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ABSTRACT 

 

Lie symmetry analysis of initial and boundary value problem for partial differential equations with Caputo 

fractional derivative is investigated. Also given generalized definition and theorem for symmetry method for 

partial differential equation with Caputo fractional derivative. The group symmetries and examples on 
reduction of fractional partial differential equations with initial and boundary conditions to nonlinear ordinary 

differential equations with initial condition are present. 

Keywords: Lie group method, Caputo type fractional derivative, boundary value problem. 
 

 

1. INTRODUCTION 

 

The investigated by Sophus Lie (1842–1899) method to find Lie point symmetry method has 

been widely used and described in many books and research articles (see [1–3], and references 

therein). Lie group method is a powerful and direct approach to construct exact solutions of 

nonlinear partial differential equation (PDE), by analyzing the symmetries of the nonlinear PDE. 

In addition, based on Lie symmetry method, many other types of exact solutions of PDE can be 

obtained, such as traveling wave solutions, soliton solutions, power series solutions, and so on [4–

8]. After Sophus Lie, the symmetry method was investigated by Ovsyannikov, Olver and many 

other big minds studied it by contributing to the theory of symmetries. Bluman investigated the 

symmetry analysis of initial and boundary value problems (IBVPs) for PDE, by given the 

properties of boundary conditions and boundary surfaces under symmetries (see [9, 10]). And we 

in our work by using Lie symmetry method and its analysis search symmetries and obtain 

solutions for IBVPs for PDE, containing Caputo fractional derivative. 

So, in this work we focus on IBVP for fractional partial differential equation (FPDE) 
 

{

𝑐𝐷𝑡
𝛼𝑢(𝑡, 𝑥) = (𝐴(𝑢)𝑢𝑥)𝑥𝑥 ,

𝑢(𝑡, 0) = 𝑓(𝑡),         𝑡 ∈ ℝ+,

𝑢(0, 𝑥) = 𝑔(𝑥),        𝑥 ∈ ℝ+,

  

 

where 𝑢(𝑡, 𝑥) is a function on ℝ+ ×  ℝ+, 0 < 𝛼 < 1 with fractional derivative in the sense of 

Caputo [11] in a form 
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𝑐𝐷𝑡
𝛼𝑓(𝑡) = {

1

Γ(𝑛−𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝑛)(𝜏)𝑑𝜏,     𝑖𝑓  𝑛 − 1 < 𝛼 < 𝑛,   𝑛 ∈ ℕ,

𝑡

0

𝑑𝑛

𝑑𝑡𝑛 𝑓(𝑡),                                                         𝑖𝑓  𝛼 = 𝑛 .                               
  

 

The FPDE with Caputo derivative is more useful in searching the solution of boundary value 

problems, th an Riemann–Liouville derivative, which has a form 
 

𝐷𝑡
𝛼𝑓(𝑡) = {

1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛 ∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝜏)𝑑𝜏,     𝑖𝑓  𝑛 − 1 < 𝛼 < 𝑛,   𝑛 ∈ ℕ,
𝑡

0

𝑑𝑛

𝑑𝑡𝑛 𝑓(𝑡),                                                         𝑖𝑓  𝛼 = 𝑛 .                               
  

 

Also we have next relationship between these fractional derivatives 
 

𝐷𝑡
𝛼𝑓(𝑡) = 𝑐𝐷𝑡

𝛼𝑓(𝑡) + ∑
𝑡𝑖−𝛼

Γ(𝑖−𝛼+1)
𝑓𝑖(0+).𝑛−1

𝑖=0   
 

For zero initial conditions, the two derivatives are the same. This property allows us switch 

between the two derivatives according to our necessity. While 𝛼 > 𝑛 the Caputo derivative 

becomes a conventional n-th derivative of the function 𝑓(𝑡). Thus, we can assume that Caputo 

derivative is more handy since the initial value for fractional differential equation with Caputo 

derivative is the same as the initial value for integer PDE [12]. So, we consider the boundary 

value problems with Caputo fractional derivative. 

