson number 

S  Shear rate [s-1] 

ij
S  The mean strain rate tensor [s-1] 

TS  Mean scalar gradient [°C/m] 

t Time [s] 

T  Temperature [°C] 
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i
u  i-th component of the fluctuating velocity [m/s] 

i
U  i-th component of mean velocity [m/s] 

ji
uu  

Reynolds stress tensor [m²/s2] 


i

u  
Turbulent scalar flux [m°C/s] 

ijW  Mean vorticity tensor [s-1] 

ix  Component of an orthonormal Cartesian coordinate system [m] 

Greek Symbols   

  Thermal diffusivity of fluid [m²/s] 

  Thermal expansion coefficient [K-2] 

ij  Kronecker Symbol  

  Dissipation due to molecular effects [m²/s3] 

  Non dimensional time  St  

  Fluctuation of the scalar [°C] 

²  
Temperature variance [°C²] 

  Dynamic viscosity [kg.m-1.s-1] 

  Kinematic viscosity [m²/s] 

0  Reference density of the fluid [kg/m3] 

ij  Pressure-strain correlation [m²/s3] 

i  Pressure-temperature gradient correlation [°C.m/s2]    
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