 

2. SYMMETRY ANALYSIS FOR CAPUTO TIME–FRACTIONAL PARTIAL 

DIFFERENTIAL EQUATIONS 

 

Let 
 

𝐹(𝑡, 𝑥, 𝑢, 𝑐𝐷𝑡
𝛼𝑢, 𝜕𝑥𝑢, 𝜕𝑥

2𝑢, … , 𝜕𝑥
𝑠𝑢) = 0, 0 < 𝛼 ≤ 1,                                                                     (1) 

 

be a FPDE with two independent variables 𝑥 ∈ ℝ and 𝑡 > 0, where 𝑐𝐷𝑡
𝛼𝑢 is Caputo time-

fractional derivative of 𝑢 and 𝜕𝑥
𝑖 𝑢 =

𝑑𝑖𝑢

𝑑𝑥𝑡, 𝑖 = 1, … , 𝑠. 

Lie symmetry transformation acting on a space of two independent variables (𝑡, 𝑥) and 

dependent variable 𝑢 is determined as 
 

𝑡̅ = 𝑡 + 𝜀𝜏(𝑡, 𝑥, 𝑢) + 𝑂(𝜀2),

𝑥̅ = 𝑥 + 𝜀𝜉(𝑡, 𝑥, 𝑢) + 𝑂(𝜀2)

𝑢̅ = 𝑢 + 𝜀𝜂(𝑡, 𝑥, 𝑢) + 𝑂(𝜀2),

,                                                                                                        (2) 

 

where 𝜀 > 0 is a group parameter and 𝜏, 𝜉, 𝜂 , are the infinitesimals of the transformation. 

According to above transformation an infinitesimal generator has a following form  
 

𝑋 = 𝜉(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑥
+ 𝜏(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑡
+ 𝜂(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
.                                                                              (3) 

 

Definition 2.1.  𝑢 = 𝜃(𝑡, 𝑥) is an invariant solution of the equation (1) obtaining from the 

invariance of the equation (1) under the symmetry (2) with infinitesimal generator (3) if only if 

(see [3]) 
 

 𝑢 = 𝜃(𝑡, 𝑥) is an invariance surface of 𝑋, 

 𝑢 = 𝜃(𝑡, 𝑥) solves the equation (1). 
 

In other words, Lie point symmetries for (1) are given by the vector field (3) with Lie 

transformation (2) if only if an invariant solution 𝑢 = 𝜃(𝑡, 𝑥) satisfies: 
 

 𝑋(𝑢 − 𝜃(𝑡, 𝑥)) = 0 for 𝑢 = 𝜃(𝑡, 𝑥), which gives us 

𝜉(𝑡, 𝑥, 𝜃(𝑡, 𝑥))
𝜕

𝜕 𝑥
+ 𝜏(𝑡, 𝑥, 𝜃(𝑡, 𝑥))

𝜕

𝜕 𝑡
= 𝜂(𝑡, 𝑥, 𝜃(𝑡, 𝑥)), 

 𝐹(𝑡, 𝑥, 𝜃(𝑡, 𝑥), 𝑐𝐷𝑡
𝛼𝜃(𝑡, 𝑥), 𝜕𝑥𝜃(𝑡, 𝑥), 𝜕𝑥

2𝜃(𝑡, 𝑥), … , 𝜕𝑥
𝑠𝜃(𝑡, 𝑥)) = 0, for 𝑢 = 𝜃(𝑡, 𝑥). 
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According to the infinitesimal transformation (2) a fractional prolongation 𝑝𝑟(𝛼,𝑛)𝑋 of the 

equation (1) 
 

𝑝𝑟(𝛼,𝑠)𝑋(𝐸)|
𝐸=0

= 0,   𝑤ℎ𝑒𝑟𝑒 𝐸 = 𝐹(𝑡, 𝑥, 𝑢, 𝑐𝐷𝑡
𝛼𝑢, 𝜕𝑥𝑢, 𝜕𝑥

2𝑢, … , 𝜕𝑥
𝑠𝑢),  

 

here 
 

𝜂𝛼
𝑡 =  𝑐𝐷𝑡

𝛼(𝜂) + 𝜉𝑐𝐷𝑡
𝛼(𝑢𝑥) − 𝑐𝐷𝑡

𝛼(𝜉𝑢𝑥) + 𝜏𝑐𝐷𝑡
𝛼(𝑢𝑡) − 𝑐𝐷𝑡

𝛼(𝜏𝑢𝑡),  
𝜂1

𝑥 = 𝐷𝑥𝜂 − 𝑢𝑥𝐷𝑥𝜉 − 𝑢𝑡𝐷𝑥𝜏,

𝜂2
𝑥 = 𝐷𝑥𝜂1

𝑥 − 𝑢𝑥𝑥𝐷𝑥𝜉 − 𝑢𝑥𝑡𝐷𝑥𝜏
⋮

,                                                                                                   (4) 

𝜂3
𝑥 = 𝐷𝑥𝜂𝑠−1

𝑥 − 𝜕𝑥
𝑠𝑢𝐷𝑥𝜉 − 𝜕𝑥

𝑠−1𝑢𝑡𝐷𝑥𝜏,  
 

with total derivative 𝐷𝑖 in a form 
 

𝐷𝑖 = 𝜕𝑖 + 𝑢𝑖𝜕𝑢 + 𝑢𝑖𝑡𝜕𝑢𝑡
+ 𝑢𝑗𝑖𝜕𝑢𝑡

+ 𝑢𝑖𝑖𝜕𝑢𝑖
+ 𝑢𝑗𝑗𝜕𝑢𝑗

+ ⋯. 
 

The expressions for 𝜂𝑖
𝑥, 𝑖 = 1, … , 𝑠 in (4) can be easily obtained (see [3]), here we focus our 

attention on 𝜂𝛼
𝑡   [3,13]. 

The fractional integral can be defined as 
 

𝐼𝑡
𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏.

𝑡

0

 

 

So, we can see the below representations of Caputo and Riemann–Liouville fractional 

derivatives (see [11,14]) 
 

𝑐𝐷𝑡
𝛼𝑓(𝑡) = 𝐼𝑡

𝑛−𝛼𝐷𝑛𝑓(𝑡),                                                                                                                (5) 
 

𝐷𝑡
𝛼𝑓(𝑡) = 𝐷𝑛𝐼𝑡

𝑛−𝛼𝑓(𝑡).                                                                                                                  (6) 
 

According to the generalized Leibnitz rule in [15] 
 

𝐷𝑡
𝛼(𝑓(𝑡), 𝑔(𝑡)) = ∑ (

𝛼

𝑛
)

∞

𝑛=0

𝐼𝑡
𝑛−𝛼𝑓(𝑡)𝐷𝑡

𝑛𝑔(𝑡),      (
𝛼

𝑛
) =

(−1)𝑛−1𝛼Γ(𝑛 − 𝛼)

Γ(1 − 𝛼)Γ(𝑛 + 1)
, 

 

we have 
 

𝜉𝑐𝐷𝑡
𝛼(𝑢𝑥) − 𝑐𝐷𝑡

𝛼(𝜉𝑢𝑥) = − ∑ (
𝛼

𝑛
)

∞

𝑛=1

𝐼𝑡
𝑛−𝛼(𝑢𝑥)𝐷𝑡

𝑛(𝜉) + ∑
(𝜉𝑢𝑥)(𝑖)(0)

Γ(𝑖 − 𝛼 + 1)
𝑡𝑖−𝛼

𝑛−1

𝑖=0

, 

 

and 
 

𝜏𝑐𝐷𝑡
𝛼(𝑢𝑡) − 𝑐𝐷𝑡

𝛼(𝜏𝑢𝑡) = − ∑ (
𝛼

𝑛
)

∞

𝑛=1

𝐼𝑡
𝑛−𝛼(𝑢𝑡)𝐷𝑡

𝑛(𝜏) + ∑
(𝜏𝑢𝑡)(𝑖)(0)

Γ(𝑖 − 𝛼 + 1)
𝑡𝑖−𝛼

𝑛−1

𝑖=0

. 

 

Thus, we get the expression 
 

𝜂𝛼
𝑡 =  𝐷𝑡

𝛼(𝜂) + 𝜂0 − ∑ (
𝛼

𝑛
)

∞

𝑛=1

𝐼𝑡
𝑛−𝛼(𝑢𝑥)𝐷𝑡

𝑛(𝜉) + ∑
(𝜉𝑢𝑥)(𝑖)(0)

Γ(𝑖 − 𝛼 + 1)
𝑡𝑖−𝛼

𝑛−1

𝑖=0

− ∑ (
𝛼

𝑛 + 1
)

∞

𝑛=1

𝐼𝑡
𝑛−𝛼(𝑢)𝐷𝑡

𝑛+1(𝜏) − 𝛼𝐷𝑡(𝜏)𝐷𝑡
𝛼(𝑢𝑡). 

 

Here by using a generalized form of the chain rule (see [16]) 
 

𝑑𝑚𝑓(𝑔(𝑡))

𝑑𝑡𝑚 = ∑ ∑ (
𝑘

𝑟
)

𝑘

𝑟=0

𝑚

𝑘=0

1

𝑘!
(−𝑔(𝑡))

𝑟 𝑑𝑚

𝑑𝑡𝑚
(𝑔(𝑡)𝑘−𝑟)

𝑑𝑘

𝑑𝑔𝑘 𝑓(𝑔), 

 

which for fractional 𝑚 takes a form 
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𝑑𝛼𝑓(𝑔(𝑡))

𝑑𝑡𝛼
= ∑ ∑ ∑ ∑ (𝛼

𝑙
)𝑘−1

𝑟=0 ( 𝑙
𝑚

)𝑚
𝑘=0 (𝑘

𝑟
)𝑙

𝑚=0
∞
𝑙=0

1

𝑘!

𝑡𝑙−𝛼

Γ(𝑙−𝛼+1)
(−𝑔(𝑡))

𝑟 𝑑𝑚

𝑑𝑡𝑚
(𝑔(𝑡)𝑘−𝑟)

𝑑𝑙−𝑚+𝑘

𝑑𝑡𝑙−𝑚𝑑𝑔𝑘
𝑓(𝑔), 

 

and so we have  
 

𝜂0 = ∑
(𝜂)(𝑖)(0)

Γ(𝑗 − 𝛼 + 1)
𝑡𝑛−𝛼

𝑛−1

𝑗=0

= ∑
𝑡𝑛−𝛼

Γ(𝑗 − 𝛼 + 1)

𝑛−1

𝑗=0

∑ ∑ ∑ ∑ (
𝛼

𝑙
)

𝑘−1

𝑟=0

(
𝑙

𝑚
)

𝑚

𝑘=0

(
𝑘

𝑟
)

𝑙

𝑚=0

∞

𝑙=0

1

𝑘!
(

𝑡𝑙−𝛼

Γ(𝑙 − 𝛼 + 1)
(−𝑢)𝑟

𝑑𝑗

𝑑𝑡𝑗
(𝑢𝑘−𝑟)

𝑑𝑙−𝑗+𝑘𝜂

𝑑𝑡𝑙−𝑗𝑑𝑢𝑘
) (0). 

 

And so, the infinitesimal 𝜂𝛼
𝑡  takes a form 

 

𝜂𝛼
𝑡 =  

𝑐𝜕𝛼𝜂

𝜕𝑡𝛼 + (𝜂𝑢 − 𝛼(𝜏𝑡 + 𝜏𝑢𝑢𝑡))
𝑐𝜕𝛼𝑢

𝜕𝑡𝛼 − 𝑢
𝑐𝜕𝛼𝜂𝑢

𝜕𝑡𝛼 + 𝜇 − ∑ (𝛼
𝑛

)∞
𝑛=1 𝐼𝑡

𝑛−𝛼(𝑢𝑥)𝐷𝑡
𝑛(𝜉)                    (7) 

 

where 
 

𝜇 = ∑ ∑ ∑ ∑ (𝛼
𝑛

)𝑘−1
𝑟=0 ( 𝑛

𝑚
)𝑚

𝑘=2 (𝑘
𝑟

)𝑛
𝑚=2

∞
𝑛=2

1

𝑘!

𝑡𝑛−𝛼(−𝑢)𝑟

Γ(𝑛−𝛼+1)

𝑑𝑚

𝑑𝑡𝑚
(𝑢𝑘−𝑟)

𝑑𝑛−𝑚+𝑘𝜂

𝑑𝑡𝑛−𝑚𝑑𝑢𝑘
.                                     (8) 

 

Here we can proof the next lemma. 
 

Lemma 2.1. If (1) is invariant under infinitesimal transformation (2) with infinitesimal generator 

(3) and the equation (1) has no the second and higher order derivative of u with respect to t, then 

𝜂 = 𝐴(𝑡, 𝑥)𝑢 + 𝐵(𝑡, 𝑥)  with A(t,x) and B(t,x) arbitrary functions. 
 

Proof. By expanding the 𝑐𝐷𝑡
𝛼(𝜂) we get the expression (8). As the equation has not any 

variations of second and high order derivative 𝑢 with respect to 𝑡, then for 𝑘 = 2 we have 
 

𝜇 =
1

2!

𝑡2−𝛼

Γ(3 − 𝛼)
𝜂𝑢𝑢𝑢𝑡𝑡, 

 

and 𝜂𝑢𝑢 = 0. Here by integration we get 𝜂 = 𝐴(𝑡, 𝑥)𝑢 + 𝐵(𝑡, 𝑥). 

Q.E.D. 

 

3. LIE SYMMETRY ANALYSIS FOR CAPUTO TIME-FRACTIONAL INITIAL AND 

BOUNDARY VALUE PROBLEMS 

 

Here we study Lie symmetry analysis for Caputo fractional initial and boundary value 

problems. It is known that the PDE can describe real processes according nature and society if 

there are given initial and boundary conditions for the PDE. In case of FPDE the advantage of the 

Caputo fractional derivative is that it enables standard initial and boundary conditions for 

differential equations. And although Lie symmetry analysis is one of the most widely-applicable 

methods of finding exact solutions of differential equations, but it was not widely used for solving 

boundary value problems. The reason is the initial and boundary conditions usually are not 

invariant under any obtained Lie symmetries [9,10]. Thus we can say that an invariant solution for 

PDE resulting by applying Lie symmetry method solves a given boundary value problem, when 

the symmetry transformation leaves invariant all boundary conditions and the domain of the 

boundary value problem [9]. 

In [9] Bluman gives a definition of Lie symmetry invariance for initial and boundary by 

means of that there are some classes initial and boundary problems which can be solved. Bluman 

studies the PDE with finite values of 𝑥 and 𝑡 boundary and initial conditions. Later Cherniha 

extends the definitions of Bluman for the PDE with infinite values of 𝑥 and 𝑡 boundary and initial 

conditions [17,18]. In this work we investigate the symmetry analysis of initial and boundary 

value problems for fractional nonlinear PDE with Caputo time-fractional derivative. 

Let Lie symmetry infinitesimal generator 𝑋 
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𝑋 = 𝜉(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑥
+ 𝜏(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑡
+ 𝜂(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
,                                                                              (9) 

 

is admitted by the boundary value problem defined on a domain Ω: 
 

𝑢𝑡 = 𝑓 (𝑡, 𝑥, 𝑢,
𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘𝑢

𝑑𝑥𝑘
 ),   (𝑡, 𝑥) ∈ Ω ⊂ ℝ2,                                                                           (10) 

 

𝑑𝑎(𝑡, 𝑥) = 0: 𝐵𝑎 (𝑡, 𝑥, 𝑢,
𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘−1𝑢

𝑑𝑥𝑘−1
 ) = 0,   𝑎 = 1, … , 𝑝.                                                         (11) 

 

Here 𝐵𝑎 (𝑡, 𝑥, 𝑢,
𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘−1𝑢

𝑑𝑥𝑘−1
 ) = 0 boundary condition on 𝑑𝑎(𝑡, 𝑥) = 0. Suppose that the 

above boundary value problem has a unique solution. 
 

Definition 3.1. [9] The symmetry 𝑋 which has the form (9) is allowed by the boundary value 

problem (10)-(11) if: 
 

 𝑋(𝑘) (𝑢𝑡 − 𝑓 (𝑡, 𝑥, 𝑢,
𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘𝑢

𝑑𝑥𝑘
)) = 0 for 𝑢𝑡 = 𝑓 (𝑡, 𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘𝑢

𝑑𝑥𝑘
 ) ; 

 𝑋𝑑𝑎(𝑡, 𝑥) = 0 for 𝑑𝑎(𝑡, 𝑥) = 0, a=1,…,p; 

 𝑋(𝑘−1)𝐵𝑎 (𝑡, 𝑥, 𝑢,
𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘−1𝑢

𝑑𝑥𝑘−1
 ) = 0 for 𝐵𝑎 (𝑡, 𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘−1𝑢

𝑑𝑥𝑘−1
 ) = 0 on 𝑑𝑎(𝑡, 𝑥) = 0. 

 

Further we extend the Blusman's definition for FPDE with Caputo derivative. Let us consider 

the boundary value problem for FPDE defined on a domain Ω 
 

𝑐𝐷𝑡
𝛼𝑢 = 𝑔 (𝑡, 𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘𝑢

𝑑𝑥𝑘
 ),   (𝑡, 𝑥) ∈ Ω ⊂ ℝ2,                                                                     (12) 

 

𝑐𝑑𝑎(𝑡, 𝑥) = 0: 𝑐𝐵𝑎 (𝑡, 𝑥, 𝑢,
𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘−1𝑢

𝑑𝑥𝑘−1 ) = 0,   𝑎 = 1, … , 𝑝.                                                      (13) 
 

Here 𝑐𝐵𝑎 (𝑡, 𝑥, 𝑢,
𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘−1𝑢

𝑑𝑥𝑘−1
 ) = 0 is a boundary condition on 𝑐𝑑𝑎(𝑡, 𝑥) = 0. Suppose the 

boundary value problem (12)-(13) has a unique solution. Then we can give next definition. 
 

Definition 3.2. The symmetry 𝑋 which has the form (9) is allowed by the boundary value problem 

(12)-(13) if: 

 

 𝑋(𝑘) (𝑐𝐷𝑡
𝛼𝑢 − 𝑔 (𝑡, 𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘𝑢

𝑑𝑥𝑘
)) = 0 for 𝑢𝑡 = 𝑓 (𝑡, 𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘𝑢

𝑑𝑥𝑘
 ) ; 

 𝑋𝑑𝑎(𝑡, 𝑥) = 0 for 𝑐𝑑𝑎(𝑡, 𝑥) = 0, a=1,…,p; 

 𝑋(𝑘−1)𝑐𝐵𝑎 (𝑡, 𝑥, 𝑢,
𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘−1𝑢

𝑑𝑥𝑘−1
 ) = 0 for 𝑐𝐵𝑎 (𝑡, 𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘−1𝑢

𝑑𝑥𝑘−1
 ) = 0 on 𝑐𝑑𝑎(𝑡, 𝑥) =

0. 
 

Theorem 3.1. The solution 𝑢 = 𝜐(𝑡, 𝑥) for (12) is invariant if only if for infinitesimal generator 𝑋 

the curve (mapping) 𝜐(𝑡, 𝑥) admits: 
 

𝜂(𝑡, 𝑥, 𝜐(𝑡, 𝑥)) − 𝜉(𝑡, 𝑥, 𝜐(𝑡, 𝑥)) − 𝜏(𝑡, 𝑥, 𝜐(𝑡, 𝑥))𝑐𝐷𝑡
1−𝛼𝑔 (𝑡, 𝑥, 𝜐(𝑡, 𝑥),

𝜕𝜐(𝑡,𝑥)

𝜕𝑥
, … ,

𝑑𝑘𝜐(𝑡,𝑥)

𝑑𝑥𝑘  ) = 0.                     

                                                                                                                                                      (14) 
 

Proof. As the solution surface 𝑢 = 𝜐(𝑡, 𝑥) is invariant for (12) if only if 𝑋(𝑢 − 𝜐(𝑡, 𝑥)) =
0 which gives 
 

0 = 𝑋(𝑢 − 𝜐(𝑡, 𝑥)) = (𝜉(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑥
+ 𝜏(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑡
+ 𝜂(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
) (𝑢 − 𝜐(𝑡, 𝑥))

= 𝜂(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑢
𝑢 − 𝜉(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑥
𝜐(𝑡, 𝑥) 

−𝜏(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑡
𝜐(𝑡, 𝑥) =  𝜂(𝑡, 𝑥, 𝑢) − 𝜉(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑥
𝜐(𝑡, 𝑥) − 𝜏(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑡
𝜐(𝑡, 𝑥). 
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Further, as 𝑢 = 𝜐(𝑡, 𝑥), then 𝑢𝑡 =
𝜕

𝜕𝑡
𝜐(𝑡, 𝑥). From the property of Caputo derivative (5) 

𝑢𝑡 =  𝑐𝐷𝑡
1−𝛼𝑔 (𝑡, 𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
, … ,

𝑑𝑘𝑢

𝑑𝑥𝑘
 ), i.e 

 

𝜂(𝑡, 𝑥, 𝑢) − 𝜉(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑥
𝜐(𝑡, 𝑥) − 𝜏(𝑡, 𝑥, 𝑢)𝑐𝐷𝑡

1−𝛼𝑔 (𝑡, 𝑥, 𝜐(𝑡, 𝑥),
𝜕𝜐(𝑡, 𝑥)

𝜕𝑥
, … ,

𝑑𝑘𝜐(𝑡, 𝑥)

𝑑𝑥𝑘  ). 

Q.E.D. 

 

4. SYMMETRY ANALYSIS FOR HARRY-DYM CAPUTO TIME–FRACTIONAL 

INITIAL AND BOUNDARY VALUE PROBLEMS 

 

Here we will study the symmetries of initial and boundary value problems with Caputo 

fractional derivatives.  
 

Let 0 < 𝛼 ≤ 1 
 

𝑐𝐷𝑡
𝛼𝑢(𝑡, 𝑥) = (𝐴(𝑢)𝑢𝑥)𝑥𝑥 ,                                                                                                           (15) 

 

with initial and boundary conditions 
 

{
𝑢(𝑡, 0) = 𝑓(𝑡),        𝑓𝑜𝑟  𝑡 > 0,

𝑢(0, 𝑥) = 𝑔(𝑥),       𝑓𝑜𝑟  𝑥 > 0,
                                                                                                  (16) 

 

is IBVP for Caputo time-fractional diffusion equation. 

By applying Lie symmetry method to equation (15) we obtain next cases 
 

Case 1. For 𝐴(𝑢) = 𝑢𝑠, 𝑠 ≠ 1 and , 𝑠 ≠ 0 we get 
 

𝜉 = 𝑐1𝑥 + 𝑐2,

𝜏 =
3𝑐1

𝛼(𝑠+1)
𝑡 + 𝑐3,

𝜂 = 3𝑐1𝑢,

  

 

which gives us an infinitesimal generator in form 
 

𝑋 = (𝑐1𝑥 + 𝑐2)
𝜕

𝜕𝑥
+ (

3𝑐1

𝛼(𝑠+1)
𝑡 + 𝑐3)

𝜕

𝜕𝑡
+ (3𝑐1𝑢)

𝜕

𝜕𝑢
,                                                                   (17) 

 

here each 𝑐𝑖, 𝑖 = 1,2,3 represents a symmetry for equation (15) with 𝐴(𝑢) = 𝑢𝑠. The 

definition of invariance of the initial and boundary problems allows us make the following 

argument. The invariance of 𝑡 = 0 leads to 𝑐3 = 0 and the invariance of 𝑥 = 0 leads to 𝑐2 = 0. 

And 
 

3𝑐1

𝛼(𝑠+1)
𝑡

𝜕

𝜕𝑡
𝑓(𝑡) = 3𝑐1𝑓(𝑡),  

 

the solution to this equation is 𝑓(𝑡) = 𝑡𝛼(𝑠+1)𝑘1, here 𝑘1 is an arbitrary constant. 

And for 𝑡 = 0 we get 
 

𝑐1𝑥
𝜕

𝜕𝑥
𝑔(𝑥) = 3𝑐1𝑔(𝑥),  

 

or 𝑔(𝑥) = 𝑥3𝑘2 here 𝑘2 is an arbitrary constant. 

That means the initial and boundary problem for equation (15) with 𝐴(𝑢) = 𝑢𝑠 is invariant 

according to infinitesimal generator (17) if the boundary and initial conditions have above form 

and there is an infinitesimal operator 
 

𝑋1 = 𝑥
𝜕

𝜕𝑥
+

3𝑐1

𝛼(𝑠+1)
𝑡

𝜕

𝜕𝑡
+ 3𝑢

𝜕

𝜕𝑢
.  

 

Case 2. If 𝐴(𝑢) = 𝑢−1 we have the infinitesimal generator in a form 
 

𝑋 = 𝑐1
𝜕

𝜕𝑥
+ (𝑐2𝑡 + 𝑐3)

𝜕

𝜕𝑡
+ 𝛼𝑐2𝑢

𝜕

𝜕𝑢
.                                                                                           (18) 
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After the same operation as in case 1 we have 𝑐1 = 𝑐3 = 0. For 𝑡 = 0 we get 0 = 𝛼𝑐2𝑔(𝑥), 

which means the initial condition has a form 𝑢(0, 𝑥) = 0. For 𝑥 = 0, 𝑓(𝑡) is a solution of 

𝑐2𝑡
𝜕

𝜕𝑡
𝑓(𝑡) = 𝛼𝑐2𝑓(𝑡) in a form 𝑓(𝑡) = 𝑡𝛼𝑘3  with 𝑘3 an arbitrary constant. Thus, our IBVP (15)-

(16) with 𝐴(𝑢) = 𝑢−1 is invariant according to infinitesimal generator (18) if the boundary and 

initial conditions have above form and there is an infinitesimal operator 
 

𝑋2 = 𝑡
𝜕

𝜕𝑡
+ 𝛼𝑢

𝜕

𝜕𝑢
.  

 

The infinitesimal operator 𝑋2 gives us a transformation 𝑢 = 𝑡𝛼𝜑(𝑥). After applying this 

transformation to our equation (15) we get 
 

𝜑(𝑥)Γ(𝛼 + 1) = 2𝜑(𝑥)−3𝜑′(𝑥)3 − 3𝜑(𝑥)−3𝜑′(𝑥)𝜑′′(𝑥) + 𝜑(𝑥)−1𝜑′′′(𝑥).  
 

The initial condition 𝑢(0, 𝑥) = 0 keeps 𝑢 = 𝑡𝛼𝜑(𝑥), and the boundary condition 𝑢(𝑡, 0) =
𝑡𝛼𝑘3 gives us 𝜑(0) = 𝑘3 

Therefore, the IBVP (15)-(16) have a reduced Cauchy problem 
 

{
𝜑(𝑥)Γ(𝛼 + 1) = 2𝜑(𝑥)−3𝜑′(𝑥)3 − 3𝜑(𝑥)−3𝜑′(𝑥)𝜑′′(𝑥) + 𝜑(𝑥)−1𝜑′′′(𝑥),

𝜑(0) = 𝑘3.                                                                                                                      
  

 

Case 3. In case if 𝐴(𝑢) = 1, then we obtain an infinitesimal generator 
 

𝑋 = (𝛼𝑐1𝑥 + 𝑐2)
𝜕

𝜕𝑥
+ (3𝑐1𝑡 + 𝑐3)

𝜕

𝜕𝑡
+ ((𝛼 +

3

2(1−𝛼)
) 𝑐1𝑢 + 𝑐4)

𝜕

𝜕𝑢
.                                         (19) 

 

The invariance of 𝑥 = 0 and 𝑡 = 0 gives us 𝑐2 = 𝑐3 = 0. For 𝑡 = 0 we have an equation 
 

𝛼𝑐1𝑥
𝜕

𝜕𝑥
𝑔(𝑥) = (𝛼 +

3

2(1−𝛼)
) 𝑐1𝑔(𝑥) + 𝑐4.  

 

Suppose 𝑐4 = 2𝑐1, then the equation has a solution 𝑔(𝑥) = −
4(1−𝛼)

4𝛼(1−𝛼)+3
+ 𝑥

2+
3

2𝛼(1−𝛼)𝑘4, 𝑘4 is 

a constant. And for 𝑥 = 0 we have 
 

3𝑐1𝑡
𝜕

𝜕𝑡
𝑓(𝑡) = (𝛼 +

3

2(1−𝛼)
) 𝑐1𝑓(𝑡) + 𝑐4,  

 

with solution 𝑓(𝑡) = −
4(1−𝛼)

4𝛼(1−𝛼)+3
+ 𝑡

2𝛼(1−𝛼)+3

6(1−𝛼) 𝑘5, 𝑘5 is a constant. In a like manner, our IBVP 

(15)-(16) with 𝐴(𝑢) = 1 is invariant under (19) if the boundary and initial conditions have above 

form and there is an infinitesimal operator 
 

𝑋3 = 𝛼𝑥
𝜕

𝜕𝑥
+ 3𝑡

𝜕

𝜕𝑡
+ ((𝛼 +

3

2(1−𝛼)
) 𝑢 + 2)

𝜕

𝜕𝑢
.  

 

5. CONCLUSION 

 

In this work, we present the applications of Lie group analysis to study the initial and 

boundary value problems for time-fractional nonlinear PDE given by Caputo sense. We give the 

definition of invariance of the initial and boundary value problems for time-fractional PDE and 

proved some theorems. By using Lie symmetry method and its analysis for the initial and 

boundary value problems with time-fractional PDE we obtained reduced invariant IBVP. 
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